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Probabilistic Logic Languages

Combining Logic and Probability

Useful to model domains with complex and uncertain relationships
among entities

Many approaches proposed in the areas of Logic Programming,
Uncertainty in AI, Machine Learning, Databases

Logic Programming: Distribution Semantics [Sato, 1995]

A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)

The distribution is extended to a joint distribution over worlds and
interpretations (or queries)

The probability of a query is obtained from this distribution
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Probabilistic Logic Languages

Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

Probabilistic Logic Programs [Dantsin, 1991]

Probabilistic Horn Abduction [Poole, 1993], Independent Choice
Logic (ICL) [Poole, 1997]

PRISM [Sato, 1995]

Logic Programs with Annotated Disjunctions (LPADs)
[Vennekens et al., 2004]

ProbLog [De Raedt et al., 2007]

They differ in the way they define the distribution over logic
programs
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Probabilistic Logic Languages

Independent Choice Logic

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

disjoint([flu_sneezing(X ) : 0.7, null : 0.3]).
disjoint([hay_fever_sneezing(X ) : 0.8, null : 0.2]).

Distributions over facts by means of disjoint statements

null does not appear in the body of any rule

Worlds obtained by selecting one atom from every grounding of
each disjoint statement
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Probabilistic Logic Languages

PRISM

sneezing(X )← flu(X ),msw(flu_sneezing(X ), 1).
sneezing(X )← hay_fever(X ),msw(hay_fever_sneezing(X ), 1).
flu(bob).
hay_fever(bob).

values(flu_sneezing(_X ), [1, 0]).
values(hay_fever_sneezing(_X ), [1, 0]).
: −set_sw(flu_sneezing(_X ), [0.7, 0.3]).
: −set_sw(hay_fever_sneezing(_X ), [0.8, 0.2]).

Distributions over msw facts (random switches)

Worlds obtained by selecting one value for every grounding of
each msw statement
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Probabilistic Logic Languages

Logic Programs with Annotated Disjunctions

sneezing(X ) : 0.7 ∨ null : 0.3← flu(X ).
sneezing(X ) : 0.8 ∨ null : 0.2← hay_fever(X ).
flu(bob).
hay_fever(bob).

Distributions over the head of rules

null does not appear in the body of any rule

Worlds obtained by selecting one atom from the head of every
grounding of each clause
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Probabilistic Logic Languages

ProbLog

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
0.7 :: flu_sneezing(X ).
0.8 :: hay_fever_sneezing(X ).

Distributions over facts

Worlds obtained by selecting or not every grounding of each
probabilistic fact
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Distribution Semantics

Distribution Semantics

Case of no function symbols: finite Herbrand universe, finite set of
groundings of each disjoint statement/switch/clause
Atomic choice: selection of the i-th atom for grounding Cθ of
disjoint statement/switch/clause C

represented with the triple (C, θ, i)
a ProbLog fact p :: F is interpreted as F : p ∨ null : 1− p.

Example C1 = disjoint([flu_sneezing(X ) : 0.7, null : 0.3]),
(C1, {X/bob}, 1)

Composite choice κ: consistent set of atomic choices

κ = {(C1, {X/bob}, 1), (C1, {X/bob}, 2)} not consistent

The probability of composite choice κ is

P(κ) =
∏

(C,θ,i)∈κ

P0(C, i)
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Distribution Semantics

Distribution Semantics

Selection σ: a total composite choice (one atomic choice for every
grounding of each disjoint statement/clause)

σ = {(C1, {X/bob}, 1), (C2, {X/bob}, 1)}

C1 = disjoint([flu_sneezing(X ) : 0.7, null : 0.3]).
C2 = disjoint([hay_fever_sneezing(X ) : 0.8, null : 0.2]).

