
Introduction to Semantic Web and
Description Logics:
Protégé and Pellet

Riccardo Zese

Riccardo Zese Protégé and Pellet 1



Outline

1 Where are we now?

2 The Semantic Web Cake

3 OWL Ontologies

4 Ontology Editors

5 Reasoners

Riccardo Zese Protégé and Pellet 2



Where are we now?

Outline

1 Where are we now?

2 The Semantic Web Cake

3 OWL Ontologies

4 Ontology Editors

5 Reasoners

Riccardo Zese Protégé and Pellet 3



Where are we now?

Summing up...

Until now, we have spoken about
• Description Logics, starting from a simple logic and finishing with an

introduction of ALC
• Semantic Web, with some applications and tools, standards, problems

Riccardo Zese Protégé and Pellet 4



The Semantic Web Cake

Outline

1 Where are we now?

2 The Semantic Web Cake

3 OWL Ontologies

4 Ontology Editors

5 Reasoners

Riccardo Zese Protégé and Pellet 5



The Semantic Web Cake

The Semantic Web Cake

Riccardo Zese Protégé and Pellet 6



The Semantic Web Cake The Basis

The Basis

At the base there are the naming mechanism (URI) and the basic language,
which specifies the elemental syntax (XML)

Riccardo Zese Protégé and Pellet 7



The Semantic Web Cake Data Interchange

Resource Description Framework

Describes the information of the domain by means of triples
<subject, predicate, object> or <resource, attribute, value>

Riccardo Zese Protégé and Pellet 8



The Semantic Web Cake Querying

Querying at a low level

SPARQL can be used to express queries across diverse data sources,
whether the data is stored natively as RDF or viewed as RDF via middleware.
Extracts data, does not infers new information

Riccardo Zese Protégé and Pellet 9



The Semantic Web Cake Knowledge Representation

Knowledge Representation

RDFS extends RDF with type, subclassOf, ...
OWL extends RDFS, with different level of expressivity

Riccardo Zese Protégé and Pellet 10



The Semantic Web Cake Knowledge Representation

OWL

• Three level of expressivity/complexity
• OWL-Lite, decidable, based on SHIF(D)
• OWL DL, decidable and more expressive, based on SHOIN (D)
• OWL Full, not decidable, highly expressive

• OWL 2 based on SROIQ(D)

• Permits the use of many features:
• Classes (categories): subClassOf, intersectionOf, unionOf, complementOf,

enumeration, equivalence, disjoint
• Properties (Roles, Relations): symmetric, transitive, functional, inverse

Functional, range, domain, subPropertyOf, inverseOf, equivalentProperty
• Instances (Individuals): sameIndividualAs, differentFrom, allDifferent

Riccardo Zese Protégé and Pellet 11



The Semantic Web Cake Knowledge Representation

Ontology

A formal, explicit description of a domain of interest

• Classes (Concepts)
• Semantic relation between classes (roles)
• Properties associated to a concept (restrictions, ...)
• Logic (axioms, inference rules)

Riccardo Zese Protégé and Pellet 12



The Semantic Web Cake Knowledge Representation

Knowledge Base

Knowledge Base = Ontology + Instances

Riccardo Zese Protégé and Pellet 13



The Semantic Web Cake Rules

Knowledge Representation

Allows to add rules to data, e.g., If-then
Note, one can use OWL 2 RL Profile

Riccardo Zese Protégé and Pellet 14



The Semantic Web Cake Reasoning

Reasoning

Allows to find new implicit information from the explicit ones, also providing
proofs for the inferred new knowledge

Riccardo Zese Protégé and Pellet 15



The Semantic Web Cake Trust

Trust

Ensures privacy of the data

Riccardo Zese Protégé and Pellet 16



The Semantic Web Cake UI and Applications

UI and Applications

Provides an environment to present application to final users

Riccardo Zese Protégé and Pellet 17



OWL Ontologies

Outline

1 Where are we now?

2 The Semantic Web Cake

3 OWL Ontologies

4 Ontology Editors

5 Reasoners

Riccardo Zese Protégé and Pellet 18



OWL Ontologies

Ontologies and Semantic Web

As seen in the Semantic Web Cake, there are two ways for defining
ontologies for the Semantic Web
• RDF Schema, that extends RDF with basic element for the description of

