Probabilistic Logic Languages J

Fabrizio Riguzzi

F. Riguzzi (ENDIF) Probabilistic Logic Languages 1/62

|
Outline

0 Probabilistic Logic Languages

9 Distribution Semantics

e Expressive Power

e Distribution Semantics with Function Symbols
e Conversion to Bayesian Networks

@ Related Languages

0 Knowledge-Based Model Construction

@ Reasoning Tasks

F. Riguzzi (ENDIF) Probabilistic Logic Languages 2/62

Combining Logic and Probability

@ Useful to model domains with complex and uncertain relationships
among entities

@ Many approaches proposed in the areas of Logic Programming,
Uncertainty in Al, Machine Learning, Databases

@ Logic Programming: Distribution Semantics [Sato, 1995]

@ A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)

@ The distribution is extended to a joint distribution over worlds and
interpretations (or queries)

The probability of a query is obtained from this distribution

©

F. Riguzzi (ENDIF) Probabilistic Logic Languages 3/62

Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

@ Probabilistic Logic Programs [Dantsin, 1991]

@ Probabilistic Horn Abduction [Poole, 1993], Independent Choice
Logic (ICL) [Poole, 1997]

@ PRISM [Sato, 1995]

@ Logic Programs with Annotated Disjunctions (LPADS)
[Vennekens et al., 2004]

@ ProbLog [De Raedt et al., 2007]

@ They differ in the way they define the distribution over logic
programs

F. Riguzzi (ENDIF) Probabilistic Logic Languages 4/62

Independent Choice Logic

sneezing(X) « flu(X), flu_sneezing(X).

sneezing(X) <« hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay _fever (bob).

disjoint([flu_sneezing(X) : 0.7, null : 0.3]).
disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).

@ Distributions over facts by means of disjoint statements
@ null does not appear in the body of any rule

@ Worlds obtained by selecting one atom from every grounding of
each disjoint statement

F. Riguzzi (ENDIF) Probabilistic Logic Languages 5/62

PRISM

sneezing(X) « flu(X), msw(flu_sneezing(X),1).

sneezing(X) < hay_fever(X), msw(hay_fever_sneezing(X), 1).
flu(bob).

hay_fever(bob).

values(flu_sneezing(_X), [1,0]).
values(hay_fever_sneezing(_X),[1,0]).

: —set_sw(flu_sneezing(_X),[0.7,0.3]).

: —set_sw(hay_fever_sneezing(_X), [0.8,0.2]).

@ Distributions over msw facts (random switches)

@ Worlds obtained by selecting one value for every grounding of
each msw statement &

F. Riguzzi (ENDIF) Probabilistic Logic Languages 6/62

Logic Programs with Annotated Disjunctions

sneezing(X) : 0.7 v null : 0.3 « flu(X).
sneezing(X) : 0.8 v null : 0.2 < hay_fever(X).
flu(bob).

hay_fever (bob).

@ Distributions over the head of rules
@ null does not appear in the body of any rule

@ Worlds obtained by selecting one atom from the head of every
grounding of each clause

F. Riguzzi (ENDIF) Probabilistic Logic Languages 7162

ProbLog

sneezing(X) <« flu(X), flu_sneezing(X).

sneezing(X) < hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay _fever (bob).

0.7 :: flu_sneezing(X).

0.8 :: hay_fever_sneezing(X).

@ Distributions over facts

@ Worlds obtained by selecting or not every grounding of each
probabilistic fact

F. Riguzzi (ENDIF) Probabilistic Logic Languages 8/62

Distribution Semantics

@ Case of no function symbols: finite Herbrand universe, finite set of
groundings of each disjoint statement/switch/clause

@ Atomic choice: selection of the i-th atom for grounding C# of
disjoint statement/switch/clause C

o represented with the triple (C, 6, i)
@ aProbLog factp :: Fisinterpretedas F :pvnull : 1 —p.

