Probabilistic Logic Languages

Fabrizio Riguzzi

Outline

(1) Probabilistic Logic Languages
(2) Distribution Semantics
(3) Expressive Power
(4) Distribution Semantics with Function Symbols
(5) Conversion to Bayesian Networks
(6) Related Languages
(7) Knowledge-Based Model Construction
(8) Reasoning Tasks

Combining Logic and Probability

- Useful to model domains with complex and uncertain relationships among entities
- Many approaches proposed in the areas of Logic Programming, Uncertainty in AI, Machine Learning, Databases
- Logic Programming: Distribution Semantics [Sato, 1995]
- A probabilistic logic program defines a probability distribution over normal logic programs (called instances or possible worlds or simply worlds)
- The distribution is extended to a joint distribution over worlds and interpretations (or queries)
- The probability of a query is obtained from this distribution

Probabilistic Logic Programming (PLP) Languages under the Distribution Semantics

- Probabilistic Logic Programs [Dantsin, 1991]
- Probabilistic Horn Abduction [Poole, 1993], Independent Choice Logic (ICL) [Poole, 1997]
- PRISM [Sato, 1995]
- Logic Programs with Annotated Disjunctions (LPADs) [Vennekens et al., 2004]
- ProbLog [De Raedt et al., 2007]
- They differ in the way they define the distribution over logic programs

Independent Choice Logic

```
sneezing}(X)\leftarrowflu(X), flu_sneezing(X)
sneezing}(X)\leftarrow\mathrm{ hay_fever }(X)\mathrm{ , hay_fever_sneezing }(X)\mathrm{ .
flu(bob).
hay_fever(bob).
disjoint([flu_sneezing(X) : 0.7, null : 0.3]).
disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).
```

- Distributions over facts by means of disjoint statements
- null does not appear in the body of any rule
- Worlds obtained by selecting one atom from every grounding of each disjoint statement

PRISM

sneezing $(X) \leftarrow f l u(X), \operatorname{msw}\left(f l u _s n e e z i n g(X), 1\right)$.
sneezing $(X) \leftarrow$ hay_fever (X), msw(hay_fever_sneezing $(X), 1)$.
flu(bob).
hay_fever(bob).
values(flu_sneezing(_X), $[1,0]$).
values(hay_fever_sneezing $\left.\left(_X\right),[1,0]\right)$.
: -set_sw(flu_sneezing $\left.\left(_X\right),[0.7,0.3]\right)$.
: -set_sw(hay_fever_sneezing $\left.\left(_X\right),[0.8,0.2]\right)$.

- Distributions over msw facts (random switches)
- Worlds obtained by selecting one value for every grounding of each msw statement

Logic Programs with Annotated Disjunctions

```
sneezing(X) : 0.7 \vee null : 0.3\leftarrow flu(X).
sneezing(X) : 0.8\vee null : 0.2\leftarrow hay_fever ( }X\mathrm{ ).
flu(bob).
hay_fever(bob).
```

- Distributions over the head of rules
- null does not appear in the body of any rule
- Worlds obtained by selecting one atom from the head of every grounding of each clause

ProbLog

```
sneezing(X)\leftarrowflu(X),flu_sneezing(X).
sneezing}(X)\leftarrow\mathrm{ hay_fever }(X)\mathrm{ , hay_fever_sneezing ( }X\mathrm{ ).
flu(bob).
hay_fever(bob).
0.7 :: flu_sneezing(X).
0.8 :: hay_fever_sneezing(X).
```

- Distributions over facts
- Worlds obtained by selecting or not every grounding of each probabilistic fact

Distribution Semantics

- Case of no function symbols: finite Herbrand universe, finite set of groundings of each disjoint statement/switch/clause
- Atomic choice: selection of the i-th atom for grounding $C \theta$ of disjoint statement/switch/clause C
- represented with the triple (C, θ, i)
- a ProbLog fact $p:: F$ is interpreted as $F: p \vee$ null : $1-p$.
- Example $C_{1}=\operatorname{disjoint([flu_ sneezing~}(X)$: 0.7, null : 0.3]), ($\left.C_{1},\{X / b o b\}, 1\right)$
- Composite choice κ : consistent set of atomic choices
- $\kappa=\left\{\left(C_{1},\{X / b o b\}, 1\right),\left(C_{1},\{X / b o b\}, 2\right)\right\}$ not consistent
- The probability of composite choice κ is

$$
P(\kappa)=\prod_{0} P_{0}(C, i)
$$

$$
(C, \theta, i) \in \kappa
$$

Distribution Semantics

- Selection σ : a total composite choice (one atomic choice for every grounding of each disjoint statement/clause)
- $\sigma=\left\{\left(C_{1},\{X / b o b\}, 1\right),\left(C_{2},\{X / b o b\}, 1\right)\right\}$

$$
\begin{aligned}
& C_{1}=\operatorname{disjoint}([\text { flu_sneezing }(X): 0.7, \text { null }: 0.3]) . \\
& C_{2}=\operatorname{disjoint}([\text { hay_fever_sneezing }(X): 0.8, \text { null }: 0.2]) .
\end{aligned}
$$