ontologies (type, subClassOf, subPropertyOf, range, domain), good for
taxonomies

• OWL, extends on RDFS, based on Description Logics. Defines three
different sublanguages of increasing complexity:
• OWL-Lite: limited support for certain features (ex.: cardinality), good for

thesauri or hierarchies
• OWL DL: good expressiveness, based on Description Logics, suited for

modeling knowledge bases
• OWL Full: minimal compatibility with RDFS

Riccardo Zese Protégé and Pellet 19



OWL Ontologies

OWL and Description Logics

• Description Logics is a family of logics
• Each logic is distinguished from the other depending on which operators

are supported
• The more supported operators, the higher the complexity

Riccardo Zese Protégé and Pellet 20



OWL Ontologies

OWL and Description Logics

OWL DL supports the following operators

Axiom DL Syntax Example
subClassOf C1 v C2 Human v Animal u Biped
equivalentClasses C1 v C2 Man v Human uMale
disjointWith C1 v ¬C2 Male v ¬Female
sameIndividualAs {x1} ≡ {x2} {President Bush} ≡ {G W Bush}
differentFrom {x1} v ¬{x2} {robb} v ¬{tony}
subPropertyOf R1 v R2 hasDaughter v hasChild
equivalentPropertyOf R1 ≡ R2 cost ≡ price
inverseOf R1 ≡ R−

2 hasChild ≡ hasParent−

transitiveProperty R+ ancestor+
functionalProperty > v≤ 1P > v≤ 1hasMother
inverseFunctionalProperty > v≤ 1P− > v≤ 1hasSSN−

Note: all the operators that combines properties are applicable also to those
that involve datatypes

Riccardo Zese Protégé and Pellet 21



OWL Ontologies

A few of terminology

OWL ⇔ DL
Class ⇔ Concept

Property ⇔ Role
Instance ⇔ Individual

Riccardo Zese Protégé and Pellet 22



OWL Ontologies

A few of terminology

Object Property Datatype Property

Inverse Property Transitive Property

Riccardo Zese Protégé and Pellet 23



OWL Ontologies

A few of terminology

Symmetric Property Antisymmetric Property

Functional Property Inverse Functional Property

Reflexive Property Irreflexive Property
If r is reflexive, then If r is irreflexive, then
∀a ∈ Individuals|r(a,a) there cannot exists r(a,a)

Riccardo Zese Protégé and Pellet 24



Ontology Editors

Outline

1 Where are we now?

2 The Semantic Web Cake

3 OWL Ontologies

4 Ontology Editors

5 Reasoners

Riccardo Zese Protégé and Pellet 25



Ontology Editors

Ontology Editors

There are many editor for developing ontologies
• WebODE, http://mayor2.dia.fi.upm.es/oeg-upm/index.
php/en/old-technologies/60-webode

• ICOM, http://www.inf.unibz.it/˜franconi/icom/
• Protégé, http://protege.stanford.edu/
• much more, some of them listed at
http://www.w3.org/2001/sw/wiki/Category:Editor

Riccardo Zese Protégé and Pellet 26

http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/old-technologies/60-webode
http://mayor2.dia.fi.upm.es/oeg-upm/index.php/en/old-technologies/60-webode
http://www.inf.unibz.it/~franconi/icom/
http://protege.stanford.edu/
http://www.w3.org/2001/sw/wiki/Category:Editor


Ontology Editors Protégé

Protégé

• Graphical editor
• Developed at the Stanford Center fo Biomedical Informatics Research

(US)
• Open Source, Java based, highly extensible
• Plug-in environment, with a very large number of available plug-ins
• Can export ontologies in several different formats (OWL, RDFS, Turtle,

...)
• A web interface is also available at
http://webprotege.stanford.edu/

Riccardo Zese Protégé and Pellet 27

http://webprotege.stanford.edu/


Ontology Editors Protégé

Protégé 5.0

Protégé presents several tabs

Riccardo Zese Protégé and Pellet 28



Ontology Editors Protégé

Protégé 5.0

• Active Ontology, shows information about the open ontology
• Entities, gives a centralized place where the user can modify quite all the

information of the ontology
• Classes, classes editor
• Object Properties
• Data Properties
• Annotation Properties (metadata...)
• Indididuals

