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Summary

● Conditional independence
● Definition of Bayesian network
● Inference
● Learning
● Markov networks

3

Domain Modeling

● We use a set of random variables to describe the 
domain of interest

● Example: home intrusion detection system, 
variables:

– Earthquake E, values e
1
=no, e

2
=moderate, e

3
=severe

– Burglary B, values: b
1
=no, b

2
=yes through door, b

3
=yes 

through window

– Alarm A, values a
1
=no, a

2
=yes

– Neighbor call N, values n
1
=no, n

2
=yes
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Inference

● We would like to answer the following questions
– What is the probability of a burglary through the door? 

(compute P(b
2
),  belief computation)

– What is the probability of a burglary through the door 
given that the neighbor called ? (compute P(b

2
|n

2
),  belief 

updating)
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Inference

– What is the probability of a burglary through the door 
given that there was a moderate earthquake and the 
neighbor called ? (compute P(b

2
|n

2
,e

2
), belief updating )

– What is the probability of a burglary through the door 
and of the alarm ringing given that there was a moderate 
earthquake and the neighbor called ? (compute P(a

2
,b

2
|

n
2
,e

2
), belief updating)

– What is the most likely value for burglary given that the 
neighbor called (argmax

b
 P(b|n

2
), belief revision)
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Types of Problems

● Diagnosis: P(cause|symptom)=?
● Prediction: P(symptom|cause)=?

● Classification: argmax
class 

P(class|data)
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Inference

● In general, we want to compute the probability    
P(q|e) 
– of a query q (assignment of values to a set of variables 

Q) 

– given the evidence e (assignment of values to a set of 
variables E) 
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Joint Probability Distribution

● The joint probability distribution (jpd) of a set of 
variables U is given by P(u) for all values u

● For our example
–  U={E,B,A,N}

– We have the jpd if we know P(u)=P(e,b,a,n) for all the 
possible values e, b, a, n.
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Inference

● If we know the jpd, we can answer all the possible 
queries:

Pq∣e=
Pq ,e
Pe 

=
∑x , X=U ∖Q ∖E

P x ,q ,e 

∑y ,Y=U ∖E
P y ,e
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Computational Cost

● If we have n binary variables (|U|=n), knowing the 
jpd requires storing O(2n) different values.

● Even if we had the space to store all the 2n different 
values, computing P(q|e) would require O(2n) 
operations

● Impractical for real world domains
● How to avoid the space and time problems? Use 

conditional independence assertions
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Conditional Independence

● X, Y, Z vectors of multivalued variables
● X and Y are conditionally independent given Z if

● We write I<X,Z,Y>
● Special case: X and Y are  independent if

● We write I<X,{}, Y>

∀ x , y , z : P y , z 0Px∣y , z =Px∣z 

∀ x , y : P y0P x∣y=Px 
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Chain Rule

● n random variables X
1
,...,X

n

● Let U={X
1
,...,X

n
}

● Joint event u=(x
1
,...,x

n
)

● Chain rule:

Pu=Px1, , xn

=Pxn∣xn−1 , x1Px2∣x1Px1

=∏i=1

n
Pxi∣xi−1 , x1
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Conditional Independence

● Π
i
 is a subset of {X

i-1
,...,X

1
} such that

● X
i
 is conditionally independent of {X

i-1
,...,X

1
}\Π

i
 

given Π
i

● where π
i
 is a set of values for Π

i
 

● Π
i
 parents of X

i

Pxi∣xi−1 , x1=Pxi∣i  whenever P(x
i-1

,...,x
1
)>0
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Conditional Independence

● Knowing Π
i 
for all i we could write

Pu=Px1, , xn

=Pxn∣xn−1 , x1Px2∣x1Px1

=Pxn∣nPx2∣2Px1∣1

=∏i=1

n
Pxi∣i
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Conditional Independence

● In order to compute P(u) we have to store 

● for all values x
i
 and π

i
 

● P(x
i
 |π

i
): Conditional probability table

● If Π
i
 is much smaller than the set {X

i-1
,...,X

1
}, then 

we have huge savings
● If k is the maximum number of parents of a variable, 

then storage is O(n2k) instead of O(2n)

Pxi∣i
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Graphical Representation

