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Inference for PLP under DS

Inference for PLP under DS

Computing the probability of a query (no evidence)
Explanation based:

find explanations for queries
make the explanations mutually exclusive

by means of an iterative splitting algorithm (Ailog2 [Poole, 2000])
by means of Binary Decision Diagrams (ProbLog
[De Raedt et al., 2007], cplint [Riguzzi, 2007, Riguzzi, 2009], PITA
[Riguzzi and Swift, 2010])

Bayesian Network based:
Convert to BN
Use BN inference algorithms (CVE [Meert et al., 2009])
Lifted inference
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Inference for PLP under DS

ProbLog

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(david).
hay_fever(david).
C1 = 0.7 :: flu_sneezing(X ).
C2 = 0.8 :: hay_fever_sneezing(X ).

Distributions over facts
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Inference for PLP under DS

Definitions

Composite choice κ: consistent set of atomic choices (C, θ, i) with
i ∈ {1, 2}

Explanation κ for a query Q: Q is true in every world compatible
with κ (every world of ωκ)

A set of composite choices K covering with respect to Q: every
world w in which Q is true is such that w ∈ ωK .

Example:

K1 = {{(C1, {X/david}, 1)}, {(C2, {X/david}, 1)}} (1)

is covering for sneezing(david).
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Explanation Based Inference Algorithm

Finding Explanations

All explanations for the query are collected

ProbLog: source to source transformation for facts, use of
dynamic database

cplint: meta-interpretation

PITA: source to source transformation, addition of an argument to
predicates
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Explanation Based Inference Algorithm

Explanation Based Inference Algorithm

K = set of explanations found for Q, the probability of Q is given
by the probability of the formula

fK (Y) =
∨

κ∈K

∧

(C,θ,i)∈κ

(YCθ = i)

where YCθ is a random variable whose domain is 1, 2 and
P(YCθ = i) = P0(C, i)

Binary domain: we use a Boolean variable XCθ to represent
(YCθ = 1)

¬XCθ represents (YCθ = 2)
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Explanation Based Inference Algorithm

Example

A set of covering explanations for sneezing(david) is K = {κ1, κ2}
κ1 = {(C1, {X/david}, 1)}
κ2 = {(C2, {X/david}, 1)}
K = {κ1, κ2}
fK (Y) = (YC1{X/david} = 1) ∨ (YC1{X/david} = 1).
X1 = (YC1{X/david} = 1)
X2 = (YC2{X/david} = 1)
fK (X) = X1 ∨ X2.
P(fK (X)) = P(X1 ∨ X2)
P(fK (X)) = P(X1) + P(X2)− P(X1)P(X2)

In order to compute the probability, we must make the
explanations mutually exclusive

[De Raedt et al., 2007]: Binary Decision Diagram (BDD)
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Explanation Based Inference Algorithm

Binary Decision Diagrams

ciao
0

1
a0a

ciao 1

0

a1a
X1 X2

fK (X) = X1 × f X1
K (X) + ¬X1 × f¬X1

K (X)

P(fK (X)) = P(X1)P(f X1
K (X)) + (1− P(X1))P(f¬X1

K (X))

P(fK (X)) = 0.7 · P(f X1
K (X)) + 0.3 · P(f¬X1

K (X))
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Explanation Based Inference Algorithm

Probability from a BDD

Dynamic programming algorithm [De Raedt et al., 2007]

1: function PROB(n)
2: if n is a terminal note then
3: return value(n)
4: else
5: return

PROB(child1(n))×p(v(n))+PROB(child0(n))×(1− p(v(node)))
6: end if
7: end function
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Explanation Based Inference Algorithm

Logic Programs with Annotated Disjunctions

C1 = strong_sneezing(X ) : 0.3 ∨moderate_sneezing(X ) : 0.5 ← flu(X ).
C2 = strong_sneezing(X ) : 0.2 ∨moderate_sneezing(X ) : 0.6 ← hay_fever(X ).
C3 = flu(david).
C4 = hay_fever(david).