@ Example C; = disjoint([flu_sneezing(X) : 0.7, null : 0.3]),
(C1,{X/bob},1)

@ Composite choice k: consistent set of atomic choices

@ k= {(Cq,{X/bob},1),(Cq,{X/bob},2)} not consistent

@ The probability of composite choice « is

P(k) = H Po(C,i)
(C.0,i)er &

F. Riguzzi (ENDIF) Probabilistic Logic Languages 9/62

Distribution Semantics

@ Selection ¢ a total composite choice (one atomic choice for every
grounding of each disjoint statement/clause)

9 0= {(CL {X/bOb}a 1)7 (CZa {X/bOb}? l)}
C, = disjoint([flu_sneezing(X) : 0.7, null : 0.3]).
C, = disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).
@ A selection ¢ identifies a logic program w,, called world
@ The probability of W, is P(W,) = P(c) = [](c 9,i)es Po(C, 1)
@ Finite set of wrolds: Wt = {wy,...,Wmn}
@ P(w) distribution over worlds: 3, .. P(W) =1

F. Riguzzi (ENDIF) Probabilistic Logic Languages 10/ 62

Distribution Semantics

Herbrand base Hr = {A1,...,An}

Herbrand interpretation | = {as,...,an}

P(llw) = 1if I if a model of w and 0 otherwise

P(1) =2 wP(w) =32 PUIW)P(W) =32 | model of w P(W)
The distribution over interpretations can be seen as a joint
distribution P(Aq, ..., An) over the atoms of Ht

Query: (A; = true) = a;
P(ay) = 2 aix P2, am) = 22 401 P(1)
P(a) P(w)

© 6 6 6 ¢

e ©

©

= Zl,ajel ZWGWJ model of w

F. Riguzzi (ENDIF) Probabilistic Logic Languages 11/62

Distribution Semantics

@ Alternatively,
@ P(ajlw) = 1if Aj is true in w and 0 otherwise

© P(aj) = 2w P8 w) = 22w P(aj[w)P (W) = 2oy a P(W)

F. Riguzzi (ENDIF) Probabilistic Logic Languages 12/ 62

Example Program (ICL)

@ 4 worlds

sneezing(X) « flu(X), flu_sneezing(X).

sneezing(X) <« hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay _fever(bob).

flu_sneezing(bob). null.
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w;) =0.7x0.8 P(w;) =0.3x0.8
flu_sneezing(bob). null.

null. null.

P(ws) = 0.7 x 0.2 P(ws) =0.3x 0.2

@ sneezing(bob) is true in 3 worlds

@ P(sneezing(bob)) =0.7 x 0.8 +0.3 x 0.8+ 0.7 x 0.2 =0.94
L

F. Riguzzi (ENDIF) Probabilistic Logic Languages 13/62

Example Program (LPAD)

@ 4 worlds
sneezing(bob) «+ flu(bob). null + flu(bob).
sneezing(bob) < hay_fever(bob). sneezing(bob) « hay_fever(bob).
flu(bob). flu(bob).
hay_fever (bob). hay_fever (bob).
P(w;)=0.7x0.8 P(w,) =0.3x0.8
sneezing(bob) «+ flu(bob). null + flu(bob).
null + hay_fever(bob). null + hay_fever (bob).
flu(bob). flu(bob).
hay_fever (bob). hay_fever (bob).
P(ws) =0.7 x 0.2 P(ws) =0.3x0.2

@ sneezing(bob) is true in 3 worlds

@ P(sneezing(bob)) =0.7 x 0.8 +0.3 x 0.8+ 0.7 x 0.2 =0.94
L

F. Riguzzi (ENDIF) Probabilistic Logic Languages 14/ 62

Example Program (ProbLog)

@ 4 worlds

sneezing(X) « flu(X), flu_sneezing(X).

sneezing(X) « hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay_fever (bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w;) =0.7 x 0.8 P(w;) =0.3x 0.8
flu_sneezing(bob).
P(ws) =0.7 x 0.2 P(ws) =0.3x0.2

@ sneezing(bob) is true in 3 worlds

@ P(sneezing(bob)) =0.7 x 0.8 +0.3 x 0.8+ 0.7 x 0.2 =0.94 =

F. Riguzzi (ENDIF) Probabilistic Logic Languages 15/62

Examples

Throwing coins

heads(Coin):1/2 ; tails(Coin):1/2 :-
t oss(Coi n), \ +bi ased(Coi n) .
heads(Coin):0.6 ; tails(Coin):0.4 :-
t oss(Coi n), bi ased(Coi n) .
fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).