● We can represent the conditional independence 
assertions using a directed graph with a node per 
variable

● Π
i
 is the set of parents of X

i

● The graph is acyclic
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Example Network

B

A

N

E

● Variable order: E,B,A,N
● Independencies

Pe
Pb∣e=Pb
Pa∣b ,e=Pa∣b ,e
Pn∣a ,b ,e=Pn∣a
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Conditional Probability Tables

– Earthquake E,  e
1
=no, e

2
=moderate, e

3
=severe

– Burglary B, : b
1
=no, b

2
=yes through door, b

3
=yes through window

– Alarm A,  a
1
=no, a

2
=yes

– Neighbor call N,  n
1
=no, n

2
=yes

P(N|A) A=no A=yes
N=no 0,9 0,05
N=yes 0,1 0,95

P(A|EB) no,no no,do mo,no mo,do se,no se,do
no 0,99 0,1 0,2 0,8 0,08 0,1 0,7 0,05 0,07

0,01 0,9 0,8 0,2 0,92 0,9 0,3 0,95 0,93

no,wi mo,wi se,wi

yes 

P(B)
B=no 0,7

0,1
0,2

B=door
B=windows

P(E)
E=no 0,6
E=moderate 0,2
E=severe 0,2
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Bayesian Network

● A Bayesian network [Pearl 85] (BN) B is a couple 
(G,Θ) where 
– G is a directed acyclic graph (DAG) (V,E) where

● V is a set of vertices {X
1
,...,X

n
}

● E is a set of edges, i.e. A set of couples (X
i
,X

j
) 

● <X
1
,...,X

n
> is a topological sort of G, i.e. (X

i
,X

j
)∈Ε⇒i<j

– Θ is a set of conditional probability tables (cpts) 

– where  Πi
 is the set of parents of X

i

{xi∣ i
∈R∣i=1, ,n , xi∈X i ,i∈i }
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Bayesian Network

● BNs are also called belief networks or directed 
acyclic graphical models
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Bayesian Network

● A BN (G,Θ) represents a jpd P iff 
– given its parents in G, each variable is independent of its 

other predecessors 

–  θ
xi|πi=P(x

ii
|π

i
) for all i and π

i

● In this case

Px1, , xn=∏i=1

n

Pxi∣i

=∏i=1

n
xi∣ i

Pxi∣xi−1 , x1=Pxi∣i 
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How to Build a Bayesian Network

● Choose an ordering X1 .. Xn for the variables

● For i = 1 to n:

– Add Xi node to the network

– Set П
i
 to be a minimal subset of {X1…X i-1} such that we 

have conditional independence of Xi and all other 
members of {X1…X i-1} given Пi

– Assign a value to P(x
i
|π

i
) for all the values of x

i
 and π

i
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Building a Bayesian Network

● Usually the expert considers a variable X as a child 
of Y if Y is a direct cause of X 

● Correlation and causality are related but are not the 
same thing
– See the book [Pearl 00]
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Pathfinder system [Suermondt et al. 90]

● Diagnostic system for lymph-node diseases.
● 60 diseases and 100 symptoms and test-results.
● 14,000 probabilities
● Expert consulted to make net.
● 8 hours to determine variables.
● 35 hours for net topology.
● 40 hours for probability table values.
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Pathfinder system [Suermondt et al. 90]

● Pathfinder is now outperforming the world experts 
in diagnosis.  

● Being extended to several dozen other medical 
domains.
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How to Tell Independence

● There is a relatively simple algorithm for 
determining whether two variables in a Bayesian 
network are conditionally independent: d-
separation.

● Definition: X and Z are d-separated by a set of 
evidence variables E iff every undirected path from 
X to Z is “blocked”, where a path is “blocked” iff 
one or more of the following conditions is true: ...
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Blocked Path

There exists a variable V on the path such that

it is in the evidence set E

the arcs putting V in the path are “tail-to-tail”

Or, there exists a variable V on the path such that

it is in the evidence set E

the arcs putting V in the path are “tail-to-head”

V

V
28

Blocked Path

• … Or, there exists a variable V on the path such that

it is NOT in the evidence set E

neither are any of its descendants

the arcs putting V on the path are “head-to-head”

V
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Example

• I<C, {}, D>?