- A selection σ identifies a logic program w_{σ} called world
- The probability of w_{σ} is $P\left(w_{\sigma}\right)=P(\sigma)=\prod_{(C, \theta, i) \in \sigma} P_{0}(C, i)$
- Finite set of wrolds: $W_{T}=\left\{w_{1}, \ldots, w_{m}\right\}$
- $P(w)$ distribution over worlds: $\sum_{w \in W_{T}} P(w)=1$

Distribution Semantics

- Herbrand base $H_{T}=\left\{A_{1}, \ldots, A_{n}\right\}$
- Herbrand interpretation $I=\left\{a_{1}, \ldots, a_{n}\right\}$
- $P(I \mid w)=1$ if l if a model of w and 0 otherwise
- $P(I)=\sum_{w} P(I, w)=\sum_{w} P(I \mid w) P(w)=\sum_{w, l \text { model of }{ }_{w} P(w)}$
- The distribution over interpretations can be seen as a joint distribution $P\left(A_{1}, \ldots, A_{n}\right)$ over the atoms of H_{T}
- Query: $\left(A_{j}=\right.$ true $)=a_{j}$
- $P\left(a_{j}\right)=\sum_{a_{i}, i \neq j} P\left(a_{1}, \ldots, a_{m}\right)=\sum_{l, a_{j} \in I} P(I)$
- $P\left(a_{j}\right)=\sum_{l, a_{j} \in I} \sum_{w \in W, l}$ model of $w P(w)$

Distribution Semantics

- Alternatively,
- $P\left(a_{j} \mid w\right)=1$ if A_{j} is true in w and 0 otherwise
- $P\left(a_{j}\right)=\sum_{w} P\left(a_{j}, w\right)=\sum_{w} P\left(a_{j} \mid w\right) P(w)=\sum_{w \models A_{j}} P(w)$

Example Program (ICL)

- 4 worlds

$$
\begin{array}{ll}
\text { sneezing }(X) \leftarrow f l u(X), \text { flu_sneezing }(X) . \\
\text { sneezing }(X) \leftarrow \text { hay_fever }(X), \text { hay_fever_sneezing }(X) . \\
\text { flu }(\text { bob }) . \\
\text { hay_fever }(b o b) . & \\
\text { flu_sneezing }(\text { bob }) . & \text { null. } \\
\text { hay_fever_sneezing }(b o b) . & \text { hay_fever_sneezing }(b o b) . \\
P\left(w_{1}\right)=0.7 \times 0.8 & P\left(w_{2}\right)=0.3 \times 0.8 \\
& \\
\text { flu_sneezing }(b o b) . & \text { null. } \\
\text { null. } & \text { null. } \\
P\left(w_{3}\right)=0.7 \times 0.2 & P\left(w_{4}\right)=0.3 \times 0.2
\end{array}
$$

- sneezing $(b o b)$ is true in 3 worlds
- $P($ sneezing $(b o b))=0.7 \times 0.8+0.3 \times 0.8+0.7 \times 0.2=0.94$

Example Program (LPAD)

- 4 worlds

```
sneezing(bob) \leftarrowflu(bob). null }\leftarrowflu(bob)
sneezing(bob) \leftarrow hay_fever(bob). sneezing(bob) \leftarrow hay_fever(bob).
flu(bob).
hay_fever(bob).
P(w+ ) = 0.7 < 0.8
sneezing(bob)}\leftarrowflu(bob)
null \leftarrow hay_fever(bob).
flu(bob).
hay_fever(bob).
P(w3)=0.7 }\times0.
flu(bob).
hay_fever(bob).
P( w2) = 0.3 < 0.8
null }\leftarrowflu(bob)
null }\leftarrow\mathrm{ hay_fever(bob).
flu(bob).
hay_fever(bob).
P(w4)}=0.3\times0.
```

- sneezing $(b o b)$ is true in 3 worlds
- $P($ sneezing $(b o b))=0.7 \times 0.8+0.3 \times 0.8+0.7 \times 0.2=0.94$