Russian roulette with two guns

death:1/6 :- pull _trigger(left_gun).
death:1/6 :- pull _trigger(right_gun).
pul | _trigger(left_gun).

pull _trigger(right _gun).

F. Riguzzi (ENDIF) Probabilistic Logic Languages 16 /62

Examples

Mendel’s inheritance rules for pea plants

color (X purple):-cg(X _A p).
color(X,white):-cg(X 1,w,cg(X 2,w).
cg(X,1,A):0.5; cg(X 1,B):0.5 :-
not her (Y, X), cg(Y, 1,A),cqg(Y, 2,B).
cg(X,2,A):0.5; cg(X2,B):0.5 :-
father (Y, X),cg(Y,1,A),cg(Y,2,B).

Probability of paths

pat h(X, X).

pat h(X, Y):-path(X 2), edge(ZY).

edge(a, b): 0. 3.

edge(b, c): 0. 2.

edge(a, c): 0. 6. &

F. Riguzzi (ENDIF) Probabilistic Logic Languages 17/ 62

Encoding Bayesian Networks

burg | t f

earthq | t f

alarm t f
b=t,e=t | 1.0 | 0.0
b=t,e=f | 0.8 | 0.2
b=f,e=t | 0.8 | 0.2
b=f,e=f | 0.1 | 0.9

burg(t):0.1 ; burg(f):0.9.

earthqg(t): 0.2 ; earthq(f):0.8.
alarn(t):-burg(t),earthqg(t).

alarm(t): 0.8 ; alarn(f):0.2:-burg(t),earthq(f).
alarm(t):0.8 ; alarm(f):0.2:-burg(f),earthqg(t).
alarm(t): 0.1 ; alarm(f):0.9:-burg(f),earthqg(f). &

F. Riguzzi (ENDIF) Probabilistic Logic Languages 18/62

Expressive Power

@ All these languages have the same expressive power
@ LPADs have the most general syntax

@ There are transformations that can convert each one into the
others

@ ICL, PRISM: direct mapping
@ ICL, PRISM to LPAD: direct mapping

F. Riguzzi (ENDIF) Probabilistic Logic Languages 19/62

LPADs to ICL

@ Clause C; with variables X
is translated into

H; + B, choice; 1(X).

Hn < B, choicej n(X).

disjoint([choice;j 1 (X) : p1, . . ., choicej n(X) : pn]).

F. Riguzzi (ENDIF) Probabilistic Logic Languages 20/62

LPADs to ProbLog

@ Clause C; with variables X
Hlpl\/\/ann%B
is translated into

Hl — B,fi71(Y). . o
H, < B, not(f 1(X)), fi 2(X).

Hn + B, not(f, 1(X)), ..., not(fi n_1(X)).
T fi’l(Y).

7Tn_1 o f|’n_1(X)
where 71 = p1, ™2 = 1p27rl’ T3 = (1_7r1r))?1_7r2), ...

@ In general 1 = i) (1) @
i

F. Riguzzi (ENDIF) Probabilistic Logic Languages 21/62

Combining Rule

@ These languages combine independent evidence for a ground
atom coming from different clauses with a noisy-or combining rule

@ If atom A can be derived with probability p; from a rule and with
probability p, from a different rule and the two derivations are
independent, then P(A) = py + p2 — p1p2

@ Example

sneezing(X) : 0.7 vV null : 0.3 < flu(X).
sneezing(X) : 0.8 v null : 0.2 < hay_fever(X).
flu(bob).

hay_fever (bob).

@ P(sneezing(bob)) =0.7+0.8 - 0.7 x 0.8 = 0.94

@ Particularly useful for modeling independent causes for the same
effect @

F. Riguzzi (ENDIF) Probabilistic Logic Languages 22/62

Negation

@ How to deal with negation?