• I<C, {A}, D>?

• I<C, {A, B}, D>?

• I<C, {A, B, J}, D>?

• I<C, {A, B, E, J}, D>?

A B

C D

E F

G

I

H

J
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Example

• I<C, {}, D>?No

• I<C, {A}, D>?No

• I<C, {A, B}, D>?Yes

• I<C, {A, B, J}, D>?No

• I<C, {A, B, E, J}, D>?Yes

A B

C D

E F

G

I

H

J



31

Inference with Bayesian Networks

● With a Bayesian Network we save space, do we also 
save time?

● Do we have to use the formula

● to compute P(q|e)?

Pq∣e=
∑x , X=U ∖Q∖ E

Px ,q ,e

∑y ,Y=U ∖ E
P y ,e 
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Inference with Bayesian Networks

● There are quicker algorithms
– Exact methods for polytrees

● Belief propagation

– Exact methods for general networks
● Junction tree
● Variable elimination

– Approximate methods for general networks: 
● Stochastic simulation
● Loopy belief propagation
● Variational methods, 
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Complexity of Inference

● Exact inference with BN is #P-complete
● #P-complete: a special case of NP-complete 

problems
– The answer to a #P-complete problem is the number of 

solutions to a NP-complete problem
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Polytrees

A polytree is a directed acyclic graph in which no two 
nodes have more than one path between them.

● i.e. There are no cycles in the corresponding 
undirected graph

S

RL

T

L

T

MSM

R

X1
X2

X4
X3

X5

X1 X2

X3

X5

X4

A polytree Not a polytree
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Belief Propagation [Pearl 88]

● Best presented over Factor Graphs
● A Factor Graph is a bipartite graph (V,F,E) where 

vertices V index the variables, the vertices F index 
the families (factors), and edges E are connected 
between V and F

● A factor, given the values of the variables involved 
in the factor, returns a non-negative number. 

● A family in a BN can be seen as a factor
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Example Network

B

A

N

E B

A

N

E

f3

f4

N A f4
no no 0,9
no 0,05

no 0,1
0,05

yes
yes
yes yes

f1 f2



37

Messages

● The message from a variable node X to a neighbor 
factor node f  is

● where nb(X) is the set of neighbor of X, the set of 
factors X appears in

● The message from a factor to a variable is

● Where nb(f) is the set of arguments of f and the sum 
is over all of these except X

X  f x=∏h∈nbX ∖ X
h X x

 f  X x=∑¬{X }
 f x ∏Y∈nb f ∖ X

Y f  y
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Belief

● The unnormalized belief of each variable X
i
 in 

iteration k can be computed from the equation

● For example, if X
1
 has 3 values x

11
, x

12
, x

13
, their 

probabilities are

● B=b
1
(x

11
)+b

1
(x

12
)+b

1
(x

13
)

● P(x
11

)=b
1
(x

11
)/B    P(x

12
)=b

1
(x

12
)/B    P(x

13
)=b

1
(x

13
)/B

bi xi =∏ f ∈nbX i 
 f  X i

xi 
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Incorporation of Evidence

● For each factor f, for each combination of values of 
the arguments that is incompatible with the 
evidence, f(x) is set to 0

● Example: evidence N=yes, factor f4 becomes

N A f4
no no 0,9
no 0,05

no 0,1
0,05

yes
yes
yes yes

N A f4
no no 0
no 0

no 0,1
0,05

yes
yes
yes yes
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Algorithm

● Initialize all messages to 1 or randomly
● Loop

– Select an arc

– Compute the value of the message on the arc

● Until the messages do not change anymore
● If the network is a polytree, this algorithm 

converges
● Various strategies for selecting the arc to update
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Message schedules

● The order in which messages are updated
● Asynchronous schedules: messages are updated 

sequentially, one arc at a time
● Synchronous schedules: all messages are updated in 

parallel. 
● Flooding (asynchronous):  messages are passed from 

each variable to each corresponding factor and back 
at each step

● The most widely used and generally best-performing 
method
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General Networks

● Networks that have 
a cycle in their 
undirected version 

● Three possibilities
– Conditioning

– Clustering

– Approximations

A

B C

D
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Conditioning

Set to 0 Set to 1

44

Clustering

● Group together variables so that the resulting 
network is a polytree and use belief propagation

● Problem: how to find a good clustering?