A selection σ identifies a logic program wσ called world

The probability of wσ is P(wσ) = P(σ) =
∏

(C,θ,i)∈σ P0(C, i)

Finite set of wrolds: WT = {w1, . . . ,wm}

P(w) distribution over worlds:
∑

w∈WT
P(w) = 1
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Distribution Semantics

Distribution Semantics

Herbrand base HT = {A1, . . . ,An}

Herbrand interpretation I = {a1, . . . , an}

P(I|w) = 1 if I if a model of w and 0 otherwise

P(I) =
∑

w P(I,w) =
∑

w P(I|w)P(w) =
∑

w ,I model of w P(w)

The distribution over interpretations can be seen as a joint
distribution P(A1, . . . ,An) over the atoms of HT

Query: (Aj = true) = aj

P(aj) =
∑

ai ,i 6=j P(a1, . . . , am) =
∑

I,aj∈I P(I)

P(aj) =
∑

I,aj∈I
∑

w∈W ,I model of w P(w)
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Distribution Semantics

Distribution Semantics

Alternatively,

P(aj |w) = 1 if Aj is true in w and 0 otherwise

P(aj) =
∑

w P(aj ,w) =
∑

w P(aj |w)P(w) =
∑

w |=Aj
P(w)
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Distribution Semantics

Example Program (ICL)

4 worlds
sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

flu_sneezing(bob). null.
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

flu_sneezing(bob). null.
null. null.
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds

P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Distribution Semantics

Example Program (LPAD)

4 worlds
sneezing(bob)← flu(bob). null ← flu(bob).
sneezing(bob)← hay_fever(bob). sneezing(bob)← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

sneezing(bob)← flu(bob). null ← flu(bob).
null ← hay_fever(bob). null ← hay_fever(bob).
flu(bob). flu(bob).
hay_fever(bob). hay_fever(bob).
P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds

P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Distribution Semantics

Example Program (ProbLog)

4 worlds
sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).

flu_sneezing(bob).
hay_fever_sneezing(bob). hay_fever_sneezing(bob).
P(w1) = 0.7× 0.8 P(w2) = 0.3× 0.8

flu_sneezing(bob).

P(w3) = 0.7× 0.2 P(w4) = 0.3× 0.2

sneezing(bob) is true in 3 worlds

P(sneezing(bob)) = 0.7× 0.8 + 0.3× 0.8 + 0.7× 0.2 = 0.94
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Distribution Semantics

Examples

Throwing coins

heads(Coin):1/2 ; tails(Coin):1/2 :-
toss(Coin),\+biased(Coin).

heads(Coin):0.6 ; tails(Coin):0.4 :-
toss(Coin),biased(Coin).

fair(Coin):0.9 ; biased(Coin):0.1.
toss(coin).

Russian roulette with two guns

death:1/6 :- pull_trigger(left_gun).
death:1/6 :- pull_trigger(right_gun).
pull_trigger(left_gun).
pull_trigger(right_gun).
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Distribution Semantics

Examples

Mendel’s inheritance rules for pea plants

color(X,purple):-cg(X,_A,p).
color(X,white):-cg(X,1,w),cg(X,2,w).
cg(X,1,A):0.5 ; cg(X,1,B):0.5 :-

mother(Y,X),cg(Y,1,A),cg(Y,2,B).
cg(X,2,A):0.5 ; cg(X,2,B):0.5 :-

father(Y,X),cg(Y,1,A),cg(Y,2,B).

Probability of paths

path(X,X).
path(X,Y):-path(X,Z),edge(Z,Y).
edge(a,b):0.3.
edge(b,c):0.2.
edge(a,c):0.6.