Distributions over the head of rules

More than two head atoms
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Explanation Based Inference Algorithm

Example

A set of covering explanations for strong_sneezing(david) is
K = {κ1, κ2}
κ1 = {(C1, {X/david}, 1)}
κ2 = {(C2, {X/david}, 1)}
K = {κ1, κ2}
X1 = XC1{X/david}
X2 = XC2{X/david}
fK (X) = (X1 = 1) ∨ (X2 = 1).
P(fX ) = P(X1 = 1) + P(X2 = 1)− P(X1 = 1)P(X2 = 1)

To make the explanations mutually exclusive: Multivalued
Decision Diagram (MDD)
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Explanation Based Inference Algorithm

Multivalued Decision Diagrams

ciao
3
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a1a
X1 X2

fK (X) =
∨

i∈|X1|

(X1 = i) ∧ f X1=i
K (X)

P(fK (X)) =
∑

i∈|X1|

P(X1 = i)P(f X1=i
K (X))

fK (X) = (X1 = 1)∧ f X1=1
K (X)+(X1 = 2)∧ f X1=2

K (X)+(X3 = 3)∧ f X3=1
K (X)

fK (X) = 0.3 · P(f X1=1
K (X)) + 0.5 · P(f X1=2

K (X)) + 0.2 · P(f X3=1
K (X))
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Explanation Based Inference Algorithm

Manipulating Multivalued Decision Diagrams

Use an MDD package

Convert to BDD, use a BDD package: BDD packages more
developed, more efficient
Conversion to BDD

Log encoding
Binary splits: more efficient
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Explanation Based Inference Algorithm

Transformation to a Binary Decision Diagram

For a variable X1 having n values, we use n − 1 Boolean variables
X11, . . . ,X1n−1

X1 = i for i = 1, . . . n − 1: X11 ∧ X12 ∧ . . . ∧ X1i−1 ∧ X1i ,

X1 = n: X11 ∧ X12 ∧ . . . ∧ X1n−1.

Parameters: P(X11) = P(X1 = 1) . . .P(X1i) =
P(X1=i)

∏i−1
j=1 (1−P(X1i−1))

.

ciao
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1
a0a

ciao 1

0

a1a
X11 X21
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Inference with Tabling

Tabling

Idea: maintain in a table both subgoals encountered in a query
evaluation and answers to these subgoals

If a subgoal is encountered more than once, the evaluation reuses
information from the table rather than re-performing resolution
against program clauses
Important consequences:

Tabling ensures termination for a wide class of programs
Tabling can be used to evaluate programs with negation according
to the Well-Founded Semantics
Tabling integrates closely with Prolog: a predicate p/n is evaluated
using SLDNF by default, the predicate is made to use tabling by a
directive such as :- table p/n that is added by the user or compiler.
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Inference with Tabling

Tabling for Probabilistic Inference

PITA (Probabilistic Inference with Tabling and Answer
subsumption) [Riguzzi and Swift, 2010] (a package of XSB Prolog)

All the explanations for a goal have to be found

It makes sense to store the explanations for subgoals with tabling

Associate to each answer (ground atom) a BDD representing its
explanations

Combine BDDs by using the Boolean operators offered by BDD
manipulating packages

Library for manipulating BDD directly in Prolog (interface to
CUDD)

A BDD is represented in Prolog by an integer indicating the
address of its root node

Casting for integer-pointer conversion
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Inference with Tabling

Library Predicates

init, end: for allocation and deallocation of a BDD manager

zero(-BDD), one(-BDD), and(+BDD1,+BDD2,-BDDO),
or(+BDD1,+BDD2,-BDDO), not(+BDDI,-BDDO): BDD
operations

add_var(+N_Val,+Probs,-Var): addition of a new
multi-valued variable with N_Val values and parameters Probs

equality(+Var,+Value,-BDD): BDD represents Var=Value

ret_prob(+BDD,-P): returns the probability of the formula
encoded by BDD
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Inference with Tabling

Tabling

Add an extra argument to each atom for storing a BDD

When an answer p(x, bdd) is found, bdd represents the
explanations for p(x)

If the program is range restricted, p(x) is ground

Use program transformation to obtain a Prolog program from an
LPAD
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Inference with Tabling

Answer Subsumption

A feature of tabling in XSB Prolog

Use a lattice on terms to combine different answers for the same
goal

The bottom element and the join operator of the lattice have to be
specified in the tabling directives

E.g :-table path(X,Y,or/3-zero/1) means that, if two
answers path(a,b,bdd0) and path(a,b,bdd1) are found,
the single answer path(a,b,bdd) will be stored in the table
where or(bdd0,bdd1,bdd)
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Inference with Tabling

Program Transformation

get_var_n(+R,+S,+Probs,-Var) wraps add_var/3

get_var_n(R,S,Probs,Var)←
(var(R,S,Var)→

true
;

length(Probs, L),
add_var(L,Probs,Var),
assert(var(R,S,Var))

).