A

B C

D

A

D

BC
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Join Trees

● Technique for clustering variables
● Steps:

– Obtain an undirected version of the network

– Perform a graph operation on it (triangulation)

– Each clique is a compound variable

– Add direction to the edges
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Junction Tree

● The resulting inference algorithm [Lauritzen, 
Spiegelhalter 1988] is called
– Junction tree algorithm (jt), or

– Clique propagation

47

Approximate Methods

● Stochastic simulation:
– Generate N samples from  BN

– Count: Ne: samples that satisfy e, Nqe samples that satisfy 
q,e

– P(q|e)=Nqe/Ne

● Loopy belief propagation: 
– bp in networks with cycles

– Experiments have shown that it converges also in 
network with cycles, often to good quality solutions

48

Stochastic Simulation

● Let X
1
,...,X

n
 be a topological sort of the variables

● For i=1 to n
– Find parents, if any, of Xi. Call them Xp(i,1), Xp(i,2), …

Xp(i,p(i)).

– Recall the values that those parents were randomly 
given: xp(i,1), xp(i,2), …xp(i,p(i)).

– Look up in the cpt for:

P(Xi=xi  | Xp(i,1)=xp(i,1),Xp(i,2)=xp(i,2)…Xp(i,p(i))=xp(i,p(i)))

– Randomly choose xi according to this probability
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Problems in Building BN

● Assessing conditional independence is not always 
easy for humans

● Usually done on the basis of causal information
● Assigning a number to each cpt entry is also 

difficult for humans
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Problems in Building BN

● Often we do not have an expert but we are given a 
set of observations D={u1,...uN}

● uj is an assignment to all the variables U={X
1
,...,X

n
}

● How to infer the parameters and/or the structure 
from D?
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Learning

● We want to find a BN over U such that the 
probability of the data P(D) is maximized

● P(D) is also called the likelihood of the data
● We assume that all the samples are independent 

and identically distributed (iid) so

● Often the natural log of P(D) (log likelihood) is 
considered

PD=∏i=1

N

Pui 

log PD=∑i=1

N

log Pui 
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Learning BN

● Tasks
– Computing the parameters given a fixed structure or

– finding the structure and the parameters

● Properties of data:
– complete data: in each data vectors uj, the values of all 

the variables are observed

– incomplete data
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Parameter Learning from Complete Data

● Parameters to be learned

● for all x
i
, π

i
, i=1,...,n

● The values of the parameters that maximize the 
likelihood can be computed in closed form

xi∣i
=Pxi∣i
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Maximum Likelihood Parameters

● Given by relative frequency

● If Ny be the number of vectors of D where Y=y.

● Counting: for each i, for each value  π
i
 we must 

collect

● where v
i
 is the number of values of X

i

xi∣i
=

N xi ,i

Ni

Ci
=〈N xi

1 ,i
, , N xi

vi , i
〉
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Naive Bayes Special Case

● We want to perform classification
● One variable C represents the class
● The variables X represent the attributes
● Model:

X
1

C

X
n

X
2 ........

● X
i
 independent from X

j
 given C
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Naive Bayes Special Case

● Conditional probability tables (case of Boolean 
variables):

C=true C=false

X
i
=true P(X

i
=true|C=true) P(X

i
=true|C=false)

X
i
=false P(X

i
=false|C=true) P(X

i
=false|C=false)

X
1

C

X
n

X
2 ........
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Example

No Outlook          Temp Humid Windy Class
D1 sunny mild normal T P
D2 sunny hot high T N
D3 sunny hot high F N
D4 sunny mild high F N
D5 sunny cool normal F P
D6 overcast mild high T P
D7 overcast hot high F P
D8 overcast cool normal T P
D9 overcast hot normal F P
D10 rain mild high T N
D11 rain cool normal T N
D12 rain mild normal F P
D13 rain cool normal F P
D14 rain mild high F P

C=P C=N

Humid=normal 6/9=0.66666 1/5=0.2

Humid=high 3/9=0.33333 4/5=0.8
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Queries

