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Summary

Conditional independence
Definition of Bayesian network

* Inference
* Learning
» Markov networks

Domain Modeling

* We use a set of random variables to describe the
domain of interest

« Example: home intrusion detection system,
variables:

- Earthquake E, values=no, g=moderate, gsevere

- Burglary B, values: Jrno, h=yes through door,_byes
through window
- Alarm A, values gno, a=yes

- Neighbor call N, values rno, n=yes

Inference

» We would like to answer the following questions

- What is the probability of a burglary through treod?
(compute P()), belief computation)

- What is the probability of a burglary through treod
given that the neighbor called ? (compute, () belief

updating)

Inference

- What is the probability of a burglary through theod
given that there was a moderate earthquake and the
neighbor called ? (compute Bifb,e,), belief updating )

- What is the probability of a burglary through theod
and of the alarm ringing given that there was a enaig
earthquake and the neighbor called ? (computgti(a

n,.e,), belief updating)

- What is the most likely value for burglary giveratthe
neighbor called (argma®(ldn,), belief revision)

Types of Problems

» Diagnosis: P(cause|symptom)="?
* Prediction: P(symptom|cause)="
» Classification: argmax_ _P(class|data)




Inference

In general, we want to compute the probability

P@le)

- of a queryg (assignment of values to a set of variables
Q)

- given the evidence (assignment of values to a set of
variablesE)

Joint Probability Distribution

» Thejoint probability distribution (jpd) of a set of
variablesU is given by P{) for all valuesu

» For our example
- U={E,B,AN}

- We have the jpd if we know B=P(e,b,a,n) for all the
possible values e, b, a, n.

Inference

If we know the jpd, we can answer all the possible
queries:

P(q.e)
P(e)

P(gle)=
P(x.q.e)

X, X=U\Q\E
y,Y=U\E P(y’e)

¥
s

Computational Cost

* If we have n binary variablesJ)JFn), knowing the
jpd requires storing O(Rdifferent values.

» Even if we had the space to store all thdifferent
values, computing Ble) would require O(9
operations

 Impractical for real world domains

» How to avoid the space and time problems? Use
conditional independence assertions
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Conditional Independence

X,Y, Z vectors of multivalued variables
X andY areconditionally independent givenZ if

V x,y,z.P(y,z)>0-P(x|y,z)=P(x|z)

We write 1<X,Z,Y>
Special caseX andY are independent if

V x,y:P(y)>0-P(x]y)=P(x)

We write 19X {}, Y> 1

Chain Rule

n random variables X..,X
LetU={X ... X}

Joint evenu=(x,...,x)

Chain rule:
Pu)=P(xy...,X,)
=P (XX geen s Xg) .o P (X[ X0) P (%)

:Hi:lp(xi|xi—1“'7xl)
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Conditional Independence

« I is a subset of {X,...,X} such that

« X, is conditionally independent of {X...,X \ I,
givenIl,
P(x[X_1....x)=P(x]m) whenever P(x,....x)>0
« wherern is a set of values fdi,

« II, parents of X,
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Conditional Independence

« Knowing II. for all i we could write

( ): P(Xl )
= F’(Xn|Xn 1- Xl) P (X5]%,) P(X,)
= P(anTl'n X2|7T2 (X1|7T1)

:Hin:l P( Xi|77i)
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Conditional Independence

In order to compute Bf we have to store
P (x|m;)
» for all values xand,
P(x Ir): Conditional probability table
« If II. is much smaller than the set {X..,X}, then
we have huge savings

If k is the maximum number of parents of a variable
then storage is O(HRinstead of O(9

15

Graphical Representation

» We can represent the conditional independence
assertions using a directed graph with a node per
variable

« II. is the set of parents of X

* The graph is acyclic
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Example Network

Variable order: E,B,A,N
Independencies
P(e)
P(ble)=P(b )
P(a
P(n

P(alb,e)

b,e)=
la,b,g=P(nla) °
(W)
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Conditional Probability Tables

- Earthquake E, ;eno, g=moderate, gsevere

- Burglary B, : h=no, h=yes through door, byes through window
- Alarm A, a=no, a=yes

- Neighbor call N, Fno, n=yes

P(B) P(E)
B=no 0,7 E=no 0,6
B=door 0,1 E=moderate 0)2
B=windows 0,2 E=severe 0,2
P(AIEB)| no,ng no,dmo,w| mo,no mo,dmo,w| se,no sesmwi
no 0,9 ogf o2 08 008 01 0,7 005 0,07
yes 001 09 08 02 092 09 03 0/95 093
P(NIA) A=ng A=yes
N=no 0,9 0,05