• SPARQL Query, SPARQL engine

Riccardo Zese Protégé and Pellet 29



Ontology Editors Protégé

Protégé - Classes Editor

Riccardo Zese Protégé and Pellet 30



Ontology Editors Protégé

Protégé - Classes Editor

For each class, is possible to specify
• The hierarchy
• General information (annotations)
• Necessary and Sufficient conditions (≡)
• Necessary conditions (v)
• Disjointness conditions with other classes (by default, in OWL all the

classes can overlap with each others)

Riccardo Zese Protégé and Pellet 31



Ontology Editors Protégé

Class Definition

A class can be modeled by defining its necessary and sufficient conditions,
by specifying expressions (subClassOf relation with conjunction/disjunction
between concepts) or by specifying restrictions on properties

Riccardo Zese Protégé and Pellet 32



Ontology Editors Protégé

Class Definition Using Restrictions

• Quantifier Restrictions
• Existential Restriction: ∃r .C, :someValuesFrom, keyword some

class whose individuals are r -related with at least one individuals of C
• Universal Restriction: ∀r .C, :allValuesFrom, keyword only

class whose individuals are r -related with only individuals of C
• Cardinality Restrictions (possibly qualified)

• Minimun Cardinality Restriction: ≥ nr(.C), :minCardinality, keyword
min
class whose individuals are r -related with at least n individuals (of C)

• Exact Cardinality Restriction: = nr(.C), :exactCardinality, keyword
exactly
class whose individuals are r -related with exactly n individuals (of C)

• Maximum Cardinality Restriction: ≤ nr(.C), :maxCardinality,
keyword max
class whose individuals are r -related with at most n individuals (of C)

Riccardo Zese Protégé and Pellet 33



Ontology Editors Protégé

Protégé - Object Properties Editor

Riccardo Zese Protégé and Pellet 34



Ontology Editors Protégé

Protégé - Object Properties Editor

For each object property, is possible to specify
• The hierarchy
• General information (annotations)
• Characteristics (Functional Property, Transitive Property, ...)
• Necessary and Sufficient conditions (≡)
• Necessary conditions (v)
• Disjointness conditions with other properties
• Domain
• Range

Riccardo Zese Protégé and Pellet 35



Ontology Editors Protégé

Protégé - Data Properties Editor

Riccardo Zese Protégé and Pellet 36



Ontology Editors Protégé

Protégé - Data Properties Editor

For each object property, is possible to specify
• The hierarchy
• General information (annotations)
• Characteristics (Functional Property only)
• Necessary and Sufficient conditions (≡)
• Necessary conditions (v)
• Disjointness conditions with other properties
• Domain
• Range

Riccardo Zese Protégé and Pellet 37



Ontology Editors Protégé

Domain & Range

Properties link individuals from a domain with individuals from a range

The definition of a domain or a range is used during the inference process to
infer new knowledge
E.g.: given the classes Pizza and PizzaTopping, the relation hasTopping has:

• Pizza as domain
• PizzaTopping as range

If I model that iceCream hasTopping chocolate, then the fact that iceCream is
a Pizza can be inferred

Note: domain and range are inverted with inverse properties

Riccardo Zese Protégé and Pellet 38



Ontology Editors Protégé

Protégé - Individuals Editor

Riccardo Zese Protégé and Pellet 39



Ontology Editors Protégé

Protégé - Individuals Editor

For each individual, it is possible to specify
• The type (classes)
• Relationship with other individuals (equality, disequality)
• Property assertions

Riccardo Zese Protégé and Pellet 40



Ontology Editors Inferred Knowledge Base

Inferred Knowledge Base

Inferred ontology
• Protégé infers the inferred hierarchy or classes and properties by

means of the subsumption mechanism (use of reasoners, e.g., FACT++)
Inferred classification of individuals

Consistency checking: check whether each class can have at least one
individual that belongs to it

Riccardo Zese Protégé and Pellet 41



Ontology Editors Exercise

Exercise

A simplified and updated version of the step-by-step exercise from “Protégé
OWL Tutorial”
http://mowl-power.cs.man.ac.uk/protegeowltutorial/
resources/ProtegeOWLTutorialP4_v1_3.pdf