Example Program (ProbLog)

- 4 worlds

```
sneezing}(X)\leftarrowflu(X),flu_sneezing(X)
sneezing}(X)\leftarrow\mathrm{ hay_fever }(X)\mathrm{ , hay_fever_sneezing }(X)\mathrm{ .
flu(bob).
hay_fever(bob).
flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w+})=0.7\times0.8 P(w2)=0.3\times0.
flu_sneezing(bob).
P(w3)=0.7\times0.2 P(w4)=0.3\times0.2
```

- sneezing (bob) is true in 3 worlds
- $P($ sneezing $(b o b))=0.7 \times 0.8+0.3 \times 0.8+0.7 \times 0.2=0.94$

Examples

Throwing coins

heads(Coin):1/2 ; tails(Coin):1/2 :toss (Coin), \+biased (Coin).
 toss (Coin), biased (Coin). fair(Coin):0.9 ; biased(Coin):0.1. toss(coin).

Russian roulette with two guns

```
death:1/6 :- pull_trigger(left_gun).
death:1/6 :- pull_trigger(right_gun).
pull_trigger(left_gun).
pull_trigger(right_gun).
```


Examples

Mendel's inheritance rules for pea plants

```
color(X,purple):-cg(X,_A,p).
color(X,white):-cg(X,1,w),cg(X,2,w).
cg(X,1,A):0.5 ; cg(X,1,B):0.5 :-
    mother (Y,X), cg(Y,1,A),cg(Y, 2, B).
cg(X,2,A):0.5 ; cg(X,2,B):0.5 :-
    father(Y,X),cg(Y, 1,A), cg(Y, 2, B).
```


Probability of paths

```
path(X,X).
path(X,Y):-path(X,Z), edge(Z,Y).
edge (a,b):0.3.
edge (b, c):0.2.
edge (a,c):0.6.
```


Encoding Bayesian Networks

burg	t	f
	0.1	0.9
earthq	t	1
	0.2	0.8
alarm	t	f
$\mathrm{b}=\mathrm{t}, \mathrm{e}=\mathrm{t}$	1.0	0.0
$\mathrm{b}=\mathrm{t}, \mathrm{e}=\mathrm{f}$	0.8	0.2
$\mathrm{b}=\mathrm{f}, \mathrm{e}=\mathrm{t}$	0.8	0.2
$\mathrm{b}=\mathrm{f}, \mathrm{e}=\mathrm{f}$	0.1	0.9

```
burg(t):0.1 ; burg(f):0.9.
earthq(t):0.2 ; earthq(f):0.8.
alarm(t):-burg(t),earthq(t).
alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthq(f).
alarm(t):0.8 ; alarm(f):0.2:-burg(f),earthq(t).
alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthq(f).
```


Expressive Power

- All these languages have the same expressive power
- LPADs have the most general syntax
- There are transformations that can convert each one into the others
- ICL, PRISM: direct mapping
- ICL, PRISM to LPAD: direct mapping

LPADs to ICL

- Clause C_{i} with variables \bar{X}

$$
H_{1}: p_{1} \vee \ldots \vee H_{n}: p_{n} \leftarrow B .
$$

is translated into

$$
\begin{aligned}
& H_{1} \leftarrow B, \text { choice }_{i, 1}(\bar{X}) \\
& \vdots \\
& H_{n} \leftarrow B, \text { choice }_{i, n}(\bar{X}) \\
& \operatorname{disjoint}^{\left(\left[\text {choice }_{i, 1}(\bar{X}): p_{1}, \ldots, \text { choice }_{i, n}(\bar{X}): p_{n}\right]\right)}
\end{aligned}
$$

LPADs to ProbLog

- Clause C_{i} with variables \bar{X}

$$
H_{1}: p_{1} \vee \ldots \vee H_{n}: p_{n} \leftarrow B .
$$

is translated into

$$
\begin{aligned}
& H_{1} \leftarrow B, f_{i, 1}(\bar{X}) \\
& H_{2} \leftarrow B, \operatorname{not}\left(f_{i, 1}(\bar{X})\right), f_{i, 2}(\bar{X}) \\
& \vdots \\
& H_{n} \leftarrow B, \operatorname{not}\left(f_{i, 1}(\bar{X})\right), \ldots, \operatorname{not}\left(f_{i, n-1}(\bar{X})\right) \\
& \pi_{1}:: f_{i, 1}(\bar{X}) \\
& \vdots \\
& \pi_{n-1}:: f_{i, n-1}(\bar{X})
\end{aligned}
$$

where $\pi_{1}=p_{1}, \pi_{2}=\frac{p_{2}}{1-\pi_{1}}, \pi_{3}=\frac{p_{3}}{\left(1-\pi_{1}\right)\left(1-\pi_{2}\right)}, \ldots$