N=yes 0,1 0,95 18




Bayesian Network

» A Bayesian network [Pearl 85] (BN) B is a couple

(G,®) where
- G is a directed acyclic graph (DAG) (V,E) where

» Vis a set of vertices {X...,X }

- Eis a set of edges, i.e. A set of couplesXX

* <X,,...X> is a topological sort of G, i.e. (X)UE=i<]
- @ is a set of conditional probability tables (cpts)

0, €Rli=1,...,n,xeX,,m eIl

- wherell, is the set of parents of X

x|
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Bayesian Network

» BNs are also called belief networks or directed
acyclic graphical models
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Bayesian Network

* ABN (G,©) represents a jpd P iff

- given its parents in G, each variable is independeits
other predecessors
P(Xi[X;_1..., %) =P(x]m;)

- 0, =P(xlm) for all i andm,
* In this case
P(Xl,"‘1xn):Hi:1 P(xm;)

n
:Hizlex\n,
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How to Build a Bayesian Network

» Choose an ordering, .. X, for the variables
e Fori=1lton:
- Add X node to the network

- Setll, to be a minimal subset ok{...X..} such that we
have conditional independence afaxd all other
members of X....X..} given II;

- Assign a value to P(x,) for all the values of yandn,
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Building a Bayesian Network

 Usually the expert considers a variable X as achil
of Y if Y is adirect cause of X

 Correlation and causality are related butraethe
same thing

- See the book [Pearl 00]
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Pathfinder system [Suermondt et al. 90]

 Diagnostic system for lymph-node diseases.

* 60 diseases and 100 symptoms and test-results.
14,000 probabilities

» Expert consulted to make net.

8 hours to determine variables.

35 hours for net topology.

40 hours for probability table values.
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Pathfinder system [Suermondt et al. 90]

 Pathfinder is now outperforming the world experts
in diagnosis.

* Being extended to several dozen other medical
domains.
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How to Tell Independence

» There is a relatively simple algorithm for
determining whether two variables in a Bayesian
network are conditionally independedt:
separation.

« Definition: X andZ ared-separ ated by a set of
evidence variableE iff every undirected path from
XtoZis “blocked”, where a path is “blocked” iff
one or more of the following conditions is true: ..
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Blocked Path

There exists a variabM on the path such that
it isin the evidence s&
the arcs puttiny in the path are “tail-to-tail”

QQ.O‘—C\D—’OQQ.

Or, there exists a variabléon the path such that
it isin the evidence s&
the arcs puttingy in the path are “tail-to-head”

O..O—‘®—‘O... ;

Blocked Path

. ... Or, there exists a variabléon the path such that
it isNOT in the evidence s&

neither areany of its descendants

the arcs puttingy on the path are “head-to-head”

...O—’®‘—O...
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Example

+ I<C, {}, D>?

. I<C, {A}, D>?

+ I<C,{A, B}, D>?

« I<C,{A, B, J}, D>?

« I<C,{A, B, E, J}, D>?
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Example

« I<C, {}, D>?No

. I<C, {A}, D>?No

. I<C, {A, B}, D>?Yes

. I<C, {A, B, J}, D>?No

. I<C, {A, B, E, J}, D>?Yes

30




Inference with Bayesian Networks

» With a Bayesian Network we save space, do we also
save time?

* Do we have to use the formula
Zx X=U\Q\E P(X 'q’e)
P(dle)=—

Zy,Y:U\E P(y’e)

* to compute R{le)?
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Inference with Bayesian Networks

» There are quicker algorithms

- Exact methods for polytrees
« Belief propagation
- Exact methods for general networks
« Junction tree
* Variable elimination
- Approximate methods for general networks:
« Stochastic simulation
« Loopy belief propagation
« Variational methods,
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Complexity of Inference

» Exact inference with BN is #P-complete

» #P-complete: a special case of NP-complete
problems

- The answer to a #P-complete problem is the number o
solutions to a NP-complete problem
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Polytrees

A polytree is a directed acyclic graph in whichtnwom
nodes have more than one path between them.

— X — X
X% % //MZ\Y
T R L%, R)%,
EOA >¢5/
(s (T’
A polytree Not a polytree

* i.e. There are no cycles in the corresponding
undirected graph
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Belief Propagation [Pearl 88]

Best presented over Factor Graphs

A Factor Graph is a bipartite graph (V,F,E) where
vertices V index the variables, the vertices Finde
the families (factors), and edges E are connected
between V and F

* A factor, given the values of the variables invalve
in the factor, returns a non-negative number.