Riccardo Zese Protégé and Pellet 42

http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf
http://mowl-power.cs.man.ac.uk/protegeowltutorial/resources/ProtegeOWLTutorialP4_v1_3.pdf


Ontology Editors Exercise

Exercise - Step 1

• Start Protégé and you will see the main tab. Replace the IRI with
http://www.unife.it/ontologies/pizza.owl

• Now our ontology has a significant IRI. In Annotation we can add a
comment (e.g., what the ontology models)

Riccardo Zese Protégé and Pellet 43

http://www.unife.it/ ontologies/pizza.owl


Ontology Editors Exercise

Exercise - Step 2
• Go to Classes tab and create a subclass of Thing, called Pizza

Riccardo Zese Protégé and Pellet 44



Ontology Editors Exercise

Exercise - Step 3
• Create two sibling classes of Pizza, called PizzaTopping and
PizzaBase TIP: You can create a subclass of Thing or a sibling of the
other classes

Riccardo Zese Protégé and Pellet 45



Ontology Editors Exercise

Exercise - Step 4
• Make the created classes disjoint from each other. Select Pizza, press

Disjoint With in Description and select the other classes

Riccardo Zese Protégé and Pellet 46



Ontology Editors Exercise

Exercise - Step 5

• Create a class hierarchy for PizzaBase
• From the Tools menu select Create Class Hierarchy...
• Select PizzaBase
• Type in the class name the two names ThinAndCrispyBase and
DeepPanBase, and click Continue

• After the tool have checked the entered names, tick Make sibling classes
disjoint and click Finish

Riccardo Zese Protégé and Pellet 47



Ontology Editors Exercise

Exercise - Step 5

Riccardo Zese Protégé and Pellet 48



Ontology Editors Exercise

Exercise - Step 6

• Create a class hierarchy for PizzaTopping, usign Create Class
Hierarchy... tool

• Select PizzaTopping
• Type in the class name text you find in the next step, set Topping in

Suffix (the tool automatically appends Topping at the end of all the
created classes) and click Continue

• After the tool have checked the entered names, tick Make sibling classes
disjoint and click Finish

Riccardo Zese Protégé and Pellet 49



Ontology Editors Exercise

Exercise - Step 6

The tool allows a hierarchy of classes to be
entered using a tab indented tree. Class
names must be indented using tabs, so for
example SpicyBeef, which we want to be a
subclass of Meat is entered under Meat and
indented with a tab.

Cheese
Mozzarella
Parmezan

Meat
Ham
Salami
SpicyBeef

Seafood
Tuna
Anchovy
Prawn

Vegetable
Caper
Mushroom
Olive
Onion
Pepper

RedPepper
GreenPepper

Tomato

Riccardo Zese Protégé and Pellet 50



Ontology Editors Exercise

Exercise - Step 6

Riccardo Zese Protégé and Pellet 51



Ontology Editors Exercise

Exercise - Step 6

Riccardo Zese Protégé and Pellet 52



Ontology Editors Exercise

Exercise - Step 7

• Go to Object Properties tab and create a
property, called hasIngredient

• Create two subproperty of
hasIngredient, called hasTopping
and hasBase

Riccardo Zese Protégé and Pellet 53



Ontology Editors Exercise

Exercise - Step 8

• Create inverse properties of the properties just
defined

• Select the property and click on InverseOf, here
create the corresponding property

hasIngredient ⇔ isIngredientOf
hasTopping ⇔ isToppingOf
hasBase ⇔ isBaseOf

• You can optionally place the new isBaseOf
property as a sub-property of isIngredientOf
(N.B This will get inferred later anyway when you
use the reasoner).

Riccardo Zese Protégé and Pellet 54



Ontology Editors Exercise

Exercise - Step 9

• Make hasIngredient
property transitive

• Make hasBase property
functional

Riccardo Zese Protégé and Pellet 55



Ontology Editors Exercise

Exercise - Step 10
• Specify the the domain (Pizza) and range (PizzaTopping) for
hasTopping) property

• Specify the the domain (Pizza) and range (PizzaBase) for hasBase)
property

• Do the inverse for isToppingOf and isBaseOf

Riccardo Zese Protégé and Pellet 56



Ontology Editors Exercise

Exercise - Step 11

• Add that the class Pizza is a subclass of ∃hasBase.PizzaBase
(hasBase some PizzaBase)