Atom A = p(t): PITA(A) = p(t ,BDD)

Literal ¬A : PITA(¬A) = (PITA(A)→ one(BDD); not(BDD,BDD′))
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Inference with Tabling

Program Transformation

The disjunctive clause
Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . , Lm.
is transformed into the set of clauses PITA(Cr )
PITA(Cr , 1) = PITA(H1)← one(BB0),

PITA(L1), and(BB0,B1,BB1),
. . . ,
PITA(Lm), and(BBm−1,Bm,BBm),
get_var_n(r ,VC, [α1, . . . , αn],Var),
equality(Var , 1,BB), and(BBm,BB,BDD).

. . .
PITA(Cr , n) = PITA(Hn)← one(BB0),

PITA(L1), and(BB0,B1,BB1),
. . . ,
PITA(Lm), and(BBm−1,Bm,BBm),
get_var_n(r ,VC, [α1, . . . , αn],Var),
equality(Var , n,BB), and(BBm,BB,BDD).
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Inference with Tabling

Example

Clause
strong_sneezing(X ) : 0.3 ∨moderate_sneezing(X ) : 0.5← flu(X ).
is translated into
strong_sneezing(X ,BDD)← one(BB0),

flu(X ,B1), and(BB0,B1,BB1),
get_var_n(1, [X ], [0.3, 0.5, 0.2],Var),
equality(Var , 1,BB),
and(BB1,BB,BDD).

moderate_sneezing(X ,BDD)← one(BB0),
flu(X ,B1), and(BB0,B1,BB1),
get_var_n(1, [X ], [0.3, 0.5, 0.2],Var),
equality(Var , 2,BB),
and(BB1,BB,BDD).
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Inference with Tabling

Example

path(X,X).
path(X,Y):- path(X,Z),edge(Z,Y).
edge(a,b):0.3.
....

:-table path(X,Y,or/3-zero/1),edge(X,Y,or/3-zero/1).
path(X,X,One):-one(One).
path(X,Y,BDD):- path(X,Z,BDD0), edge(Z,Y,BDD1),

and(BDD0,BDD1,BDD).
edge(a,b,BDD):-.

get_var(3,[],[0.3,0.7],Var),
equality(Var,0,BDD).

....
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Inference with Tabling

Query

Query: path(a,b)

:-init,
path(’HGNC_620’,’HGNC_983’,BDD),
ret_prob(BDD,P),
end.
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Inference with Tabling

Experiments

Biomine network: network of biological concepts
Each edge has a probability
Dataset from [De Raedt et al., 2007]: 50 sampled subnetworks of
size 200, 400, . . ., 10000 edges
Sampling repeated 10 times
Linux PCs with Intel Core 2 Duo E6550 (2,333 MHz) and 4 GB of
RAM
Execution stopped after 24 hours

path(X,Y) :- path(X,Y,[X],Z).
path(X,Y,V,[Y|V]) :- arc(X,Y).
path(X,Y,V0,V1) :- arc(X,Z),append(V0,_S,V1),
\+ member(Z,V0),path(Z,Y,[Z|V0],V1).
arc(X,Y):-edge(X,Y).
arc(X,Y):-edge(Y,X).
edge(’EntrezProtein_33339674’,’HGNC_620’):0.515062.
...
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Inference with Tabling

Dataset from [De Raedt et al., 2007]

Number of solved subgraphs
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Inference with Tabling

Game of dice

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-

T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).
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Inference with Tabling

Blood Type [Meert et al., 2009]

mchrom(Person,a):0.90 ; mchrom(Person,b):0.05 ; mchrom(Person,null):0.05 :-
mother(Mother,Person), pchrom(Mother,a ), mchrom(Mother,a ).

mchrom(Person,a):0.49 ; mchrom(Person,b):0.49 ; mchrom(Person,null):0.02 :-
mother(Mother,Person), pchrom(Mother,b ), mchrom(Mother,a ).