- In general $\pi_{i}=\frac{p_{i}}{\prod_{j=1}^{i-1}\left(1-\pi_{j}\right)}$

Combining Rule

- These languages combine independent evidence for a ground atom coming from different clauses with a noisy-or combining rule
- If atom A can be derived with probability p_{1} from a rule and with probability p_{2} from a different rule and the two derivations are independent, then $P(A)=p_{1}+p_{2}-p_{1} p_{2}$
- Example

$$
\begin{aligned}
& \text { sneezing }(X): 0.7 \vee \text { null }: 0.3 \leftarrow \text { flu }(X) . \\
& \text { sneezing }(X): 0.8 \vee \text { null }: 0.2 \leftarrow \text { hay_fever }(X) . \\
& \text { flu(bob). } \\
& \text { hay_fever(bob). }
\end{aligned}
$$

- $P($ sneezing $(b o b))=0.7+0.8-0.7 \times 0.8=0.94$
- Particularly useful for modeling independent causes for the same effect

Negation

- How to deal with negation?
- Each world should have a single total model because we consider two-valued interpretations
- We want to model uncertainty only by means of random choices
- This can be required explicitly: each world should have a total well founded model/single stable model (sound programs)

Function Symbols

- What if function symbols are present?
- Infinite, countable Herbrand universe
- Infinite, countable Herbrand base
- Infinite, countable grounding of the program T
- Uncountable W_{T}
- Each world infinite, countable
- $P(w)=0$
- Semantics not well-defined

Game of dice

```
on (0,1):1/3 ; on (0,2):1/3 ; on (0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-
    T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).
```


Hidden Markov Models


```
hmm(S,O):-hmm(q1,[],S,O).
hmm(end,S,S,[]).
hmm(Q,SO,S,[L|O]):-
    Q\= end,
    next_state(Q,Q1,S0),
    letter(Q,L,SO),
    hmm(Q1,[Q|S0],S,O).
next_state(q1,q1,_S):1/3; next_state(q1,q2_,_S):1/3;
    next_state(q1,end,_S):1/3.
next_state(q2,q1,_S):1/3; next_state (q2,q2,_S):1/3;
    next_state(q2,end,_S):1/3.
letter(q1,a,_S):0.25; letter(q1,c,_S):0.25;
    letter(q1,g,_S):0.25;letter(q1,t,_S):0.25.
letter(q2,a,_S):0.25; letter(q2,c,_S):0.25;
    letter(q2,g,_S):0.25;letter(q2,t,_S):0.25.
```


Distribution Semantics with Function Symbols

- Semantics proposed for ICL and PRISM, applicable also to the other languages
- Definition of a probability measure μ over W_{T}
- μ assign a probability to every element of an algebra Ω of subsets of W_{T}, i.e. a set of subsets closed under union and complementation
- The algebra Ω is the set of sets of worlds identified by a finite set of finite composite choices

Composite Choices

- Set of worlds compatible with κ : $\omega_{\kappa}=\left\{w_{\sigma} \in W_{T} \mid \kappa \subseteq \sigma\right\}$
- For programs without function symbols $P(\kappa)=\sum_{w \in \omega_{\kappa}} P(w)$

```
sneezing}(X)\leftarrowflu(X),flu_sneezing(X)
sneezing}(X)\leftarrow\mathrm{ hay_fever }(X)\mathrm{ , hay_fever_sneezing }(X)\mathrm{ .
flu(bob).
hay_fever(bob).
C1 = disjoint([flu_sneezing( }X):0.7,\mathrm{ null : 0.3]).
C2 = disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).
```

- $\kappa=\left\{\left(C_{1},\{X /\right.\right.$ bob $\left.\left.\}, 1\right)\right\}, \omega_{\kappa}=$
flu_sneezing(bob). flu_sneezing(bob).
hay_fever_sneezing(bob). null.
$P\left(w_{1}\right)=0.7 \times 0.8$
$P\left(w_{2}\right)=0.7 \times 0.2$
- $P(\kappa)=0.7=P\left(w_{1}\right)+P\left(w_{2}\right)$

Sets of Composite Choices

- Set of composite choices K
- Set of worlds compatible with $K: \omega_{K}=\bigcup_{\kappa \in K} \omega_{\kappa}$
- Two composite choices κ_{1} and κ_{2} are exclusive if their union is inconsistent
- $\kappa_{1}=\left\{\left(C_{1},\{X / b o b\}, 1\right)\right\}$,
$\kappa_{2}=\left\{\left(C_{1},\{X / b o b\}, 2\right),\left(C_{2},\{X / b o b\}, 1\right)\right\}$
- $\kappa_{1} \cup \kappa_{2}$ inconsistent
- A set K of composite choices is mutually exclusive if for all $\kappa_{1} \in K, \kappa_{2} \in K, \kappa_{1} \neq \kappa_{2} \Rightarrow \kappa_{1}$ and κ_{2} are exclusive.