@ Each world should have a single total model because we consider
two-valued interpretations

@ We want to model uncertainty only by means of random choices

@ This can be required explicitly: each world should have a total well
founded model/single stable model (sound programs)

F. Riguzzi (ENDIF) Probabilistic Logic Languages 23/62

Function Symbols

What if function symbols are present?
Infinite, countable Herbrand universe

Infinite, countable Herbrand base

Infinite, countable grounding of the program T
Uncountable W+t

Each world infinite, countable

P(w)=0

Semantics not well-defined

© 6 ¢ ¢ ¢ ¢ ¢ ¢

F. Riguzzi (ENDIF) Probabilistic Logic Languages 24 /62

Game of dice

on(0,1):1/3 ; on(0,2):12/3 ; on(0,3):1/3.
on(T,1):1/3; on(T,2):12/3 ; on(T,3):1/3 :-
T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).

F. Riguzzi (ENDIF) Probabilistic Logic Languages 25/62

Hidden Markov Models

hnmm(S, O :-hm(ql,[],S O.

hm{end, S, S, []).

hm(Q S0, S, [L| Q) : -
Q = end,
next _state(Q QL, SO0),
letter(QL, S0),
hm(QL, [Q S0], S, O .

next _state(ql, ql,_S):1/3; next_state(ql,g2_,_S):1/3;
next _state(ql, end, _S):1/3.

next _state(q2,ql,_S):1/3;next_state(qg2,q2,_9S):1/3;
next _state(q2,end,_S):1/3.

letter(ql,a, _S):0.25;letter(ql,c,_S):0.25;
letter(ql,g,_S):0.25;letter(qgl, t,_S):0.25.

letter(qg2,a,_S):0.25;letter(g2,c,_S):0.25;
letter(g2,9,_9S):0.25;letter(g2,t,_S):0.25. &

F. Riguzzi (ENDIF) Probabilistic Logic Languages 26/62

Distribution Semantics with Function Symbols

@ Semantics proposed for ICL and PRISM, applicable also to the
other languages

@ Definition of a probability measure 1 over Wt

@ p assign a probability to every element of an algebra 2 of subsets
of W, i.e. a set of subsets closed under union and
complementation

@ The algebra Q is the set of sets of worlds identified by a finite set
of finite composite choices

F. Riguzzi (ENDIF) Probabilistic Logic Languages 27162

Composite Choices

@ Set of worlds compatible with x: w, = {w, € Wt|x C o}
@ For programs without function symbols P(x) = > .. P(W)

sneezing(X) <« flu(X), flu_sneezing(X).

sneezing(X) «+ hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay _fever(bob).

C, = disjoint([flu_sneezing(X) : 0.7, null : 0.3]).

C, = disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).

@ K= {(Cl, {X/bOb}, 1)}, Wg =

flu_sneezing(bob). flu_sneezing(bob).
hay_fever_sneezing(bob). null.
P(w;)=0.7x0.8 P(w;) =0.7 x 0.2

@ P(k) =0.7 = P(wy) + P(w,)

F. Riguzzi (ENDIF) Probabilistic Logic Languages 28/62

Sets of Composite Choices

@ Set of composite choices K
@ Set of worlds compatible with K: wx = ek Wk

@ Two composite choices k1 and x, are exclusive if their union is
inconsistent

@ ry = {(Cs,{X/bob}, 1)},
r2 = {(C1,{X/bob},2), (Cz, {X/bob},1)}
@ k1 U Ky inconsistent

@ A set K of composite choices is mutually exclusive if for all
k1 € K, ko € K, k1 # Kkp = k1 and k, are exclusive.

F. Riguzzi (ENDIF) Probabilistic Logic Languages 29/62

Sets of Composite Choices

Case of no functions symbols

> onek P(K) # 2pew P(W)

r1 = {(C1,{X/bob}, 1)}, k2 = {(C2, {X/bob}, 1)}, K = {K1, k2}
P(k1) = 0.7, P(r2) = 0.8, >y, P(W) =0.94

If K is mutually incompatible, >, .« P(x) =3 ¢, P(W)

i = {(C1. {X/bob},2), (Cz, {X /bob}, 1)}, K’ = {s, x5}

P(k,) =0.3-0.8=0.24

Probability of mutually exclusive set K of composite choices:
P(K) = > xek P(r)