.....
pchrom(Person,a):0.90 ; pchrom(Person,b):0.05 ; pchrom(Person,null):0.05 :-

father(Father,Person), pchrom(Father,a ), mchrom(Father,a ).
......
bloodtype(Person,a):0.90 ; bloodtype(Person,b):0.03 ; bloodtype(Person,ab):0.03 ;
bloodtype(Person,null):0.04 :- pchrom(Person,a ),mchrom(Person,a ).

bloodtype(Person,a):0.03 ; bloodtype(Person,b):0.03 ; bloodtype(Person,ab):0.90 ;
bloodtype(Person,null):0.04 :- pchrom(Person,b ),mchrom(Person,a ).
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Inference in Simpler Settings

Simpler setting: PRISM

The PRISM system consider a simpler setting
the probability of a conjunction (A,B) is computed as the product of
the probabilities of A and B (independence assumption)
the probability of a disjunction (A;B) is computed as the sum of the
probabilities of A and B (exclusiveness assumption).

The program has to be written so that these requirements are met

Not always possible
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Inference in Simpler Settings

Simpler setting: PRISM

Not all programs satisfy the two conditions

Coin, Pea plants, Blood type both

Russian roulette satisfies and

Dice satisfies or

Path does not satisfy any

p:- a,b. q:-a,b.
a:0.3 ; b:0.4. a:-c.

b:-c.
c:0.2.

do not satisfy and: P(p) = 0, PPRISM(p) = 0.12, P(q) = 0.2,
PPRISM(q) = 0.04
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Inference in Simpler Settings

PRISM simpler setting

PITA can be optimized for PRISM simpler setting

The disjunctive clause
Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . , Lm.
is transformed into the set of clauses PITA′(Cr )

PITA′(Cr , 1) = PITA(H1)← one(BB0),
PITA(L1), and(BB0,B1,BB1), . . . ,
PITA(Lm), and(BBm−1,Bm,BBm),
equality([α1, . . . , αn], 1,BB),
and(BBm,BB,B).

. . .
PITA′(Cr , n) = PITA(Hn)← one(BB0),

PITA(L1), and(BB0,B1,BB1), . . . ,
PITA(Lm), and(BBm−1,Bm,BBm),
equality([α1, . . . , αn], n,BB),
and(BBm,BB,B).
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Inference in Simpler Settings

PRISM simpler setting

equality(Probs,N,P):- nth(N,Probs,P).
or(A,B,C):- C is A+B.
and(A,B,C):- C is A*B.
zero(0.0).
one(1.0).
not(P,P1):- P1 is 1-P.
ret_prob(P,P).

F. Riguzzi (ENDIF) Reasoning with Probabilistic Logic Languages 33 / 61



Inference in Simpler Settings

Hidden Markov Models

. . . X(t − 1) X(t) X(t + 1) . . .

Y (t − 1) Y (t) Y (t + 1)

hmm(O):-hmm1(_,O).
hmm1(S,O):-hmm(q1,[],S,O).
hmm(end,S,S,[]).
hmm(Q,S0,S,[L|O]):-

Q\= end,
next_state(Q,Q1,S0),
letter(Q,L,S0),
hmm(Q1,[Q|S0],S,O).

next_state(q1,q1,_S):1/3;next_state(q1,q2_,_S):1/3;
next_state(q1,end,_S):1/3.

next_state(q2,q1,_S):1/3;next_state(q2,q2,_S):1/3;
next_state(q2,end,_S):1/3.

letter(q1,a,_S):0.25;letter(q1,c,_S):0.25;
letter(q1,g,_S):0.25;letter(q1,t,_S):0.25.

letter(q2,a,_S):0.25;letter(q2,c,_S):0.25;
letter(q2,g,_S):0.25;letter(q2,t,_S):0.25.
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Inference in Simpler Settings

HMM

Time for computing P(hmm([a, . . . , a]) as a function of sequence
length

5 10 15
10

−4

10
−2

10
0

10
2

10
4

N

T
i
m
e
 
(
s
)

 

 

PITA
PRISM

Exponential cost

F. Riguzzi (ENDIF) Reasoning with Probabilistic Logic Languages 35 / 61



Inference in Simpler Settings

Counting Explanations

The optimized PITA can be used to count explanations when
explanations for different goals can not be incompatible

We have to modify equality as

equality(_Probs,_N,1).