F. Riguzzi (ENDIF) Probabilistic Logic Languages 17 / 62



Distribution Semantics

Encoding Bayesian Networks

Burglary Earthquake

Alarm

burg t f
0.1 0.9

earthq t f
0.2 0.8

alarm t f
b=t,e=t 1.0 0.0
b=t,e=f 0.8 0.2
b=f,e=t 0.8 0.2
b=f,e=f 0.1 0.9

burg(t):0.1 ; burg(f):0.9.
earthq(t):0.2 ; earthq(f):0.8.
alarm(t):-burg(t),earthq(t).
alarm(t):0.8 ; alarm(f):0.2:-burg(t),earthq(f).
alarm(t):0.8 ; alarm(f):0.2:-burg(f),earthq(t).
alarm(t):0.1 ; alarm(f):0.9:-burg(f),earthq(f).
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Expressive Power

Expressive Power

All these languages have the same expressive power

LPADs have the most general syntax

There are transformations that can convert each one into the
others

ICL, PRISM: direct mapping

ICL, PRISM to LPAD: direct mapping
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Expressive Power

LPADs to ICL

Clause Ci with variables X

H1 : p1 ∨ . . . ∨ Hn : pn ← B.

is translated into

H1 ← B, choicei,1(X ).
...
Hn ← B, choicei,n(X ).

disjoint([choicei,1(X ) : p1, . . . , choicei,n(X ) : pn]).
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Expressive Power

LPADs to ProbLog

Clause Ci with variables X

H1 : p1 ∨ . . . ∨ Hn : pn ← B.

is translated into

H1 ← B, fi,1(X ).

H2 ← B, not(fi,1(X )), fi,2(X ).
...
Hn ← B, not(fi,1(X )), . . . , not(fi,n−1(X )).

π1 :: fi,1(X ).
...
πn−1 :: fi,n−1(X ).

where π1 = p1, π2 = p2
1−π1

, π3 = p3
(1−π1)(1−π2)

, . . .

In general πi =
pi∏i−1

j=1 (1−πj )

F. Riguzzi (ENDIF) Probabilistic Logic Languages 21 / 62



Expressive Power

Combining Rule

These languages combine independent evidence for a ground
atom coming from different clauses with a noisy-or combining rule

If atom A can be derived with probability p1 from a rule and with
probability p2 from a different rule and the two derivations are
independent, then P(A) = p1 + p2 − p1p2

Example

sneezing(X ) : 0.7 ∨ null : 0.3← flu(X ).
sneezing(X ) : 0.8 ∨ null : 0.2← hay_fever(X ).
flu(bob).
hay_fever(bob).

P(sneezing(bob)) = 0.7 + 0.8− 0.7× 0.8 = 0.94

Particularly useful for modeling independent causes for the same
effect
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Expressive Power

Negation

How to deal with negation?

Each world should have a single total model because we consider
two-valued interpretations

We want to model uncertainty only by means of random choices

This can be required explicitly: each world should have a total well
founded model/single stable model (sound programs)
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Distribution Semantics with Function Symbols

Function Symbols

What if function symbols are present?

Infinite, countable Herbrand universe

Infinite, countable Herbrand base

Infinite, countable grounding of the program T

Uncountable WT

Each world infinite, countable

P(w) = 0

Semantics not well-defined
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Distribution Semantics with Function Symbols

Game of dice

on(0,1):1/3 ; on(0,2):1/3 ; on(0,3):1/3.
on(T,1):1/3 ; on(T,2):1/3 ; on(T,3):1/3 :-

T1 is T-1, T1>=0, on(T1,F), \+ on(T1,3).
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Distribution Semantics with Function Symbols

Hidden Markov Models

. . . X(t − 1) X(t) X(t + 1) . . .

Y (t − 1) Y (t) Y (t + 1)

hmm(S,O):-hmm(q1,[],S,O).
hmm(end,S,S,[]).
hmm(Q,S0,S,[L|O]):-

Q\= end,
next_state(Q,Q1,S0),
letter(Q,L,S0),
hmm(Q1,[Q|S0],S,O).

next_state(q1,q1,_S):1/3;next_state(q1,q2_,_S):1/3;
next_state(q1,end,_S):1/3.

next_state(q2,q1,_S):1/3;next_state(q2,q2,_S):1/3;
next_state(q2,end,_S):1/3.