Sets of Composite Choices

- Case of no functions symbols
- $\sum_{\kappa \in K} P(\kappa) \neq \sum_{w \in \omega_{K}} P(w)$
- $\kappa_{1}=\left\{\left(C_{1},\{X / b o b\}, 1\right)\right\}, \kappa_{2}=\left\{\left(C_{2},\{X / b o b\}, 1\right)\right\}, K=\left\{\kappa_{1}, \kappa_{2}\right\}$
- $P\left(\kappa_{1}\right)=0.7, P\left(\kappa_{2}\right)=0.8, \sum_{w \in \omega_{K}} P(w)=0.94$
- If K is mutually incompatible, $\sum_{\kappa \in K} P(\kappa)=\sum_{w \in \omega_{K}} P(w)$
- $\kappa_{2}^{\prime}=\left\{\left(C_{1},\{X / b o b\}, 2\right),\left(C_{2},\{X / b o b\}, 1\right)\right\}, K^{\prime}=\left\{\kappa_{1}, \kappa_{2}^{\prime}\right\}$
- $P\left(\kappa_{2}^{\prime}\right)=0.3 \cdot 0.8=0.24$
- Probability of mutually exclusive set K of composite choices: $P(K)=\sum_{\kappa \in K} P(\kappa)$

Sets of Composite Choices

- $K=\left\{\kappa_{1}, \ldots, \kappa_{n}\right\}$
- $P(K)=P\left(\kappa_{1} \vee \ldots \vee \kappa_{n}\right)$
- $P(A \vee B)=P(A)+P(B)-P(A B)$
- $P(A \vee B \vee C)=P(A)+P(B)+P(C)-P(A B)-P(B C)+P(A B C)$
- ... (inclusion exclusion formula)
- $P\left(\kappa_{1} \wedge \kappa_{2}\right)$ may be:
- 0 , if κ_{1}, κ_{2} are inconsistent
- $P\left(\kappa_{1}\right) P\left(\kappa_{2}\right)$ if they are independent (no common grounding $C \theta$)
- In general, we have to count only once repeated atomic choices
- If K is mutually incompatible $P\left(\kappa_{i} \wedge \ldots \wedge \kappa_{j}\right)=0$
- $P(K)=P\left(\kappa_{1}\right)+\ldots+P\left(\kappa_{n}\right)$

Set of Composite Choices

- Two set K_{1} and K_{2} of finite composite choices may correspond to the same set of worlds: $\omega_{K_{1}}=\omega_{K_{2}}$

Lemma ([Poole, 2000])
Given a finite set K of finite composite choices, there exists a finite set K^{\prime} of finite composite choices that is mutually exclusive and such that $\omega_{K}=\omega_{K^{\prime}}$.

Probability Measure

Lemma ([Poole, 2000])

If K and K^{\prime} are both mutually exclusive sets of composite choices such that $\omega_{K}=\omega_{K^{\prime}}$, then $P(K)=P\left(K^{\prime}\right)$

- $\Omega=\left\{\omega_{K} \mid K\right.$ is a finite set of finite composite choices $\}$
- Ω is an algebra

Definition
$\mu: \Omega \rightarrow[0,1]$ is

$$
\mu(\omega)=P(K)
$$

for $\omega \in \Omega$ where K is a mutually exclusive finite set of finite composite choices such that $\omega_{K}=\omega$.