● Computing the probability of a class given values 
for the attributes: P(c|x

1
,...,x

n
)

Pc∣x1, , xn=
Pc , x1, , xn

Px1xn
=

Px1, , xn∣cPc

Px1 xn

● Since the attributes are independent given the class

Pc∣x1, , xn=
Px1∣cPxn∣cPc

Px1xn
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Example

● We want to classify <Outlook=sunny,Temp=cool,Humid=high,Windy=T>
● We have to compute 

P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)
● We compute only the parameters we need

P(Class=P)=9/14=0.64
P(Class=N)=5/14=0.36
P(Outlook=sunny | Class=P)=2/9=0.222
P(Outlook=sunny | Class=N)=3/5=0.6
P(Temp=cool | Class=P)=3/9=0.333
P(Temp=cool | Class=N)=1/5=0.2
P(Humid=high | Class=P)=3/9=0.333
P(Humid=high | Class=N)=4/5=0.8
P(Windy=T | Class=P)=3/9=0.33
P(Windy=T | Class=N)=3/5=0.6
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Example

P(Class=P,Outlook=sunny,Temp=cool,Humid=high,Windy=T) = 0.0053
P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Windy=T) = 0.0206
● We can compute P(Outlook=sunny,Temp=cool,Humid=high,Windy=T) 

by marginalization:

P(Outlook=sunny,Temp=cool,Humid=high,Windy=T)=
P(Class=P,Outlook=sunny,Temp=cool,Humid=high,Windy=T) +
P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Windy=T)=
0.0053+0.0206=0.0259
● So

P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)=0.0053/0.0259=
0.205
P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)=0.0206/0.0259=
0.795
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Structure Learning from Complete Data

● Perform a local search in the space of possible 
structures

● HGC algorithm [Heckerman, Geiger, Chickering 
95]:
– Start with a structure BestG' (possibly empty)

– Repeat
● BestG=BestG'
● Let Ref={G|G is obtained from BestG' by adding, deleting or 

reversing an arc}

● Let BestG'=argmax
G'
 {score(G)|G ∈Ref}

– while score(BestG')-score(BestG)>0 62

Structure Score

● where

● and ρ(θ
πi
) is the prior density of the vector θ

πi

PD∣G=∫D ,∣Gd

=∫PD∣ ,G∣Gd

∣G=∏i ,i

i


i
=〈xi

1∣i
, ,xi

vi∣i
〉

scoreG=log PD∣G
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Prior Density of the Parameters

● A common choice for the form of the prior density 
is the Dirichlet probability density

● In this case ρ(θ
πi
) is described by v

i
 parameters

● Prior counts: it is as if we had previously observed 
some data on which the counts are N'

xi,πi

C 'i
=〈N ' xi

1 , i
, , N 'xi

vi ,i
〉
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Structure Score

● If the priors for the parameters are Dirichlet, then 
the score is called BD (for Bayesian Dirichlet) and 

● where BD
i
(G) depends only on C

i
 and C'

i
, the counts 

for the family of X
ii

BDG=∑i
BDi G

Ci =〈C
i

1 , ,C
i

r i 〉

C ' i=〈C '
i

1 , ,C '
i

r i
〉
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Structure Score

● Where Γ is the Gamma function, an extension of the 
factorial function with its argument shifted down by 
1, to real and complex numbers. That is, if n is a 
positive integer:

● otherwise

BDi G=∑i

log
Ni



 Ni
N 'i


∑xi

log
N xi ,i

N ' xi ,i


 N xi ,i


n=n−1!

z=∫0

∞

t z−1e−t dt

66

Gamma Function 
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Log Gamma Function 
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Structure Score

● BD(G) is decomposable:
– It can be computed independently for each family

● Each edge operation involves
– 1 family (addition, deletion) or

– 2 families (reversal)

● BD(G) can be quickly computed from BD(BestG') 
by changing only the score of the affected families
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Parameter Learning from Incomplete Data

● The maximum likelihood parameters cannot be 
computed in closed form

● An iterative algorithm is necessary: the EM 
algorithm

● Finds a (possibly) local maximum of the likelihood
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EM Algorithm

● Initialize the parameters at random Θ

● Repeat
– Expectation step: 