letter(q1,a,_S):0.25;letter(q1,c,_S):0.25;
letter(q1,g,_S):0.25;letter(q1,t,_S):0.25.

letter(q2,a,_S):0.25;letter(q2,c,_S):0.25;
letter(q2,g,_S):0.25;letter(q2,t,_S):0.25.
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Distribution Semantics with Function Symbols

Distribution Semantics with Function Symbols

Semantics proposed for ICL and PRISM, applicable also to the
other languages

Definition of a probability measure µ over WT

µ assign a probability to every element of an algebra Ω of subsets
of WT , i.e. a set of subsets closed under union and
complementation

The algebra Ω is the set of sets of worlds identified by a finite set
of finite composite choices
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Distribution Semantics with Function Symbols

Composite Choices

Set of worlds compatible with κ: ωκ = {wσ ∈WT |κ ⊆ σ}

For programs without function symbols P(κ) =
∑

w∈ωκ

P(w)

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
C1 = disjoint([flu_sneezing(X ) : 0.7, null : 0.3]).
C2 = disjoint([hay_fever_sneezing(X ) : 0.8, null : 0.2]).

κ = {(C1, {X/bob}, 1)}, ωκ =

flu_sneezing(bob). flu_sneezing(bob).
hay_fever_sneezing(bob). null.
P(w1) = 0.7× 0.8 P(w2) = 0.7× 0.2

P(κ) = 0.7 = P(w1) + P(w2)
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Distribution Semantics with Function Symbols

Sets of Composite Choices

Set of composite choices K

Set of worlds compatible with K : ωK =
⋃

κ∈K ωκ

Two composite choices κ1 and κ2 are exclusive if their union is
inconsistent

κ1 = {(C1, {X/bob}, 1)},
κ2 = {(C1, {X/bob}, 2), (C2, {X/bob}, 1)}

κ1 ∪ κ2 inconsistent

A set K of composite choices is mutually exclusive if for all
κ1 ∈ K , κ2 ∈ K , κ1 6= κ2 ⇒ κ1 and κ2 are exclusive.
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Distribution Semantics with Function Symbols

Sets of Composite Choices

Case of no functions symbols
∑

κ∈K P(κ) 6=
∑

w∈ωK
P(w)

κ1 = {(C1, {X/bob}, 1)}, κ2 = {(C2, {X/bob}, 1)}, K = {κ1, κ2}

P(κ1) = 0.7, P(κ2) = 0.8,
∑

w∈ωK
P(w) = 0.94

If K is mutually incompatible,
∑

κ∈K P(κ) =
∑

w∈ωK
P(w)

κ′2 = {(C1, {X/bob}, 2), (C2, {X/bob}, 1)}, K ′ = {κ1, κ
′
2}

P(κ′2) = 0.3 · 0.8 = 0.24

Probability of mutually exclusive set K of composite choices:
P(K ) =

∑

κ∈K P(κ)
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Distribution Semantics with Function Symbols

Sets of Composite Choices

K = {κ1, . . . , κn}

P(K ) = P(κ1 ∨ . . . ∨ κn)

P(A ∨ B) = P(A) + P(B)− P(AB)

P(A ∨ B ∨C) = P(A) + P(B) + P(C)− P(AB)− P(BC) + P(ABC)

... (inclusion exclusion formula)
P(κ1 ∧ κ2) may be:

0, if κ1, κ2 are inconsistent
P(κ1)P(κ2) if they are independent (no common grounding Cθ)
In general, we have to count only once repeated atomic choices

If K is mutually incompatible P(κi ∧ . . . ∧ κj) = 0

P(K ) = P(κ1) + . . .+ P(κn)

F. Riguzzi (ENDIF) Probabilistic Logic Languages 31 / 62



Distribution Semantics with Function Symbols

Set of Composite Choices

Two set K1 and K2 of finite composite choices may correspond to
the same set of worlds: ωK1 = ωK2

Lemma ([Poole, 2000])

