FONDAMENTI DI INTELLIGENZA ARTIFICIALE

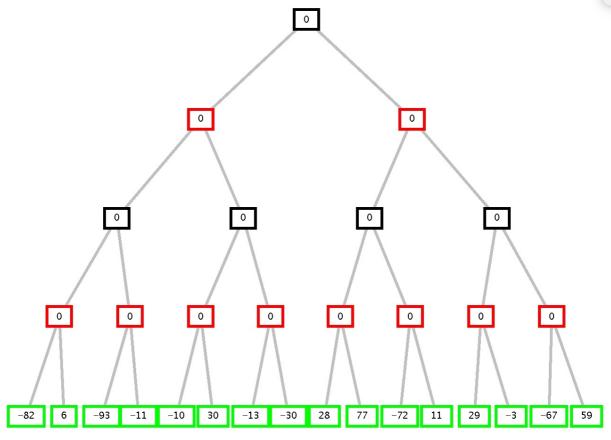
16 Giugno 2022 – Tempo a disposizione: 2 h – Risultato: 32/32 punti

Esercizio 1 (6 punti)

Si formalizzino le seguenti frasi in logica dei predicati del primo ordine:

Tutti coloro che sono soli sono tristi

Tutti sono tristi o contenti, ma non entrambe le cose


Esiste qualcuno non solo

Beatrice è sola

utilizzando i predicati: solo(X), triste(X), contento(X). Si trasformino poi le formule in clausole, e si dimostri, applicando il principio di risoluzione, che: *Esiste qualcuno non contento*.

Esercizio 2 (5 punti)

Si consideri il seguente albero di gioco in cui il primo giocatore è MAX.

- a) Si indichi come l'algoritmo min-max risolve il problema indicando il valore con cui viene etichettato il nodo iniziale e la mossa selezionata dal primo giocatore (arco a sinistra o a destra).
- b) Si mostrino poi i tagli che l'algoritmo alfa-beta consente, indicando gli archi che verranno tagliati.

Esercizio 3 (5 punti)

Si consideri il seguente CSP che lega le variabili A, B, C, D:

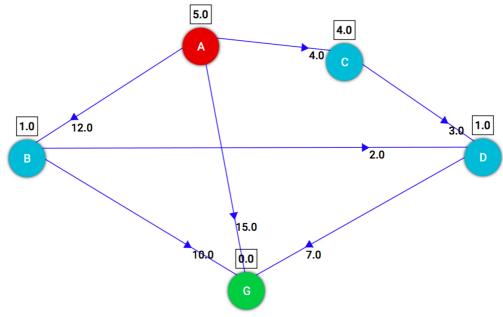
A::[4, 5, 6]	A>B-3
B::[1, 2, 3, 4, 5]	C>B-5
C::[1, 2, 3, 4, 5]	A=D+4
D::[1, 2, 3, 4, 5]	C>D+3

Si applichi, durante la ricerca fino alla prima soluzione, il Forward Checking dopo ogni passo di labeling, considerando, nella scelta della prossima variabile da istanziare l'euristica **Minimum Remaing Value** (poi, a parità di cardinalità di dominio, scegliere in base all'ordine alfabetico dei nomi delle variabili). Nel labeling, per il valore da assegnare alla variabile, si considerino i valori di dominio in ordine crescente, partendo dal più piccolo.

Esercizio 4 (5 punti)

Si scriva in Prolog il predicato **inserisciOrd(N,L1,L2)**, che dato il numero intero **N** e una lista ordinata **L1** (in modo crescente, eventualmente vuota) di numeri interi, restituisca in **L2** la lista ordinata ottenuta inserendo **N** in **L1**. Esempio:

?- inserisciOrd(3, [1,2,5], X).


X = [1, 2, 3, 5]

?- inserisciOrd(3, [], X).