In the Biomine network, series 1, the number of paths is
Edges 200 400 600 800 1000 1200 ...
Explanations 10 42 380 1280 3,480 61,2140 ...

The definition of path implies that these are also the counts of the
number of distinct paths from source to target that do not contain
loops
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Inference in Simpler Settings

Further Optimization

[Christiansen and Gallagher, 2009] proposed to remove
non-discriminating arguments, resulting in a program whose
computation trees are isomorphic to those of the original program
The results of the original program can be reconstructed from
trace of the transformed program
Useful with tabling: calls of a tabled predicate differing only in the
non-discriminating arguments will merge into a single call
Much smaller table and larger chance that the current call has a
match in the table

hmm(O):-hmm(q1,O).
hmm(end,[]).
hmm(Q,[L|O]):-

Q\= end,
next_state(Q,Q1,S0),letter(Q,L,S0),
hmm(Q1,O).
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Inference in Simpler Settings

HMM

Time for computing P(hmm([a, . . . , a]) as a function of sequence
length
It should increase linearly
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Inference in Simpler Settings

Computing the Viterbi Path

Viterbi path: most probable explanation, its probability is the
Viterbi probability

equality(R,S,Probs,N,e([(R,S,N)],P)):-
nth(N,Probs,P).

or(e(E1,P1),e(_E2,P2),e(E1,P1)):- P1 > P2,!.
or(e(_E1,_P1),e(E2,P2),e(E2,P2)).
and(e(E1,P1),e(E2,P2),e(E3,P3)):-

P3 is P1*P2,
append(E1,E2,E3).

zero(e(null,0)).
one(e([],1)).
ret_prob(B,B).
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Inference in Simpler Settings

HMM Viterbi Path

Time for computing the Viterbi path and probability of hmm([a, . . . , a])
as a function of sequence length
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Inference in Simpler Settings

Possibilistic Logic

Π(φ): possibility of a logical formula φ, the degree of compatibility
of φ with the available knowledge

N(φ): necessity of a logical formula φ, the degree of certainty of φ
given the available knowledge

Relation: N(φ) = 1− Π(¬φ)

Possibilistic Logic Program: set of formulas for the form (φ, α)
where φ is a program clause

H ← L1, . . . , Ln.

Meaning of (φ, α): N(φ) ≥ α

Inference: compute the maximum value of α such that N(Q) ≥ α
holds for a query Q.
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Inference in Simpler Settings

Possibilistic Logic

Inference rules:
(φ, α), (ψ, β) ⊢ (R(φ, φ),min(α, β)) where R(φ, φ) is the resolvent of
φ and ψ
(φ, α), (φ, β) ⊢ (φ,max(α, β))

In PITA, interpret the formula H : α← B1, . . . ,Bn as
(H ← B1, . . . ,Bn, α)

equality([P|T],_N,P).
or(A,B,C):- C is max(A,B).
and(A,B,C):- C is min(A,B).
zero(0.0).
one(1.0).
ret_prob(P,P).
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Inference in Simpler Settings

PITA for Possibilistic Logic

The possibilistic program
path(X,X).
path(X,Y):- path(X,Z),edge(Z,Y).
edge(a,b):0.3.
.....
computes the least unsure path in a graph, i.e., the path with
maximal weight, the weight of a path being the weight of its
weakest link.
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Approximate Inference

Approximate Inference

Inference problem is #P hard

For large models inference is intractable
Approximate inference

Monte Carlo: draw samples of the truth value of the query
Iterative deepening: gives a lower and an upper bound
Compute only the best k explanations: branch and bound, gives a
lower bound
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Approximate Inference

Monte Carlo

The disjunctive clause
Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . , Lm.
is transformed into the set of clauses MC(Cr )

MC(Cr , 1) = H1 ← L1, . . . , Lm, sample_head(n, r ,VC,NH),NH = 1.
. . .