Given a finite set K of finite composite choices, there exists a finite set
K ′ of finite composite choices that is mutually exclusive and such that
ωK = ωK ′ .
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Distribution Semantics with Function Symbols

Probability Measure

Lemma ([Poole, 2000])

If K and K ′ are both mutually exclusive sets of composite choices such
that ωK = ωK ′ , then P(K ) = P(K ′)

Ω = {ωK |K is a finite set of finite composite choices}

Ω is an algebra

Definition

µ : Ω→ [0, 1] is
µ(ω) = P(K )

for ω ∈ Ω where K is a mutually exclusive finite set of finite composite
choices such that ωK = ω.
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Distribution Semantics with Function Symbols

Probability Measure

µ satisfies the finite additivity version of Kolmogorov probability
axioms

1 µ(ω) ≥ 0 for all ω ∈ Ω
2 µ(W ) = 1
3 ω1 ∩ ω2 = ∅ → µ(ω1 ∪ ω2) = µ(ω1) + µ(ω2) for all ω1 ∈ Ω, ω2 ∈ Ω

So µ is a probability measure
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Distribution Semantics with Function Symbols

Probability of a Query

Given a query Q, a composite choice κ is an explanation for Q if

∀w ∈ ωκ w |= Q

A set K of composite choices is covering wrt Q if every world in
which Q is true belongs to ωK

Definition

P(Q) = µ({w |w ∈WT ,w |= Q})

If Q has a finite set of finite explanations that is covering, P(Q) is
well-defined
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Distribution Semantics with Function Symbols

Example Program (ICL)

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ), hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
C1 = disjoint([flu_sneezing(X ) : 0.7, null : 0.3]).
C2 = disjoint([hay_fever_sneezing(X ) : 0.8, null : 0.2]).

Goal sneezing(bob)

κ1 = {(C1, {X/bob}, 1)}

κ2 = {(C1, {X/bob}, 2), (C2, {X/bob}, 1)}

K = {κ1, κ2} mutually exclusive finite set of finite explanations that
are covering for sneezing(bob)

P(Q) = P(κ1) + P(κ2) = 0.7 + 0.3 · 0.8 = 0.94
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Distribution Semantics with Function Symbols

Functions Symbols in ICL and PRISM

The probability is well defined provided that the query has a finite
set of finite explanations that are covering

In PRISM this is explicitly required

In ICL the program is required to be acyclic

What conditions can we impose on the program so that these
requirements are met?
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Distribution Semantics with Function Symbols

Conditions

Acyclic programs

Modularly acyclic program

Extended to PLP by requiring that each world is acyclic, modularly
acyclic [Riguzzi, 2009].

New conditions: dynamic stratification, bounded term size,... ?
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Conversion to Bayesian Networks

Conversion to Bayesian Networks

PLP can be converted to Bayesian networks
Conversion for an LPAD T
For each atom A in HT a binary variable A
For each clause Ci in the grounding of T

H1 : p1 ∨ . . . ∨ Hn : pn ← B1, . . .Bm,¬C1, . . . ,¬Cl

a variable CHi with B1, . . . ,Bm,C1, . . . ,Cl as parents and H1, . . .,
Hn and null as values
The CPT of CHi is

. . . B1 = 1, . . . ,Bm = 1,C1 = 0, . . . ,Cl = 0 . . .
CHi = H1 0.0 p1 0.0

. . .
CHi = Hn 0.0 pn 0.0
CHi = null 1.0 1−

∑n
i=1 pi 1.0
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Conversion to Bayesian Networks

Conversion to Bayesian Networks

Each variable A corresponding to atom A has as parents all the
variables CHi of clauses Ci that have A in the head.

The CPT for A is:

at least one parent equal to A remaining columns
A = 1 1.0 0.0
A = 0 0.0 1.0
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Conversion to Bayesian Networks

Conversion to Bayesian Networks

C1 = x1 : 0.4 ∨ x2 : 0.6.
C2 = x2 : 0.1 ∨ x3 : 0.9.
C3 = x4 : 0.6 ∨ x5 : 0.4← x1.
C4 = x5 : 0.4← x2, x3.
C5 = x6 : 0.3 ∨ x7 : 0.2← x2, x5.