X = [3]

Esercizio 5 (7 punti)

Si consideri il seguente grafo, dove A è il nodo iniziale e G il nodo goal, e il numero associato agli archi è il costo dell'operatore per andare dal nodo di partenza al nodo di arrivo dell'arco. Vicino ad ogni nodo, in un quadrato, è indicata inoltre la stima euristica della sua distanza dal nodo goal G:

Si applichi la ricerca **A*** su alberi (non tenendo quindi traccia dei nodi già visitati) disegnando l'albero generato dinamicamente e indicando:

- i nodi espansi nell'ordine di espansione;
- i nodi sulla strada della soluzione e il costo della soluzione;
- se è garantita o meno l'ottimalità e perchè.

Cosa cambierebbe con ricerca Greedy-Best-First?

Esercizio 6 (4 punti)

Si consideri il programma Prolog seguente:

p:-q.

p:-r.

r:-t.

r:-s.

s.

e il goal

?- not p.

Si spieghi brevemente come si costruisce l'albero SLDNF e si disegni l'albero SLDNF per il goal e il programma dati.

Esercizio 1

Traduzione in logica

- 1. $\forall Y \text{ solo}(Y) \Longrightarrow \text{triste}(Y)$.
- 2. ∀X triste(X) OR-EX contento(X).
- 3. $\exists X \neg solo(X)$.
- 4. solo(beatrice).

Goal: $\exists X \neg contento(X)$.

Trasformazione in clausole

1.: $triste(Y) \lor \neg solo(Y)$.

2a.: triste(X) V contento(X).

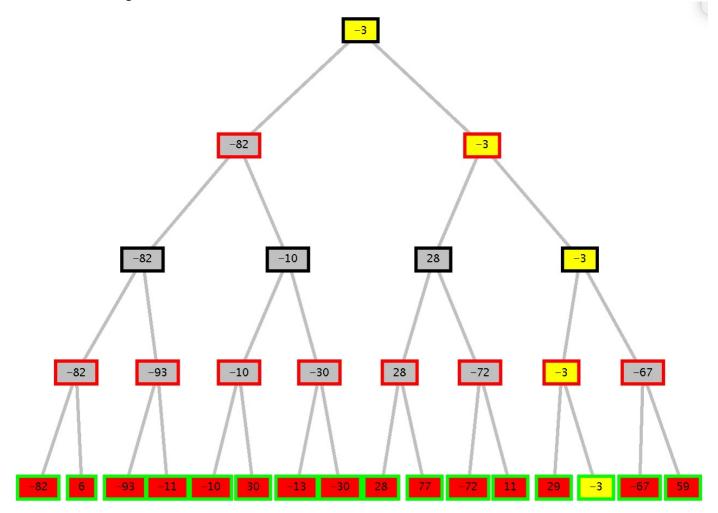
2b.: $\neg triste(X) \lor \neg contento(X)$.

3.: ¬solo(c1). (costante di Skolem)

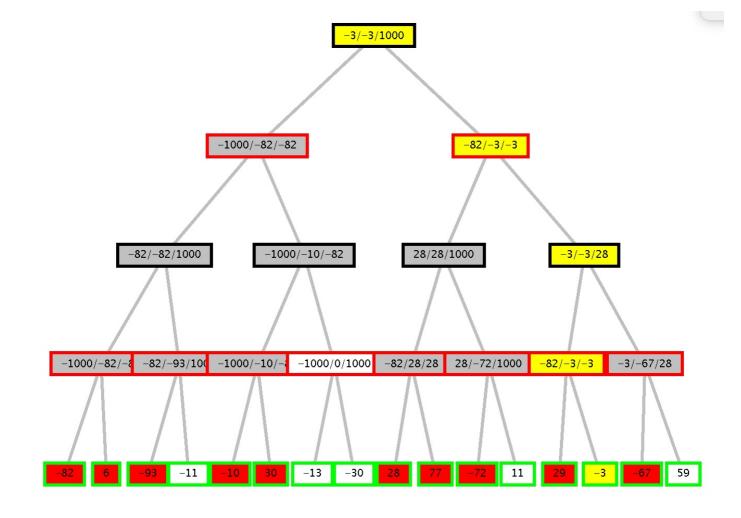
4.: solo(beatrice).