Probability Measure

- μ satisfies the finite additivity version of Kolmogorov probability axioms
(1) $\mu(\omega) \geq 0$ for all $\omega \in \Omega$
(2) $\mu(W)=1$
(3) $\omega_{1} \cap \omega_{2}=\emptyset \rightarrow \mu\left(\omega_{1} \cup \omega_{2}\right)=\mu\left(\omega_{1}\right)+\mu\left(\omega_{2}\right)$ for all $\omega_{1} \in \Omega, \omega_{2} \in \Omega$
- So μ is a probability measure

Probability of a Query

- Given a query Q, a composite choice κ is an explanation for Q if

$$
\forall w \in \omega_{\kappa} \quad w \models Q
$$

- A set K of composite choices is covering wrt Q if every world in which Q is true belongs to ω_{K}

Definition

$$
P(Q)=\mu\left(\left\{w \mid w \in W_{T}, w \models Q\right\}\right)
$$

- If Q has a finite set of finite explanations that is covering, $P(Q)$ is well-defined

Example Program (ICL)

```
sneezing}(X)\leftarrowflu(X),\mathrm{ flu_sneezing (X).
sneezing(X)\leftarrow hay_fever(X), hay_fever_sneezing}(X)\mathrm{ .
flu(bob).
hay_fever(bob).
C1 = disjoint([flu_sneezing(X) : 0.7, null : 0.3]).
C2}=\mathrm{ disjoint([hay_fever_sneezing(X):0.8, null : 0.2]).
```

- Goal sneezing(bob)
- $\kappa_{1}=\left\{\left(C_{1},\{X / b o b\}, 1\right)\right\}$
- $\kappa_{2}=\left\{\left(C_{1},\{X / b o b\}, 2\right),\left(C_{2},\{X / b o b\}, 1\right)\right\}$
- $K=\left\{\kappa_{1}, \kappa_{2}\right\}$ mutually exclusive finite set of finite explanations that are covering for sneezing (bob)
- $P(Q)=P\left(\kappa_{1}\right)+P\left(\kappa_{2}\right)=0.7+0.3 \cdot 0.8=0.94$

Functions Symbols in ICL and PRISM

- The probability is well defined provided that the query has a finite set of finite explanations that are covering
- In PRISM this is explicitly required
- In ICL the program is required to be acyclic
- What conditions can we impose on the program so that these requirements are met?

Conditions

- Acyclic programs
- Modularly acyclic program
- Extended to PLP by requiring that each world is acyclic, modularly acyclic [Riguzzi, 2009].
- New conditions: dynamic stratification, bounded term size,... ?

Conversion to Bayesian Networks

- PLP can be converted to Bayesian networks
- Conversion for an LPAD T
- For each atom A in H_{T} a binary variable A
- For each clause C_{i} in the grounding of T

$$
H_{1}: p_{1} \vee \ldots \vee H_{n}: p_{n} \leftarrow B_{1}, \ldots B_{m}, \neg C_{1}, \ldots, \neg C_{l}
$$

a variable CH_{i} with $B_{1}, \ldots, B_{m}, C_{1}, \ldots, C_{l}$ as parents and H_{1}, \ldots, H_{n} and null as values

- The CPT of CH_{i} is

	\ldots	$B_{1}=1, \ldots, B_{m}=1, C_{1}=0, \ldots, C_{l}=0$	\ldots
$\mathrm{CH}_{i}=H_{1}$	0.0	p_{1}	0.0
\ldots			
$\mathrm{CH}_{i}=H_{n}$	0.0	p_{n}	0.0
$\mathrm{CH}_{i}=$ null	1.0	$1-\sum_{i=1}^{n} p_{i}$	1.0

Conversion to Bayesian Networks

- Each variable A corresponding to atom A has as parents all the variables CH_{i} of clauses C_{i} that have A in the head.
- The CPT for A is:

	at least one parent equal to A	remaining columns
$A=1$	1.0	0.0
$A=0$	0.0	1.0

Conversion to Bayesian Networks

$$
\begin{aligned}
& C_{1}=x 1: 0.4 \vee x 2: 0.6 . \\
& C_{2}=x 2: 0.1 \vee x 3: 0.9 . \\
& C_{3}=x 4: 0.6 \vee x 5: 0.4 \leftarrow x 1 . \\
& C_{4}=x 5: 0.4 \leftarrow x 2, x 3 . \\
& C_{5}=x 6: 0.3 \vee x 7: 0.2 \leftarrow x 2, x 5 .
\end{aligned}
$$

$x 2, x 5$	t, t	t, f	f, t	f, f
$\mathrm{CH}_{5}=x 6$	0.3	0.0	0.0	0.0
$\mathrm{CH}_{5}=x 7$	0.2	0.0	0.0	0.0
$\mathrm{CH}_{5}=$ null	0.5	1.0	1.0	1.0

$\mathrm{CH}_{1}, \mathrm{CH}_{2}$	$x 1, x 2$	$x 1, x 3$	$x 2, x 2$	$x 2, x 3$
$x 2=1$	1.0	0.0	1.0	1.0
$x 2=0$	0.0	1.0	0.0	0.0