CH1,CH2 x1, x2 x1, x3 x2, x2 x2, x3
x2 = 1 1.0 0.0 1.0 1.0
x2 = 0 0.0 1.0 0.0 0.0

x2, x5 t,t t,f f,t f,f
CH5 = x6 0.3 0.0 0.0 0.0
CH5 = x7 0.2 0.0 0.0 0.0
CH5 = null 0.5 1.0 1.0 1.0
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Related Languages

Related Languages

CP-logic [Vennekens et al., 2009]

P-log [C.Baral et al., 2009]
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Related Languages

CP-logic

Syntactically equal to LPADs

Aim: modeling causation

Semantics defined in term of a tree representing a probabilistic
process

Each valid CP-theory is a valid LPAD with the same meaning

There are LPADs that are not valid CP-theories

p : 0.5 ∨ q : 0.5← r .
r ← ¬p.
r ← ¬q.

p ← r . q ← r .
r ← ¬p. r ← ¬p.
r ← ¬q. r ← ¬q.
M = {r , p} M = {r , q}

No process satisfying temporal precedence: a rule cannot fire
until the part of the process that determines whether its
precondition holds is fully finished.
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Related Languages

P-log

Based on Answer Set Programming (ASP).

A P-log program T defines a distribution over the stable models of
a related Answer Set program π(T ).
The probability of a query is then obtained by marginalization
bool={t,f}.
node={a,b,c,...}.
edge: node,node -> bool.
#domain node(X),node(Y),node(Z).
path(X,Y):- edge(X,Y,t).
path(X,Y):- edge(X,Z,t), path(Z,Y).
[r(a,b)] random(edge(a,b)).
[r(a,b)] pr(edge(a,b,t))=4/10.
......

Disjunctions allowed: some models are ruled out

The distribution obtained by multiplication is not normalized.

The probability of each stable model must be normalized.
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Knowledge-Based Model Construction

Knowledge-Based Model Construction

The probabilistic logic theory is used directly as a template for
generating an underlying complex graphical model
[Breese et al., 1994].

Languages: CLP(BN), Markov Logic
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Knowledge-Based Model Construction

CLP(BN)

Variables in a CLP(BN) program can be random

Their values, parents and CPTs are defined with the program

To answer a query with uninstantiated random variables, CLP(BN)
builds a BN and performs inference

The answer will be a probability distribution for the variables

Probabilistic dependencies expressed by means of CLP
constraints

{ Var = Function with p(Values, Dist) }
{ Var = Function with p(Values, Dist, Parents) }
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Knowledge-Based Model Construction

CLP(BN)

....
course_difficulty(Key, Dif) :-
{ Dif = difficulty(Key) with p([h,m,l],
[0.25, 0.50, 0.25]) }.
student_intelligence(Key, Int) :-
{ Int = intelligence(Key) with p([h, m, l],
[0.5,0.4,0.1]) }.
....
registration(r0,c16,s0).
registration(r1,c10,s0).
registration(r2,c57,s0).
registration(r3,c22,s1).
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Knowledge-Based Model Construction

CLP(BN)

....
registration_grade(Key, Grade):-
registration(Key, CKey, SKey),
course_difficulty(CKey, Dif),
student_intelligence(SKey, Int),
{ Grade = grade(Key) with
p([a,b,c,d],
%h h h m h l m h m m m l l h l m l l
[0.20,0.70,0.85,0.10,0.20,0.50,0.01,0.05,0.10,
0.60,0.25,0.12,0.30,0.60,0.35,0.04,0.15,0.40,
0.15,0.04,0.02,0.40,0.15,0.12,0.50,0.60,0.40,
0.05,0.01,0.01,0.20,0.05,0.03,0.45,0.20,0.10 ],
[Int,Dif]))
}.
.....
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Knowledge-Based Model Construction

