COMPITO DI APPLICAZIONI DI INTELLIGENZA ARTIFICIALE

15 marzo 2011 (Punteggio su 30/30; Tempo 2h)

Esercizio 1 (punti 8)

Dato il seguente training set S:

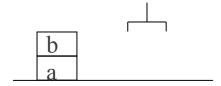
Windy	Humidity	Classe	
si	high	si	
no	low	no	
si	medium	si	
no	high	no	
no	medium	si	
no	high	no	
si	medium	si	
si	high	no	
no	medium	si	
si	low	no	
no	low	si	
si	?	no	
no	?	si	
si	low	no	

- a) Si calcoli l'entropia del training set rispetto all'attributo Classe
- b) Si calcoli il guadagno dei due attributi rispetto a questi esempi di training
- c) si costruisca un albero decisionale ad un solo livello per il training set dato, indicando le etichette delle foglie (numero di esempi finiti nella foglia/numero di esempi finiti nella foglia non appartenenti alla classe della foglia).

d)	si	cla	assif	ich	i l	'is	tan	za:

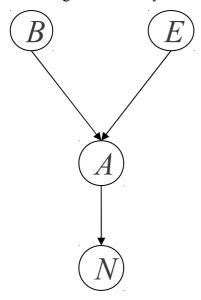
,	
si	7
51	l •

Esercizio 2 (punti 8)


L'esercizio su CLP si svolge alle ore 14:30 in Lab Info Grande.

Esercizio 3 (punti 6)

Si faccia riferimento al seguente esempio relativo al "mondo a blocchi".


Ci sono due blocchi, a, b, che possono essere sovrapposti o posizionati su un tavolo; attraverso una mano robotica è possibile impilarne uno su un altro $(\mathbf{stack}(X,Y))$ o de-impilarne uno dall'altro $(\mathbf{unstack}(X,Y))$, posizionare un blocco trattenuto dalla mano sul tavolo $(\mathbf{putdown}(X))$ o prelevarlo dal tavolo $(\mathbf{pickup}(X))$ trattenendolo nella mano robotica.

Si modelli il seguente stato iniziale (s0), il goal corrispondente a uno stato finale in cui a è su b, e le azioni **stack** e **putdown** (si modellino le clausole per pre-condizioni, clausole per gli effetti e clausole per frame axioms) ed altri eventuali assiomi nella **formulazione di Kowalski.**

Esercizio 4 (punti 6)

Sia data la seguente rete bayesiana

Dove tutte le variabili assumono i valori yes e no. Le tabelle di probabilità condizionata sono

P(B)	
B=yes	0.1
B=no	0.9

P(E)	
E=yes	0.05
E=no	0.95

P(A BE)	no,no	no,yes	yes,no
A=yes	0.1	0.85	0.9
A=no	0.9	0.15	0.1

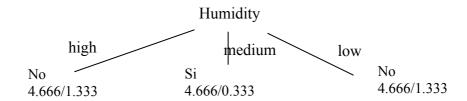
P(N A)	A=no	A=yes
N=yes	0.1	0.95
N=no	0.9	0.05

Si calcoli la probabilità P(B|N,~E)

Esercizio 5 (punti 2)

Si definisca che cosa si intende per planning e si presentino e commentino brevemente le assunzioni semplificative che vengono fatte nella pianificazione classica.

SOLUZIONE


Esercizio 1

```
a) \inf(S)=-7/14*\log_2 7/14-7/14*\log_2 7/14=1 b) \inf_{Owindy}(S)= \frac{7}{14}*(-3/7*\log_2 3/7-4/7*\log_2 4/7) + \frac{7}{14}*(-4/7*\log_2 4/7-3/7*\log_2 3/7) = 0.5 *0.985+0.5*0.985=0.985 gain(Windy) = 1-0.985=0.015 splitinfo(Windy) = -\frac{7}{14}*\log_2(7/14) - \frac{7}{14}*\log_2(7/14) = 1 gainratio(Windy) = 0.015/1=0.015
```