Related Languages

- CP-logic [Vennekens et al., 2009]
- P-log [C.Baral et al., 2009]

CP-logic

- Syntactically equal to LPADs
- Aim: modeling causation
- Semantics defined in term of a tree representing a probabilistic process
- Each valid CP-theory is a valid LPAD with the same meaning
- There are LPADs that are not valid CP-theories

$$
\begin{array}{lll}
p: 0.5 \vee q: 0.5 \leftarrow r . & p \leftarrow r . & q \leftarrow r . \\
r \leftarrow \neg p . & r \leftarrow \neg p . & r \leftarrow \neg p . \\
r \leftarrow \neg q . & r \leftarrow \neg q . & r \leftarrow \neg q . \\
& M=\{r, p\} & M=\{r, q\}
\end{array}
$$

- No process satisfying temporal precedence: a rule cannot fire until the part of the process that determines whether its precondition holds is fully finished.

P-log

- Based on Answer Set Programming (ASP).
- A P-log program T defines a distribution over the stable models of a related Answer Set program $\pi(T)$.
- The probability of a query is then obtained by marginalization

```
bool={t,f}.
node={a,b,c,...}.
edge: node,node -> bool.
#domain node(X), node (Y), node(Z).
path(X,Y):- edge (X,Y,t).
path(X,Y):- edge(X,Z,t), path(Z,Y).
[r(a,b)] random(edge(a,b)).
[r(a,b)] pr(edge (a,b,t))=4/10.
```

- Disjunctions allowed: some models are ruled out
- The distribution obtained by multiplication is not normalized.
- The probability of each stable model must be normalized.

Knowledge-Based Model Construction

- The probabilistic logic theory is used directly as a template for generating an underlying complex graphical model [Breese et al., 1994].
- Languages: CLP(BN), Markov Logic

CLP(BN)

- Variables in a CLP(BN) program can be random
- Their values, parents and CPTs are defined with the program
- To answer a query with uninstantiated random variables, CLP(BN) builds a BN and performs inference
- The answer will be a probability distribution for the variables
- Probabilistic dependencies expressed by means of CLP constraints

```
{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }
```


CLP(BN)

```
course_difficulty(Key, Dif) :-
{ Dif = difficulty(Key) with p([h,m,l],
[0.25, 0.50, 0.25]) }.
student_intelligence(Key, Int) :-
{ Int = intelligence(Key) with p([h, m, l],
[0.5,0.4,0.1]) }.
registration(r0,c16,s0).
registration(r1,c10,s0).
registration(r2,c57,s0).
registration(r3,c22,s1).
```


CLP(BN)

```
registration_grade(Key, Grade):-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
    { Grade = grade(Key) with
    p([a,b,c,d],
%h h h m h l m h m m m l l h l m l l
    [0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
    0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
    0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
    0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 ],
    [Int,Dif]))
} .
```


CLP(BN)

```
?- [school_32].
    ?- registration_grade(r0,G).
p (G=a)=0.4115,
p (G=b) =0.356,
p (G=c)=0.16575,
p (G=d)=0.06675 ?
?- registration_grade(r0,G),
    student_intelligence(s0,h).
p (G=a)=0.6125,
p (G=b)=0.305,
p (G=c)=0.0625,
p (G=d)=0.02 ?
```


Markov Networks

- Undirected graphical models

- Each clique in the graph is associated with a potential ϕ_{i}

$$
\begin{aligned}
& P(\mathbf{x})=\frac{\prod_{i} \phi_{i}\left(\mathbf{x}_{\mathbf{i}}\right)}{Z} \\
& Z=\sum_{\mathbf{x}} \prod_{i} \phi_{i}\left(\mathbf{x}_{\mathbf{i}}\right)
\end{aligned}
$$

Smoking	Cancer	$\phi_{i}(V, T)$
false	false	4.5
false	true	4.5
true	false	2.7
true	true	4.5

Markov Networks

- If all the potential are strictly positive, we can use a log-linear model

$$
\begin{aligned}
& P(\mathbf{x})=\frac{\exp \left(\sum_{i} w_{i} f_{i}\left(\mathbf{x}_{\mathbf{i}}\right)\right)}{Z} \\
& Z= \sum_{\mathbf{x}} \prod_{i} \phi_{i}\left(\mathbf{x}_{\mathbf{i}}\right) \\
& f_{i}(\text { Smoking }, \text { Cancer })= \begin{cases}1 & \text { if }- \text { Smoking } \vee \text { Cancer } \\
0 & \text { otherwise }\end{cases} \\
& w_{i}=1.5
\end{aligned}
$$