CLP(BN)

?- [school_32].
?- registration_grade(r0,G).

p(G=a)=0.4115,
p(G=b)=0.356,
p(G=c)=0.16575,
p(G=d)=0.06675 ?
?- registration_grade(r0,G),

student_intelligence(s0,h).
p(G=a)=0.6125,
p(G=b)=0.305,
p(G=c)=0.0625,
p(G=d)=0.02 ?
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Knowledge-Based Model Construction

Markov Networks

Undirected graphical models

Smoking Cancer

Asthma Cough

Each clique in the graph is associated with a potential φi

P(x) =
∏

i φi(xi)

Z

Z =
∑

x

∏

i

φi(xi)

Smoking Cancer φi(V ,T )
false false 4.5
false true 4.5
true false 2.7
true true 4.5
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Knowledge-Based Model Construction

Markov Networks

Smoking Cancer

Asthma Cough

If all the potential are strictly positive, we can use a log-linear
model

P(x) =
exp(

∑

i wi fi(xi))

Z

Z =
∑

x

∏

i

φi(xi)

fi(Smoking,Cancer) =
{

1 if ¬Smoking∨Cancer
0 otherwise

wi = 1.5
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Knowledge-Based Model Construction

Markov Logic

A Markov Logic Network (MLN) is a set of pairs (F ,w) where F is
a formula in first-order logic w is a real number
Together with a set of constants, it defines a Markov network with

One node for each grounding of each predicate in the MLN
One feature for each grounding of each formula F in the MLN, with
the corresponding weight w
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Knowledge-Based Model Construction

Markov Logic Example

1.5 ∀x Smokes(x)→ Cancer(x)
1.1 ∀x , y Friends(x , y)→ (Smokes(x)↔ Smokes(y))

Constants Anna (A) and Bob (B)

Friends(A,B)

Friends(A,A) Friends(B,B)

Friends(B,A)

Smokes(A) Smokes(B)

Cancer(A) Cancer(B)
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Knowledge-Based Model Construction

Markov Networks

Probability of an interpretation x

P(x) =
exp(

∑

i wini(xi))

Z

ni(xi) = number of true groundings of formula Fi in x

Typed variables and constants greatly reduce size of ground
Markov net
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Reasoning Tasks

Reasoning Tasks

Inference: we want to compute the probability or an explanation of
a query given the model and, possibly, some evidence

Weight learning: we know the structural part of the model (the
logic formulas) but not the numeric part (the weights) and we want
to infer the weights from data

Structure learning we want to infer both the structure and the
weights of the model from data
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Reasoning Tasks

Inference Tasks

Computing the (conditional) probability of a ground query given
the model and, possibly, some evidence
Finding the most likely state of a set of query atoms given the
evidence (Maximum A Posteriori/Most Probable Explanation
inference)

In Hidden Markov Models, the most likely state of the state
variables given the observations is the Viterbi path, its probability
the Viterbi probability

Finding the (k ) most probable explanation(s)

Finding the distribution of variable substitutions for a non-ground
query.

Finding the most probable variable substitution for a non-ground
query.
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Reasoning Tasks

Weight Learning

Given
model: a probabilistic logic model with unknown parameters
data: a set of interpretations

Find the values of the parameters that maximize the probability of
the data given the model

Discriminative learning: maximize the conditional probability of a
set of outputs (e.g. ground instances for a predicate) given a set
of inputs

Alternatively, the data are queries for which we know the
probability: minimize the error in the probability of the queries that
is returned by the model
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Reasoning Tasks

Structure Learning

Given
language bias: a specification of the search space
data: a set of interpretations

Find the formulas and the parameters that maximize the likelihood
of the data given the model

Discriminative learning: again maximize the conditional likelihood
of a set of outputs given a set of inputs
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