¢ © ¢ 6 6 6 ¢ ¢

F. Riguzzi (ENDIF) Probabilistic Logic Languages 30/62

Sets of Composite Choices

K={k1,...,kn}
P(K)=P(k1 V...V kn)
P(AvB)=P(A)+P(B)— P(AB)
P(AvBvC)=P(A)+P(B)+P(C)-P(AB) - P(BC)+ P(ABC)
... (inclusion exclusion formula)
P (k1 A k2) may be:

@ 0, if k1, ko are inconsistent

o P(k1)P(ky2) if they are independent (no common grounding C6)
@ In general, we have to count only once repeated atomic choices

© ©6 6 6 ¢ ¢

()

If K is mutually incompatible P(x; A ... A kj) =0
P(K)=P(k1)+ ...+ P(kn)

©

F. Riguzzi (ENDIF) Probabilistic Logic Languages 31/62

Set of Composite Choices

@ Two set K; and K, of finite composite choices may correspond to
the same set of worlds: wg, = wk,

Lemma ([Poole, 2000])
Given a finite set K of finite composite choices, there exists a finite set
K’ of finite composite choices that is mutually exclusive and such that

WK = WK!’.

F. Riguzzi (ENDIF) Probabilistic Logic Languages 32/62

Probability Measure

Lemma ([Poole, 2000])

If K and K’ are both mutually exclusive sets of composite choices such
that wx = wk, then P(K) = P(K’)

o Q = {wk |K is afinite set of finite composite choices}
@ Qs an algebra

Definition
2 —[0,1]is
p(w) = P(K)
for w € Q where K is a mutually exclusive finite set of finite composite
choices such that wx = w.

v

F. Riguzzi (ENDIF) Probabilistic Logic Languages 33/62

Probability Measure

@ . satisfies the finite additivity version of Kolmogorov probability

axioms
Q u(w)>0forallweQ
Q uw)=1

Q winwy=0— p(wrUwy) = p(wr) + p(ws) forall wy € Q,w, € Q
@ So p is a probability measure

F. Riguzzi (ENDIF) Probabilistic Logic Languages 34/62

Probability of a Query

@ Given a query Q, a composite choice « is an explanation for Q if
YW ew, WEQ

@ A set K of composite choices is covering wrt Q if every world in
which Q is true belongs to wg

Definition
P(Q) = u({wlw € Wr,w = Q}) J

@ If Q has a finite set of finite explanations that is covering, P(Q) is
well-defined

F. Riguzzi (ENDIF) Probabilistic Logic Languages 35/62

Example Program (ICL)

sneezing(X) <« flu(X), flu_sneezing(X).

sneezing(X) < hay_fever(X), hay_fever_sneezing(X).
flu(bob).

hay _fever (bob).

C: = disjoint([flu_sneezing(X) : 0.7, null : 0.3]).

C, = disjoint([hay_fever_sneezing(X) : 0.8, null : 0.2]).

@ Goal sneezing(bob)
@ K1 = {(Cl, {X/bOb}, 1)}
® 2 = {(C1.{X/bob},2),(Cz, {X /bob}, 1)}

@ K = {k1, k2 } mutually exclusive finite set of finite explanations that
are covering for sneezing(bob)

@ P(Q) =P(r1) + P(s2) =0.7+0.3-0.8 = 0.94

F. Riguzzi (ENDIF) Probabilistic Logic Languages 36/62

Functions Symbols in ICL and PRISM

@ The probability is well defined provided that the query has a finite
set of finite explanations that are covering

@ In PRISM this is explicitly required
@ In ICL the program is required to be acyclic

@ What conditions can we impose on the program so that these
requirements are met?

F. Riguzzi (ENDIF) Probabilistic Logic Languages 37/62

Conditions

@ Acyclic programs
@ Modularly acyclic program

@ Extended to PLP by requiring that each world is acyclic, modularly
acyclic [Riguzzi, 2009].

@ New conditions: dynamic stratification, bounded term size,... ?