Per calcolare il guadagno dell'attributo Humidity non si usa l'entropia calcolata su tutto il training set ma solo sugli esempi che hanno Humidity noto (insieme F):

```
\inf_{\text{info}(F)=-6/12*\log_2 6/12-6/12*\log_2 6/12=1} \inf_{\text{o}_{\text{Humidity}}(F)=4/12*(-1/4*\log_2 1/4-3/4*\log_2 3/4)+4/12(-4/4*\log_2 4/4-0/4*\log_2 0/4)+4/12*(-1/4*\log_2 1/4-3/4*\log_2 3/4)=0.333*0.811+0.333*0+0.333*0.811=0.540} \\ \text{gain}(\text{Humidity})=12/14*(0.997-0.540)=0.394} \\ \text{splitinfo}(\text{Humidity})=-4/14*\log_2(4/14)-4/14*\log_2(4/14)-4/14*\log_2(4/14)-2/14*\log_2(2/14)=1.950} \\ \text{gain}(\text{Humidity})=0.394/1.950=0.202}
```

c) L'attributo scelto per la radice dell'albero è Humidity

d) l'istanza viene divisa in tre parti, di peso rispettivamente 4/12=0.333, 4/12=0.333 e 4/12=0.333. La prima parte viene mandata lungo il ramo high e classificata come No con probabilità =3.333/4.666=71.4% e come Si con probabilità 1.333/4.666=28.6%. La seconda parte viene mandata lungo il ramo medium e classificata come Si con probabilità =4.333/4.666=92.9% e come No con probabilità 0.333-4.666=71.1%. La terza parte viene mandata lungo il ramo low e classificata come No con probabilità 3.333/4.666=71.4% e come Si con probabilità 1.333/4.666=28.6%. Quindi in totale la classificazione dell'istanza è

P(Si)=0.333*28.6%+0.333*92.9%+0.333*28.6% =50% P(No)=0.333*71.4%+0.333*7.1%+0.333*71.4% =40%

```
Esercizio 3
:- poss(S), holds(on(a,b),S). % Goal
                            % Stato iniziale:
poss(s0).
holds(on(b,a),s0).
holds(ontable(a),s0).
holds(clear(b),s0).
poss(do(U,S)):-
                     % Clausola per esprimere la raggiungibilità di uno stato:
     poss(S),
     pact(U,S).
stack(X,Y):
Effetti dell'azione stack(X,Y):
holds(clear(Y),do(stack(X,Y),S)).
holds(hand(X),do(stack(X,Y),S)).
holds(on(X,Y),do(stack(X,Y),S)).
Clausola che esprime le precondizioni dell'azione stack(X,Y):
pact(stack(X,Y),S):-
    holds(clear(Y),S), holds(hand(X)),X=Y.
Clausola per esprimere le condizioni di frame:
holds(V,do(stack(X,Y),S)):-
holds(V,S),
V = clear(Y),
V = hand(X).
putdown(X):
Effetti dell'azione putdown(X):
holds(ontable(X), do(putdown(X), S)).
holds(handempty,do(putdown(X),S)).
Clausola che esprime le precondizioni dell'azione putdown(X):
pact(putdown(X),S):-holds(hand(X)).
Clausola per esprimere le condizioni di frame:
holds(V,do(putdown(X)),S)):-holds(V,S),
V = hand(X).
```

Esercizio 4

 $P(B|N,\sim E)=P(B,N,\sim E)/P(N,\sim E)$

 $P(B,N,\sim E)=P(B,\sim E,\sim A,N)+P(B,\sim E,A,N)$

 $P(N, \sim E) = P(B, N, \sim E) + P(\sim B, N, \sim E) = P(B, \sim E, \sim A, N) + P(B, \sim E, A, N) + P(\sim B, \sim E, \sim A, N) + P(\sim$

 $P(B, \sim E, \sim A, N) = P(B)P(\sim E)P(\sim A|B, \sim E)P(N|\sim A) = 0.1*0.95*0.1*0.1 = 0.00095$

 $P(B, \sim E, A, N) = P(B)P(\sim E)P(A|B, \sim E)P(N|A) = 0.1*0.95*0.9*0.95 = 0.081225$

 $P(\sim B, \sim E, \sim A, N) = P(\sim B)P(\sim E)P(\sim A|\sim B, \sim E)P(N|\sim A) = 0.9*0.95*0.9*0.1 = 0.07695$

 $P(\sim B, \sim E, A, N) = P(\sim B)P(\sim E)P(A|\sim B, \sim E)P(N|A) = 0.9*0.95*0.1*0.95 = 0.081225$

 $P(B,N,\sim E)=P(B,\sim E,\sim A,N)+P(B,\sim E,A,N)=0.00095+0.081225=0.082175$

 $P(N,\sim E)=P(B,N,\sim E)+P(\sim B,N,\sim E)=0.082175+0.07695+0.081225=0.24035$

 $P(B|N,\sim E)=P(B,N,\sim E)/P(N,\sim E)=0.082175/0.24035=0.3418972$