Markov Logic

- A Markov Logic Network (MLN) is a set of pairs (F, w) where F is a formula in first-order logic w is a real number
- Together with a set of constants, it defines a Markov network with
- One node for each grounding of each predicate in the MLN
- One feature for each grounding of each formula F in the MLN, with the corresponding weight w

Markov Logic Example

1.5 $\forall x$ Smokes $(x) \rightarrow$ Cancer (x)
$1.1 \forall x, y$ Friends $(x, y) \rightarrow(\operatorname{Smokes}(x) \leftrightarrow \operatorname{Smokes}(y))$

- Constants Anna (A) and Bob (B)

Markov Networks

- Probability of an interpretation \mathbf{x}

$$
P(\mathbf{x})=\frac{\exp \left(\sum_{i} w_{i} n_{i}\left(\mathbf{x}_{\mathbf{i}}\right)\right)}{Z}
$$

- $n_{i}\left(\mathbf{x}_{\mathbf{i}}\right)=$ number of true groundings of formula F_{i} in \mathbf{x}
- Typed variables and constants greatly reduce size of ground Markov net

Reasoning Tasks

- Inference: we want to compute the probability or an explanation of a query given the model and, possibly, some evidence
- Weight learning: we know the structural part of the model (the logic formulas) but not the numeric part (the weights) and we want to infer the weights from data
- Structure learning we want to infer both the structure and the weights of the model from data

Inference Tasks

- Computing the (conditional) probability of a ground query given the model and, possibly, some evidence
- Finding the most likely state of a set of query atoms given the evidence (Maximum A Posteriori/Most Probable Explanation inference)
- In Hidden Markov Models, the most likely state of the state variables given the observations is the Viterbi path, its probability the Viterbi probability
- Finding the (k) most probable explanation(s)
- Finding the distribution of variable substitutions for a non-ground query.
- Finding the most probable variable substitution for a non-ground query.

Weight Learning

- Given
- model: a probabilistic logic model with unknown parameters
- data: a set of interpretations
- Find the values of the parameters that maximize the probability of the data given the model
- Discriminative learning: maximize the conditional probability of a set of outputs (e.g. ground instances for a predicate) given a set of inputs
- Alternatively, the data are queries for which we know the probability: minimize the error in the probability of the queries that is returned by the model

Structure Learning

- Given
- language bias: a specification of the search space
- data: a set of interpretations
- Find the formulas and the parameters that maximize the likelihood of the data given the model
- Discriminative learning: again maximize the conditional likelihood of a set of outputs given a set of inputs

References I

R Breese, J. S., Goldman, R. P., and Wellman, M. P. (1994). Introduction to the special section on knowledge-based construction of probabilistic and decision models. IEEE Transactions On Systems, Man and Cybernetics, 24(11):1577-1579.
© C.Baral, Gelfond, M., and Rushton, N. (2009).
Probabilistic reasoning with answer sets.
The. Pra. Log. Program., 9(1):57-144.
圊 Dantsin, E. (1991).
Probabilistic logic programs and their semantics.
In Russian Conference on Logic Programming, volume 592 of LNCS, pages 152-164. Springer.

References II

De Raedt, L., Kimmig, A., and Toivonen, H. (2007).
Problog: A probabilistic prolog and its application in link discovery.
In International Joint Conference on Artificial Intelligence, pages 2462-2467.
固 Poole, D. (1993).
Logic programming, abduction and probability - a top-down anytime algorithm for estimating prior and posterior probabilities. New Gener. Comput., 11(3):377-400.
圊 Poole, D. (1997).
The Independent Choice Logic for modelling multiple agents under uncertainty.
Artif. Intell., 94(1-2):7-56.

References III

E Poole, D. (2000).
Abducing through negation as failure: stable models within the independent choice logic.
J. Log. Program., 44(1-3):5-35.

R Riguzzi, F. (2009).
Extended semantics and inference for the Independent Choice Logic.
Logic Journal of the IGPL.
to appear.
in Sato, T. (1995).
A statistical learning method for logic programs with distribution semantics.
In International Conference on Logic Programming, pages 715-729.

References IV

Rennekens, J., Denecker, M., and Bruynooghe, M. (2009). Cp-logic: A language of causal probabilistic events and its relation to logic programming.
TPLP, 9(3):245-308.
囲 Vennekens, J., Verbaeten, S., and Bruynooghe, M. (2004). Logic programs with annotated disjunctions.
In International Conference on Logic Programming, volume 3131 of LNCS, pages 195-209. Springer.