• Add that the class Pizza is a subclass of ∃hasTopping.PizzaTopping
(hasTopping some PizzaTopping)

Riccardo Zese Protégé and Pellet 57



Ontology Editors Exercise

Exercise - Step 12

• Add the class
SoyCheeseTopping as a
subclass of VegetableTopping
and of CheeseTopping

Riccardo Zese Protégé and Pellet 58



Ontology Editors Exercise

Exercise - Step 13

Add some individuals
• chiliPepper

• types RedPepperTopping
• spicyTomato

• types TomatoTopping
• Object property assertions hasIngredient chiliPepper

• spicyRedDeepPizza
• types Pizza, hasBase some DeepPanBase
• Object property assertions hasTopping spicyTomato

• tunaOnionThinPizza
• types hasBase some ThinAndCrispyBase, hasTopping some
OnionTopping, hasTopping some TunaTopping

Riccardo Zese Protégé and Pellet 59



Ontology Editors Exercise

Exercise - Step 13

Riccardo Zese Protégé and Pellet 60



Ontology Editors Exercise

Exercise - Step 14

Start the internal reasoner and see what happens

Riccardo Zese Protégé and Pellet 61



Reasoners

Outline

1 Where are we now?

2 The Semantic Web Cake

3 OWL Ontologies

4 Ontology Editors

5 Reasoners

Riccardo Zese Protégé and Pellet 62



Reasoners

Reasoners

There are many reasoners available
• FaCT++ http://owl.man.ac.uk/factplusplus/

• Hermit http://www.hermit-reasoner.com/
• Pellet https://github.com/stardog-union/pellet
• much more, some of them listed at
http://www.w3.org/2001/sw/wiki/Category:Reasoner

Riccardo Zese Protégé and Pellet 63

http://owl.man.ac.uk/factplusplus/
http://www.hermit-reasoner.com/
https://github.com/stardog-union/pellet
http://www.w3.org/2001/sw/wiki/Category:Reasoner


Reasoners Pellet

Pellet

• Developed by Clark & Parsia LLC
• Open Source, Java based
• Can import ontologies in several different formats (OWL, RDFS, Turtle,

...)
• Can import ontologies from several different sources (local file, remote

ontology, ...)

Riccardo Zese Protégé and Pellet 64



Reasoners Pellet

Pellet

“Pellet is an OWL 2 reasoner. [...] Pellet provides functionality to check
consistency of ontologies, compute the classification hierarchy, explain
inferences, and answer SPARQL queries.”

SOURCE: Pellet Documentation
https://github.com/stardog-union/pellet

Riccardo Zese Protégé and Pellet 65

https://github.com/stardog-union/pellet


Reasoners Pellet

Features

Pellet can execute several different tasks:
• classify: classifies the ontology and display the hierarchy
• consistency: checks the consistency of an ontology
• entail: checks if all axioms are entailed by the ontology
• explain: explains one or more inferences in a given ontology including

ontology inconsistency
• extract: extract a set of (specified) inferences from an ontology
• info: displays information and statistics about 1 or more ontologies

Riccardo Zese Protégé and Pellet 66



Reasoners Pellet

Features

• lint: shows problems contained in the ontology (warnings, errors)
• modularity: extracts from the ontology information about given classes
• query: executes SPARQL queries
• realize: computes and displays the most specific instances for each

class
• trans-tree: computes a transitive-tree closure, reporting the hierarchy of

the classes which use the given transitive property
• unsat: finds the unsatisfiable classes in the ontology

Riccardo Zese Protégé and Pellet 67



Reasoners Pellet

Entail - Query Types

Entail computes one ore more explanations for the given query
• unsat: Explain why the given class is unsatisfiable
• all-unsat: Explain all unsatisfiable classes
• inconsistent: Explain why the ontology is inconsistent
• hierarchy: Print all explanations for the class hierarchy
• subclass: Explain why C is a subclass of D, where C and D are given

classes
• instance: Explain why i is an instance of C, where i is an individual and

C a class
• property-value: Explain why s has value o for property p, where s is an

individual, o an individual or a value of a certain datatype and p is a
property

Riccardo Zese Protégé and Pellet 68



Reasoners Pellet

Explanation

Roughly: an explanation is a set of axioms from the KB which entail (is a
model) for the given query

There could be many different explanations for a given query, depending on
the KB

Riccardo Zese Protégé and Pellet 69



Reasoners Tableau Algorithm

Tableau Algorithm

All the commands of Pellet exploit the Tableau Algorithm for doing inference
The algorithm builds a graph (also called tableau)
• A tableau is an ABox represented as a graph in which:

• Each node represents an individual a and is labeled with the set of
concepts it belongs to;

• Each edge between two individuals a and b is labeled with the set of roles
to which the couple (a, b) belongs.