GNeg.: contento(X).

Risoluzione


5.: GNeg. + 2b: ¬ triste(X).

6.: 5 + 1: $\neg solo(X)$.


7.: 6 + 4: contraddizione!!

Esercizio 2

Min-max: strada in giallo, valore nodo radice -3, ramo a destra.

Alfa-Beta: In rosso i nodi espansi, in giallo la strada trovata, i nodi in bianco non sono esplorati per effetto dei tagli alfa-beta.

Archi tagliati a10, a18, a26, a 30 (4 tagli). Scelta per il ramo a2, valore propagato -3.

Esercizio 3

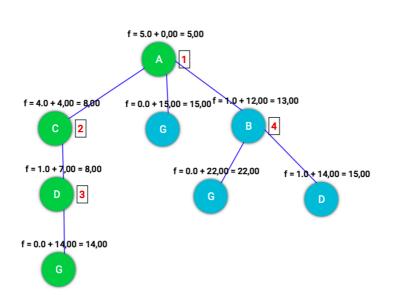
Con euristica MRV:

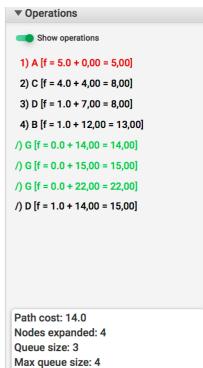
	Α	В	C	ט
Labeling	A=4	[15]	[15]	[15]
FC e Backtracking	A=4	[15]	[15]	Fail
Labeling	A=5	[15]	[15]	[15]
FC	A=5	[15]	[15]	[1]
Labeling	A=5	[15]	[15]	D=1
FC	A=5	[15]	[5]	D=1
Labeling	A=5	[15]	C=5	D=1
FC	A=5	[15]	C=5	D=1
Labeling	A=5	B=1	C=5	D=1
Soluzione	A=5	B=1	C=5	D=1

Esercizio 4

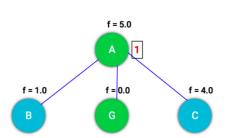
```
\label{eq:condition} \begin{split} & \text{inserisciOrd}(N,[],[N]) :- \ ! \, . \\ & \text{inserisciOrd}(N,[H|T],[N,H|T]) :- \ N = < \ H, \ ! \, . \\ & \text{inserisciOrd}(N,[H|T],[H|Z]) :- \ \text{inserisciOrd}(N,T,Z) \, . \end{split}
```

OPPURE:


```
\label{eq:cond_n_def} \begin{split} & \text{inserisciOrd}(N,[],[N]) :- \ ! \, . \\ & \text{inserisciOrd}(N,[H|T],[H|T1]) :- \ N \ > H, \ ! \, , \ \text{inserisciOrd}(N,T,T1) \, . \\ & \text{inserisciOrd}(N,L \ ,[N|L]) \, . \end{split}
```

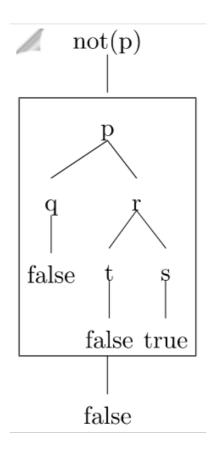

OPPURE:

inserisciOrd(N,[H|T],[H|T1]) :- N > H, !, inserisciOrd(N,T,T1). inserisciOrd(N,L,[N|L]).


Esercizio 5

Con A*, i nodi espansi sono ACDBG, la soluzione trovata ACDG è ottimale perché l'euristica è ammissibile e il costo della soluzione trovata è 14:

Con best-first, l'albero risulta:



I nodi espansi sono solo A e la soluzione trovata AG non è ottimale (costo 15).

Esercizio 6

Per la spiegazione dell'albero SLDNF per un goal negativo, si veda il materiale del corso.

L'albero SLDNF per il goal ?-not p è:

E quindi not(p) fallisce perché c'è (almeno) un ramo di successo per p.