F. Riguzzi (ENDIF) Probabilistic Logic Languages 38/62

Conversion to Bayesian Networks

@ PLP can be converted to Bayesian networks
@ Conversion foran LPAD T

@ For each atom A in Hy a binary variable A

@ For each clause C; in the grounding of T

Hi:p1V...VHy:pn < Byg,...Bp,—Cyq,...,2C

a variable CH; with B, ...,Bm,Cq,...,C; as parents and Hy, .. .,
Hn and null as values
@ The CPT of CH; is

. [Bi=1,....Bn=1C,=0,....C,=0] ...
CH,=H; | 0.0 P 0.0

CHi =H, |00 Pn 0.0
CH =null | 1.0 1->0,pi 1.0 &

F. Riguzzi (ENDIF) Probabilistic Logic Languages 39/62

Conversion to Bayesian Networks

@ Each variable A corresponding to atom A has as parents all the

variables CH; of clauses C; that have A in the head.

@ The CPT for A is:

at least one parent equal to A

remaining columns

1.0

0.0

Il
ol

0.0

1.0

F. Riguzzi (ENDIF) Probabilistic Logic Languages

40/62

Conversion to Bayesian Networks

Conversion to Bayesian Networks

C, = x1:04vx2:0.6.
C, = x2:01vx3:0.9.
C; = x4:06Vvx5:0.4«+ x1.
Cs = x5:0.4+« x2,x3.

Cs = x6:0.3Vvx7:0.2<+ x2,x5.
CH1,CH, | x1,x2 | x1,x3 | x2,x2 | x2,x3
x2=1 1.0 0.0 1.0 1.0
x2=0 0.0 1.0 0.0 0.0

x2,X5 tt t,f ft f.f
CHs=x6 | 0.3 | 0.0 | 0.0 | 0.0
CHs=x7 | 02| 0.0 | 0.0]| 0.0
CHs=null | 05| 1.0 | 1.0 | 1.0

F. Riguzzi (ENDIF)

Probabilistic Logic Languages

41/62

Related Languages

@ CP-logic [Vennekens et al., 2009]
@ P-log [C.Baral et al., 2009]

F. Riguzzi (ENDIF) Probabilistic Logic Languages

42 /62

CP-logic

©

Syntactically equal to LPADs
Aim: modeling causation

Semantics defined in term of a tree representing a probabilistic
process

Each valid CP-theory is a valid LPAD with the same meaning
There are LPADs that are not valid CP-theories

¢ ©

¢ ©

p<«r. q<«r.
r < —p. r < —p.
r < —q. r< —q.
M={r,p} M={rq}

No process satisfying temporal precedence: a rule cannot fire
until the part of the process that determines whether its
precondition holds is fully finished. @

F. Riguzzi (ENDIF) Probabilistic Logic Languages 43 /62

p:05vQg:05«<«r.
r < —p.
r < —Q.

©

P-log

o
o

*]

Based on Answer Set Programming (ASP).

A P-log program T defines a distribution over the stable models of
a related Answer Set program «(T).

The probability of a query is then obtained by marginalization
bool ={t,f}.

node={a, b,c,...}.

edge: node, node -> bool .

#domai n node(X), node(Y), node(2).

path(X Y):- edge(X Y,t).

path(X Y):- edge(X Zt), path(zZY).

[r(a,b)] randon(edge(a,b)).

[r(a,b)] pr(edge(a,b,t))=4/10.

Disjunctions allowed: some models are ruled out
The distribution obtained by multiplication is not normalized.
The probability of each stable model must be normalized. &

F. Riguzzi (ENDIF) Probabilistic Logic Languages 44/ 62

Knowledge-Based Model Construction

@ The probabilistic logic theory is used directly as a template for
generating an underlying complex graphical model
[Breese et al., 1994].