MC(Cr , n) = H1 ← L1, . . . , Lm, sample_head(n, r ,VC,NH),NH = n.

Definition of sample_head:
:- table sample_head/4.
sample_head(NHead,R,VC,NH):- sample(NHead,NH),

Sample truth value of query Q:

...
(call(Q)-> NT1 is NT+1 ; NT1 =NT),

...
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Approximate Inference

Monte Carlo

The proportion of successes in a Bernoulli trial process is in the
binomial proportion confidence interval

p̂ ± z1−α/2

√

p̂ (1− p̂)
n

Algorithm:

n := 0, nt := 0
Repeat

Test query n′ times, nt ′ successes
n := n + n′, nt := nt + nt ′, p̂ = nt/n
Compute interval size s

until s < δ

return p̂, s
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Approximate Inference

Approximate Inference

Iterative deepening: build the derivation tree only up to a certain
depth,

Completed derivations give a lower bound, completed plus
incomplete derivations an upper bound

How to do it efficiently?

Best-k explanations: each time an explanation is found, update
the set of explanations

Cut a derivation if its probability falls below that of the k -th best
explanation

Sub case: best-1 explanation: Viterbi explanation
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Inference by Conversion to Bayesian Networks

Inference by Conversion to Bayesian Networks

Convert the program to a BN, perform inference on the BN with
belief propagation, variable elimination, etc.

Problem: grounding the program

With function symbols, infinite grounding

Even without function symbols, the grounding can be huge
(exponential size)

Most of the network is irrelevant to the query
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Inference by Conversion to Bayesian Networks

Grounding

Use a lifted inference algorithm

Build only the relevant network and apply an inference algorithm

Combination of the two approaches
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Inference by Conversion to Bayesian Networks

Lifted Belief Propagation

Belief propagation: nodes exchange messages, at convergence
the marginal probability of each node can be extracted

Correct for polytrees, approximate for general DAGs

Lifted Belief Propagation: exploit the symmetries in the network to
group nodes that exchange equal or similar messages into super
nodes

Perform belief propagation between super nodes taking into
account the cardinalities of the messages
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Inference by Conversion to Bayesian Networks

Building the Relevant Network

Bayes Ball [Shachter, 1998]: algorithm for identifying the portion of
a network that is relevant to query and evidence

First-Order Bayes Ball [Meert et al., 2010]: lifted version of Bayes
Ball

Then apply a (lifted) inference algorithm
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Learning Parameters

Learning Parameters

Problem: given a set of interpretations, a program, find the
parameters maximizing the likelihood of the interpretations (or of
instances of a target predicate)

Exploit the equivalence with BN to use BN learning algorithms

The interpretations record the truth value of ground atoms, not of
the choice variables

Unseen data: relative frequency can’t be used
An Expectation-Maximization algorithm must be used:

Expectation step: the distribution of the unseen variables in each
instance is computed given the observed data
Maximization step: new parameters are computed from the
distributions using relative frequency
End when likelihood does not improve anymore
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Learning Parameters

Learning Parameters

[Thon et al., 2008] proposed an adaptation of EM for CPT-L, a
simplified version of LPADs

The algorithm computes the counts efficiently by repeatedly
traversing the BDDs representing the explanations

[Ishihata et al., 2008] independently proposed a similar algorithm

COPREM [Gutmann et al., 2010] is the adaptation of EM to
ProbLog
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Learning Parameters

Learning Parameters

EM can get trapped into local maxima

Information Bottleneck: uses an evaluation function with a
parameter

When the parameter is 0, the maximum is easy to find

When the parameter is 1, the function is the EM evaluation
function, difficult to optimize

Optimize the function with a deterministic annealing strategy: start
with the parameter = 0 and then gradually increase it to 1, in the
hope of finding an optimum better than EM

Application to LPADs: Relational Information Bottleneck
[Riguzzi and Di Mauro, 2010]
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Directions for Future Work

Directions for Future Works

Approximate inference: iterative deepening, best-K

Lifted inference for PLP: lifted variable elimination, lifted (loopy)
belief propagation, first-order Bayes ball

PLP structure learning
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