» A family in a BN can be seen as a factor

35

Example Network

A 4
no 0,9
yes 0,03
no 0,1
yes 0,08
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Messages

» The message from a variable node X to a neighbor
factor node f is

“xﬂf(x):Hhenb(X)\X Uhﬁx(x)

« where nb(X) is the set of neighbor of X, the set of
factors X appears in

* The message from a factor to a variable is

“fﬂx<x):zﬁ{x}(f (X)HYenb(f)\X uYHf(y))

* Where nb(f) is the set of arguments of f and thra su
is over all of these except X i

Belief

« The unnormalized belief of each variabliein(

iteration k can be computed from the equation
bi(Xi):ernb(x‘)“fﬂx‘(xi)

For example, if Xhas 3 values x X , Xy their
probabilities are

B:bl(X11)+b1(X12) +b1(X13)
P(x )=b(x )B P(x)=b(x )B P(x)=b(x )/B

Incorporation of Evidence

* For each factor f, for each combination of values o
the arguments that is incompatible with the
evidence, ) is setto O

» Example: evidence N=yes, factor {4 becomes

N A 4 N A f4
no no 0,9 no no

no yes 0,05 > no es Q
yes no 0,1 yes no 0,1
yes yes 0,05 yes yes 0,09
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Algorithm

Initialize all messages to 1 or randomly
Loop

- Select an arc

- Compute the value of the message on the arc
Until the messages do not change anymore

If the network is a polytree, this algorithm
converges

Various strategies for selecting the arc to update
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Message schedules

» The order in which messages are updated

» Asynchronous schedules: messages are updated
sequentially, one arc at a time

» Synchronous schedules: all messages are updated in
parallel.

* Flooding (asynchronous): messages are passed from
each variable to each corresponding factor and back
at each step

* The most widely used and generally best-performing
method
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General Networks

Networks that have
a cycle in their
undirected version

l
- Conditioning
- Clustering
- Approximations

» Three possibilities

42




Conditioning

Seto 0 Seffo 1

P P
ausd wund,
R o,
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Clustering

» Group together variables so that the resulting
network is a polytree and use belief propagation

® ®
ofcl __ ¥E>
© ©

» Problem: how to find a good clustering?
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Join Trees

» Technique for clustering variables

* Steps:
- Obtain an undirected version of the network
- Perform a graph operation on it (triangulation)
- Each clique is a compound variable
- Add direction to the edges
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Junction Tree

» The resulting inference algorithm [Lauritzen,
Spiegelhalter 1988] is called

- Junction tree algorithm (jt), or
- Clique propagation

46

Approximate Methods

* Stochastic simulation:
- Generate N samples from BN
- Count: N: samples that satisgy N, samples that satisfy
g.e
- P(@p)=N /N,
» Loopy belief propagation:
- bp in networks with cycles

- Experiments have shown that it converges also in
network with cycles, often to good quality soluson
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Stochastic Simulation

« Let X,,...,.X be a topological sort of the variables

* Fori=1ton

- Find parents, if any, of XCall them X1y, Xy2, ---
KpGip()-

- Recall the values that those parents were randomly
GIVeN: X1y, XoGi2)r -+ -Xot.00)-

- Look up in the cpt for:

POG=X5 | Xo6,07 %06, X627 Xp6.2)- - X .00 Xp.00))
- Randomly choose according to this probability

48




Problems in Building BN

» Assessing conditional independence is not always
easy for humans

» Usually done on the basis of causal information

« Assigning a number to each cpt entry is also
difficult for humans
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Problems in Building BN

» Often we do not have an expert but we are given a
set of observations D#{,...u™}

« U is an assignment to all the variablgs{X ,,...,X }

* How to infer the parameters and/or the structure
from D?
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Learning

* We want to find a BN ovdd such that the
probability of the data P(D) is maximized

* P(D) is also called thiekelihood of the data

* We assume that all the samplesiadependent
and identically distribhjted (iid) so
P(D)=]]_, P(u)
 Often the natural log of P(D)dg likelihood) is
considered

IogP(D):ZiN:lIogP(ui)
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Learning BN

» Tasks
- Computing the parameters given a fixed structure or
- finding the structure and the parameters

* Properties of data:

- complete data: in each data vectairshe values of all
the variables are observed

- incomplete data
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Parameter Learning from Complete Data

» Parameters to be learned
ex‘\ﬂ,:P(XihTi)
« forall x, z, i=1,...,n

* The values of the parameters that maximize the
likelihood can be computed in closed form
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Maximum Likelihood Parameters