@ Languages: CLP(BN), Markov Logic

F. Riguzzi (ENDIF) Probabilistic Logic Languages 45/ 62

CLP(BN)

@ Variables in a CLP(BN) program can be random
@ Their values, parents and CPTs are defined with the program

@ To answer a query with uninstantiated random variables, CLP(BN)
builds a BN and performs inference

@ The answer will be a probability distribution for the variables

@ Probabilistic dependencies expressed by means of CLP
constraints

{ Var
{ Var

Function with p(Values, Dist) }
Function with p(Values, Dist, Parents) }

F. Riguzzi (ENDIF) Probabilistic Logic Languages 46/ 62

CLP(BN)

course difficulty(Key, Df) :-

{ Df =difficulty(Key) with p([h,mI],
[0.25, 0.50, 0.25]) }.

student _intelligence(Key, Int) :-

{ Int = intelligence(Key) with p([h, m 1],
[0.5,0.4,0.1]) }.

registration(r0, cl6, s0).
registration(rl,clo,s0).
registration(r2,c57,s0).
registration(r3,c22,s1).

F. Riguzzi (ENDIF) Probabilistic Logic Languages 47/ 62

CLP(BN)

regi stration_grade(Key, Gade):-
regi strati on(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student _intelligence(SKey, Int),
{ Grade = grade(Key) with

p([a, b,c,d],
% h hm hl mh mm ml | h I m | |
[0.20,0.70,0.85,0.10,0. 20, 0. 50, 0.01, 0. 05, 0. 10,
0. 60, 0. 25,0. 12, 0. 30, 0. 60, 0. 35,0. 04, 0. 15, 0. 40,
0. 15, 0. 04, 0. 02, 0. 40, 0. 15, 0. 12, 0. 50, 0. 60, 0. 40,
0. 05, 0.01, 0. 01, 0. 20, 0. 05, 0.03,0.45,0.20,0.10],
[Int,Df]))

F. Riguzzi (ENDIF) Probabilistic Logic Languages 48/ 62

CLP(BN)

?- [school _32].
?- registration_grade(r0,Q.
p(G=a) =0. 4115,
p(G=b) =0. 356,
p(G=c) =0. 16575,
p(G=d) =0. 06675 ?
?- registration_grade(r0, G,
student _intel | i gence(sO0,h).
p(G=a) =0. 6125,
p(G=b) =0. 305,
p(G=c) =0. 0625,
p(G=d)=0.02 ?

F. Riguzzi (ENDIF) Probabilistic Logic Languages

49 /62

Knowledge-Based Model Construction

Markov Networks

@ Undirected graphical models

@ Each clique in the graph is associated with a potential ¢;

[T, ¢i(xi) Smoking | Cancer | ¢i(V,T)
P(x) = 7 false false 4.5
false true 4.5
7Z = ®i (i) true false 2.7
zlel_[a true true 4.5 &

F. Riguzzi (ENDIF) Probabilistic Logic Languages 50/62

Markov Networks

@ If all the potential are strictly positive, we can use a log-linear
model

P(x) = exp(>_; wifi(xi))

Z
z=> ITa0x)

1 if =SmokingvCancer
0 otherwise

w; =15 @
F. Riguzzi (ENDIF) Probabilistic Logic Languages 51/62

fi(Smoking, Cancer) = {

Markov Logic

@ A Markov Logic Network (MLN) is a set of pairs (F,w) where F is
a formula in first-order logic w is a real number
@ Together with a set of constants, it defines a Markov network with

@ One node for each grounding of each predicate in the MLN
@ One feature for each grounding of each formula F in the MLN, with
the corresponding weight w

F. Riguzzi (ENDIF) Probabilistic Logic Languages 52/62

Markov Logic Example

1.5 Vx Smokes(x) — Cancer(x)
1.1 Vx,y Friends(x,y) — (Smokes(x) <> Smokes(y))

@ Constants Anna (A) and Bob (B)

F. Riguzzi (ENDIF) Probabilistic Logic Languages 53/62

Markov Networks

@ Probability of an interpretation x

P(x) = EXp(Zi;Vini(Xi))

@ n;(x;) = number of true groundings of formula F; in x

@ Typed variables and constants greatly reduce size of ground
Markov net

F. Riguzzi (ENDIF) Probabilistic Logic Languages 54 /62

Reasoning Tasks

@ Inference: we want to compute the probability or an explanation of
a query given the model and, possibly, some evidence

@ Weight learning: we know the structural part of the model (the
logic formulas) but not the numeric part (the weights) and we want
to infer the weights from data

@ Structure learning we want to infer both the structure and the
weights of the model from data