Riccardo Zese Protégé and Pellet 70



Reasoners Tableau Algorithm

Tableau Algorithm

• A tableau algorithm proves an axiom by refutation
• Axiom E is entailed if ¬E has no model in the KB.
• Example 1: to test a class assertion axiom C(a), it adds ¬C to the label of

a.
• Example 2: to test the inconsistency of a concept C, it adds a new

anonymous node a to the tableau and adds ¬C to the label of a.

Riccardo Zese Protégé and Pellet 71



Reasoners Tableau Algorithm

Tableau Algorithm

• A tableau algorithm repeatedly applies a set of consistency preserving
tableau expansion rules until a clash is detected or a clash-free graph is
found to which no more rules are applicable.
• there are several expansion rules, often a rule correspond to one

concept-froming operator
• A clash (contradiction) is either:

• a couple (C, a) where C and ¬C are present in the label of a node;
• a couple (a = b, a 6= b), where a and b are individuals.

• If the expansion of the tableau with the query leads to at least one clash
the query is entailed w.r.t. the KB.

Riccardo Zese Protégé and Pellet 72



Reasoners Tableau Algorithm

The Tableau Algorithm

tom : Cat
(donVito, tom) : hasPet
Cat v Pet Q = donVito : GoodPerson
∃hasAnimal .Pet v NatureLover
NatureLover v GoodPerson
hasPet v hasAnimal

donVito : ¬GoodPerson

hasPet

donVito :

∃hasAnimal.Pet
NatureLover
GoodPerson
¬GoodPerson

hasPet
hasAnimal

+3

tom : Cat tom : Cat
Pet

Riccardo Zese Protégé and Pellet 73



Reasoners Tableau Algorithm

Inference with Pellet

• The tableau algorithm finds a single explanation
• Pellet implement also a backtracking algorithm to find all the possible

explanations
• uses an hitting set algorithm that repeatedly removes an axiom from the KB

and then computes again a new explanation.
• Some expansion rules are non-deterministic, the tableau algorithm has

to handle non-determinism

Riccardo Zese Protégé and Pellet 74



Reasoners Why Pellet?

Why use reasoners?

Reasoners such as Pellet can help also the debug of an knowledge base

The explanations can highlight part of the ontology that contains inconsistent
information

Riccardo Zese Protégé and Pellet 75



Reasoners Exercise

Exercise

Try some commands:
• information regarding the knowledge base

info file:<path-to-pizza-owl>/pizza.owl

• hierarchy of the knowledge base

classify file:<path-to-pizza-owl>/pizza.owl

Note: SoyCheeseTopping ≡ Nothing!

• check if two individuals are linked together

explain -max 100 --property-value

spicyRedDeepPizza,hasIngredient,chiliPepper

file:<path-to-pizza-owl>/pizza.owl

Riccardo Zese Protégé and Pellet 76



Reasoners Exercise

Exercise

Run the following queries:
• check the unsatisfiability of a class

explain -max 100 --unsat SoyCheeseTopping

file:<path-to-pizza-owl>/pizza.owl

• check why an individual belongs to a class

explain -max 100 --instance spicyRedDeepPizza,Pizza

file:<path-to-pizza-owl>/pizza.owl

• check if two individuals are linked together

explain -max 100 --property-value

spicyRedDeepPizza,hasIngredient,chiliPepper

file:<path-to-pizza-owl>/pizza.owl

Riccardo Zese Protégé and Pellet 77



Reasoners Exercise

Exercise

Riccardo Zese Protégé and Pellet 78



Reasoners Exercise

Thanks.

Questions?

Riccardo Zese Protégé and Pellet 79