Given by relative frequency

o If N, be the number of vectors of D whéfey.
NX T,
0 L

x‘ITr‘: N
Counting: for each i, for each value we must

collect

Cr=(Noes N )
« where vis the number of values of X
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Naive Bayes Special Case

* We want to perform classification

* One variable C represents the class

» The variableX represent the attributes
* Model:

« X, independent from J)(given C
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Naive Bayes Special Case

» Conditional probability tables (case of Boolean
variables):
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Example
No Outlook Temp Humid Windy  Class
D1 sunny mild normal T P
D2 sunny hot high T N
D3 sunny hot high F N
D4 sunny mild high F N
D5 sunny cool normal F P
D6 overcast mild high T P
D7 overcast hot high F P
D8 overcast cool normal T P
D9 overcast hot normal F P
D10 rain mild high T N
D11 rain cool normal T N
D12 rain mild normal F P
D13 rain cool normal F P
D14 rain mild high F P

Queries

» Computing the probability of a class given values
for the attributes: P(c|x..,x)

P(C,X ..., %) P(x...,xJc)P(c)
P(X...X,)  P(X...x,)

P(c|Xy ..., %)=

« Since the attributes are independent given the clas

P(clx, ..., x,) = alC) PUICIP(C)

Humid=normal  6/9=0.66666 1502 P(Xy...X,)
‘Humid=high  3/=033333 4508
Example Example

* We want to classify <Outlook=sunny,Temp=cool,Hunfigh,Windy=T>
* We have to compute

P(Class=P|Outlook=sunny, Temp=cool,Humid=high,WinBy=
* We compute only the parameters we need

P(Class=P)=9/14=0.64
P(Class=N)=5/14=0.36
P(Outlook=sunny | Class=P)=2/9=0.222
P(Outlook=sunny | Class=N)=3/5=0.6
P(Temp=cool | Class=P)=3/9=0.333
P(Temp=cool | Class=N)=1/5=0.2
P(Humid=high | Class=P)=3/9=0.333
P(Humid=high | Class=N)=4/5=0.8
P(Windy=T | Class=P)=3/9=0.33
P(Windy=T | Class=N)=3/5=0.6
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P(Class=P,Outlook=sunny,Temp=cool,Humid=high,Winly= 0.0053
P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Windly= 0.0206
« We can compute P(Outlook=sunny,Temp=cool,Humid=mMghdy=T)

by marginalization:
P(Outlook=sunny, Temp=cool,Humid=high,Windy=T)=
P(Class=P,Outlook=sunny, Temp=cool,Humid=high,Winty=
P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Wintly=
0.0053+0.0206=0.0259
*« So
P(Class=P|Outlook=sunny, Temp=cool,Humid=high, WiriB)=0.0053/0.0259=
0.205
P(Class=P|Outlook=sunny, Temp=cool,Humid=high,Winby9.0206/0.0259=
0.795
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Structure Learning from Complete Data

» Perform a local search in the space of possible
structures

* HGC algorithm [Heckerman, Geiger, Chickering
95]:
- Start with a structure BestG' (possibly empty)
- Repeat

* BestG=BestG'

* Let Ref={G|G is obtained from BestG' by adding,edielg or
reversing an arc}

« Let BestG'=argmax{score(G)|GORef}
- while score(BestG')-score(BestG)>0 61

Structure Score

scorg(G)=logP(D|G)

P(D|G)=J p(D,0|G)d®
=[ P(D|®,G)p(6|G)d

* where
p(0lG)=I1, , rlo,)
9n.2<9xnm s ex‘v‘ln)

« andp(0,) is the prior density of the vectoy
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Prior Density of the Parameters

« A common choice for the form of the prior density
is theDirichlet probability density

» In this case(6,) is described by \parameters

C'.=(N e N )

* Prior counts: it is as if we had previously observe
some data on which the counts arg N'
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Structure Score

* If the priors for the parameters are Dirichlet,rthe
the score is called BD (for Bayesian Dirichlet) and

):Zi BD;(G)

» where BD(G) depends only on.@nd C, the counts
for the family of X

C; =(C......C.)
c'=(C'.,..,C")
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Structure Score

TN )
(Nm)

=2 109 +Z Iog

* Whererl is the Gamma function, an extension of the
factorial function with its argument shifted dowyn b
1, to real and complex numbers. That is, if nis a
positive integer:

I'(n)=(n—-121)!
» otherwise
I(2)=[, e dt
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Gamma Function