F. Riguzzi (ENDIF) Probabilistic Logic Languages 55/62

Inference Tasks

@ Computing the (conditional) probability of a ground query given
the model and, possibly, some evidence

@ Finding the most likely state of a set of query atoms given the
evidence (Maximum A Posteriori/Most Probable Explanation
inference)

@ In Hidden Markov Models, the most likely state of the state
variables given the observations is the Viterbi path, its probability
the Viterbi probability

@ Finding the (k) most probable explanation(s)
@ Finding the distribution of variable substitutions for a non-ground
query.
@ Finding the most probable variable substitution for a non-ground
query.
@

F. Riguzzi (ENDIF) Probabilistic Logic Languages 56 /62

Weight Learning

@ Given
@ model: a probabilistic logic model with unknown parameters
@ data: a set of interpretations
@ Find the values of the parameters that maximize the probability of
the data given the model
@ Discriminative learning: maximize the conditional probability of a
set of outputs (e.g. ground instances for a predicate) given a set
of inputs
@ Alternatively, the data are queries for which we know the
probability: minimize the error in the probability of the queries that
is returned by the model

F. Riguzzi (ENDIF) Probabilistic Logic Languages 57162

Structure Learning

@ Given
@ language bias: a specification of the search space
o data: a set of interpretations
@ Find the formulas and the parameters that maximize the likelihood
of the data given the model
@ Discriminative learning: again maximize the conditional likelihood
of a set of outputs given a set of inputs

F. Riguzzi (ENDIF) Probabilistic Logic Languages 58/62

References |

@ Breese, J. S., Goldman, R. P, and Wellman, M. P. (1994).
Introduction to the special section on knowledge-based
construction of probabilistic and decision models.

IEEE Transactions On Systems, Man and Cybernetics,
24(11):1577-1579.

@ C.Baral, Gelfond, M., and Rushton, N. (2009).
Probabilistic reasoning with answer sets.
The. Pra. Log. Program., 9(1):57-144.

[@ Dantsin, E. (1991).
Probabilistic logic programs and their semantics.
In Russian Conference on Logic Programming, volume 592 of
LNCS, pages 152-164. Springer.

F. Riguzzi (ENDIF) Probabilistic Logic Languages 59/62

References Il

[@ De Raedt, L., Kimmig, A., and Toivonen, H. (2007).
Problog: A probabilistic prolog and its application in link discovery.
In International Joint Conference on Artificial Intelligence, pages
2462-2467.

@ Poole, D. (1993).
Logic programming, abduction and probability - a top-down
anytime algorithm for estimating prior and posterior probabilities.
New Gener. Comput., 11(3):377-400.

@ Poole, D. (1997).
The Independent Choice Logic for modelling multiple agents under
uncertainty.
Artif. Intell., 94(1-2):7-56.

F. Riguzzi (ENDIF) Probabilistic Logic Languages 60 /62

_ReasoningTasks _
References llI

@ Poole, D. (2000).
Abducing through negation as failure: stable models within the
independent choice logic.
J. Log. Program., 44(1-3):5-35.

@ Riguzzi, F. (2009).
Extended semantics and inference for the Independent Choice
Logic.
Logic Journal of the IGPL.
to appear.

[§ Sato, T. (1995).
A statistical learning method for logic programs with distribution
semantics.
In International Conference on Logic Programming, pages
715-729. L

F. Riguzzi (ENDIF) Probabilistic Logic Languages 61/62

References IV

@ Vennekens, J., Denecker, M., and Bruynooghe, M. (2009).
Cp-logic: A language of causal probabilistic events and its relation
to logic programming.

TPLP, 9(3):245-308.

[@ Vennekens, J., Verbaeten, S., and Bruynooghe, M. (2004).
Logic programs with annotated disjunctions.
In International Conference on Logic Programming, volume 3131
of LNCS, pages 195-209. Springer.

F. Riguzzi (ENDIF) Probabilistic Logic Languages 62 /62

	Probabilistic Logic Languages
	Distribution Semantics
	Expressive Power
	Distribution Semantics with Function Symbols
	Conversion to Bayesian Networks
	Related Languages
	Knowledge-Based Model Construction
	Reasoning Tasks