● compute the probability P(y|e) of each value y of the missing 
attributes using (G,Θ) and inference

– Compute Θ by maximum likelihood on D'
● Relative frequency for each family
● If a variable Y is unobserved in an example e that matches 

x
i
,π

i
, instead of adding 1 to N

xi,πi
 we add P(y|e) 
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Structure Learning from Incomplete Data

● There is no decomposable score
● HGC would not be efficient
● Structural EM:

– Start with a structure BestG' (possibly empty)

– Repeat
● BestG=BestG'
● Compute the parameters of BestG with EM
● Optimize a lower bound of the likelihood of the observed data 
● Let BestG' the optimum

– Until no improvement
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Applications of BN

● Monitoring of emergency care patients
● Model of barley crops yield
● Diagnosis of carpal tunnel syndrome
● Insulin dose adjustment (DBN) in diabetes .
● Predicting hails in northern Colorado
● Evaluating insurance applications
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Applications of BN

● Deciding on the amount of fungicides to be used 
against attack of mildew in wheat

● Assisting experts of electromyography
● Pedigree of breeding pigs
● Modeling the biological processes of a water 

purification plant
● Printer troubleshooting  (Microsoft Windows)
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Printer Troubleshooting  (Windows 95)
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Applications

● Office Assistant in MS Office (“smiley face”)
– Bayesian network based free-text help facility

– help based on past experience (keyboard/mouse use) and 
task user is doing currently
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Markov Networks (MN)

● Approach alternative to BN
● Also called Random Fields, undirected graphical 

models
● Undirected graph
● Conditional independence represented by graph 

separation
● Probability distribution as the product of a set of 

potentials or factors (functions of a subset of 
variables) divided by a normalization constant

● Potentials over cliques
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Example

B

A

N

E

N A
no no 0,9
no 0,05

no 0,1
0,05

f
4

yes
yes
yes yes

● Four potentials f
1
, f

2
, f

3 
and f

4

f
4

f
3

f
1

f
2
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Markok Networks

● Probability

● Z is called partition function, ensures that the 
probabilities sum to 1

Pu=
∏c

f cxc

Z

Z=∑u∏c
f cxc
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Loglinear Models

● If all the potentials are >0, they can be represented 
as exponential functions, i.e., f

4
 can be represented 

as f
4
=exp(w

4
 F

4
)

● where F
4
 is any real function of f

4
 arguments and w

4
 

is a real weight. Then

Pu=
exp∑c

wc F cxc

Z

Z=∑u
exp∑c

wc F cxc
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How to tell independence

● Definition: X and Y are independent given a set of 
variables Z (I<X,Z,Y>) iff every path from X to Y 
passes through a variable of Z

B

A

N

E ● I<B,{},N>?
● I<B, A, N>?
● I<B, E, N>?
● I<{B,E}, A, N>?
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How to tell independence

● Definition: X and Y are independent given a set of 
variables Z (I<X,Z,Y>) iff every path from X to Y 
passes through a variable of Z

B

A

N

E
● I<B,{},N> No
● I<B, A, N> Yes
● I<B, E, N> No
● I<{B,E}, A, N>Yes
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Markov Network

● Inference: 
– Algorithms similar to those for BN (bp, cp, ve, ss...)

– Same complexity

● MN can represent some independencies that BN can 
not represent and vice versa

● Advantage: we do not have to avoid cycles
● Disadvantage: MN parameters are more difficult to 

interpret
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BN Software

● List of BN software
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html\

● BNT: inference and learning, Matlab, open source
● MSBNx: inference, by Microsoft, free closed source
● OpenBayes: inference and learning, Python, open 

source
● BNJ: inference and learning, Java, open source
● Weka: learning, Java, open source
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Resources

● Daphne Koller, Nir Friedman, Probabilistic 
graphical models: principles and techniques, MIT 
Press: 2009, ISBN 978-0-262-01319-2

● Probabilistic Reasoning in Intelligent Systems by 
Judea Pearl. Morgan Kaufmann: 1998.

● Probabilistic Reasoning in Expert Systems by 
Richard Neapolitan. Wiley: 1990.

● List of BN Models and Datasets
http://www.cs.huji.ac.il/labs/compbio/Repository/
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