Gamma function

66




Log Gamma Function

InT{x)
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Structure Score

* BD(G) isdecomposable:

- It can be computed independently for each family
» Each edge operation involves

- 1 family (addition, deletion) or

- 2 families (reversal)

» BD(G) can be quickly computed from BD(BestG")
by changing only the score of the affected families
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Parameter Learning from Incomplete Data

* The maximum likelihood parameters cannot be
computed in closed form

« An iterative algorithm is necessary: the EM
algorithm

* Finds a (possibly) local maximum of the likelihood
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EM Algorithm

* Initialize the parameters at rand@n
* Repeat
- Expectation step:

» compute the probability P(y|e) of each value yhefmissing
attributes using (®) and inference

- Compute® by maximum likelihood on D
* Relative frequency for each family

« If a variable Y is unobserved in an example e thatches
X,m, instead of adding 1 to \, we add P(y|e)
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Structure Learning from Incomplete Data

» There is no decomposable score
* HGC would not be efficient
 Structural EM:

- Start with a structure BestG' (possibly empty)
- Repeat

» BestG=BestG'

» Compute the parameters of BestG with EM

» Optimize a lower bound of the likelihood of the ebsed data
* Let BestG' the optimum

- Until no improvement "

Applications of BN

» Monitoring of emergency care patients

» Model of barley crops yield

 Diagnosis of carpal tunnel syndrome
Insulin dose adjustment (DBN) in diabetes
Predicting hails in northern Colorado
Evaluating insurance applications
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Applications of BN

» Deciding on the amount of fungicides to be used
against attack of mildew in wheat

* Assisting experts of electromyography
» Pedigree of breeding pigs

* Modeling the biological processes of a water
purification plant

* Printer troubleshooting (Microsoft Windows)
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Printer Troubleshooting (Windows 95)

ocal Poxt
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Applications

« Office Assistant in MS Office (“smiley face”)
- Bayesian network based free-text help facility

- help based on past experience (keyboard/mouseande)
task user is doing currently
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Markov Networks (MN)

» Approach alternative to BN

* Also called Random Fields, undirected graphical
models

» Undirected graph

» Conditional independence represented by graph
separation

* Probability distribution as the product of a set of
potentials or factors (functions of a subset of
variables) divided by a normalization constant

 Potentials over cliques 7

Example
fl fZ
e e - Four potentials f f, f and f

N A f,

f4 no no 0,9

no es 0,05

° yes no 0,1

yes yes 0,05
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Markok Networks

* Probability

P(u):—H° fz°(x°)

2= 11, fe(xd

» Z is calledpartition function, ensures that the
probabilities sum to 1
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Loglinear Models

« If all the potentials are >0, they can be represnt
as exponential functions, i.eA,dan be represented

as f=exp(w, F)
« where E is any real function of farguments and w
is a real weight. Then
expzC w, F.(X,)
A

Z=Y, exp), W.F(X,)

P(u)
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How to tell independence

* Definition: X andY areindependent given a set of
variablesZ (I<X,Z,Y>) iff every path fromX to' Y
passes through a variabledbf

e I<B,{},N>?
® © * I<B, A, N>?
¢ |<B, E, N>?

0 . |<{B,E}, A, N>?
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How to tell independence

« Definition: X andY areindependent given a set of
variablesZ (I<X,Z,Y>) iff every path fromX toY
passes through a variablezdf

(B) & ° I<B,{},N> No
' . 1<B, A, N> Yes
* I<B, E, N> No
e * I<{B,E}, A, N>Yes

)
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Markov Network

* Inference:
- Algorithms similar to those for BN (bp, cp, ve,.9s.
- Same complexity

* MN can represent some independencies that BN can
not represent and vice versa

» Advantage: we do not have to avoid cycles

 Disadvantage: MN parameters are more difficult to
interpret
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BN Software

List of BN software
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.htmi\

BNT: inference and learning, Matlab, open source
MSBNXx: inference, by Microsoft, free closed source

« OpenBayes: inference and learning, Python, open
source

BNJ: inference and learning, Java, open source

» Weka: learning, Java, open source
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Resources

» Daphne Koller, Nir Friedman, Probabilistic
graphical models: principles and techniques, MIT
Press: 2009, ISBN 978-0-262-01319-2

» Probabilistic Reasoning in Intelligent Systems by
Judea Pearl. Morgan Kaufmann: 1998.

 Probabilistic Reasoning in Expert Systems by
Richard Neapolitan. Wiley: 1990.

* List of BN Models and Datasets
http://www.cs.huji.ac.il/labs/compbio/Repository/
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