

 In general, we want to compute the probability P(q e) of a query q (assignment of values to a set of variables Q) given the evidence e (assignment of values to a set of variables E) 	 Joint Probability Distribution The joint probability distribution (jpd) of a set of variables U is given by P(u) for all values u For our example U={E,B,A,N} We have the jpd if we know P(u)=P(e,b,a,n) for all the possible values e, b, a, n. 			
<text><text><equation-block><text><text></text></text></equation-block></text></text>	<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></text>			
 Conditional Independence X, Y, Z vectors of multivalued variables X and Y are conditionally independent given Z if ∀x, y, z: P(y, z)>0→P(x y, z)=P(x z) We write I<x,z,y></x,z,y> Special case: X and Y are independent if ∀x, y: P(y)>0→P(x y)=P(x) We write I<x,{},y></x,{},y> 	$\begin{aligned} \text{Chain Rule} \\ \text{e. n random variables } X_1, \dots, X_n \\ \text{e. Let } U = \{X_1, \dots, X_n\} \\ \text{e. Joint event } \mathbf{u} = (x_1, \dots, x_n) \\ \text{e. Chain rule:} \\ P(\mathbf{u}) = P(x_1, \dots, x_n) \\ = P(x_n x_{n-1}, \dots, x_1) \dots P(x_2 x_1) P(x_1) \\ = \prod_{i=1}^n P(x_i x_{i-1}, \dots, x_1) \end{aligned}$			

Conditional Independence

- Π_i is a subset of $\{X_{i-1},...,X_i\}$ such that
- + X_i is conditionally independent of $\{X_{i\cdot i},...,X_1\}\backslash \Pi_i$ given Π_i

 $P(x_i|x_{i-1}...,x_1) = P(x_i|\boldsymbol{\pi}_i)$ whenever $P(x_{i-1},...,x_1) > 0$

13

15

- where $\boldsymbol{\pi}_i$ is a set of values for $\boldsymbol{\Pi}_i$
- Π_i parents of X_i

Conditional Independence

• Knowing Π_i for all i we could write

$$P(\boldsymbol{u}) = P(x_1, \dots, x_n)$$

= $P(x_n | x_{n-1}, \dots, x_1) \dots P(x_2 | x_1) P(x_1)$
= $P(x_n | \boldsymbol{\pi}_n) \dots P(x_2 | \boldsymbol{\pi}_2) P(x_1 | \boldsymbol{\pi}_1)$
= $\prod_{i=1}^n P(x_i | \boldsymbol{\pi}_i)$

Conditional Independence

• In order to compute P(**u**) we have to store

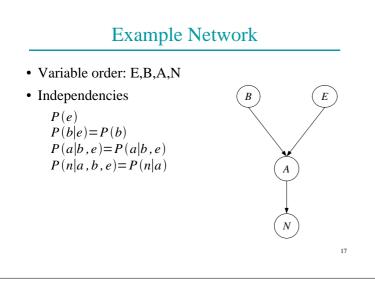
 $P(x_i|\boldsymbol{\pi}_i)$

• for all values \mathbf{x}_{i} and $\boldsymbol{\pi}_{i}$

- $P(x_i | \boldsymbol{\pi}_i)$: Conditional probability table
- If Π_i is much smaller than the set {X_{i-1},...,X₁}, then we have huge savings
- If k is the maximum number of parents of a variable, then storage is O(n2^k) instead of O(2ⁿ)

Graphical Representation

- We can represent the conditional independence assertions using a directed graph with a node per variable
- Π_i is the set of parents of X_i
- The graph is acyclic



Conditional Probability Tables

- Earthquake E, e_1 =no, e_2 =moderate, e_3 =severe
- Burglary B, : b₁=no, b₂=yes through door, b₃=yes through window
- Alarm A, a₁=no, a₂=yes

P(B)		· T			P	(E)			
B=no	,	+	0,7		-	=no		0,	6
B=do	or		0,1		E	=modera	te	0,	2
B=wi	ndows		0,2		E	=severe		0,	2
P(A EB)	no,no	no,do	no,wi	mo,no	mo,c	lo mo,w	i se,nc	se,do	se,w
no	0,99	0,1	0,2	0,8	0,0	0,1	0,7	0,05	0,0
yes	0,01	0,9	0,8	0,2	0,9	92 0,9	0,3	0,95	0,9
	F	P(N A)		A=	no	A=ye	es		
	N	N=no		(0,9	0,0	5		
		V=ves			0,1	0,9	~		

18

14

Bayesian Network

- A Bayesian network [Pearl 85] (BN) B is a couple (G,Θ) where
 - G is a directed acyclic graph (DAG) (V,E) where
 - V is a set of vertices $\{X_1, ..., X_n\}$
 - + E is a set of edges, i.e. A set of couples (X_i, X_j)
 - <X1,...,Xn > is a topological sort of G, i.e. $(X_i,X_j) \in E \Longrightarrow i < j$
 - Θ is a set of conditional probability tables (cpts) $\{\theta_{x_i|\boldsymbol{\pi}_i} \in R | i=1,...,n, x_i \in X_i, \boldsymbol{\pi}_i \in \Pi_i\}$
 - where Π_i is the set of parents of X_i

Bayesian Network

- A BN (G, Θ) represents a jpd P iff
 - given its parents in G, each variable is independent of its other predecessors

$$P(x_i|x_{i-1}...,x_1) = P(x_i|\boldsymbol{\pi}_i)$$

- $\theta_{xi|\boldsymbol{\pi}i} = P(x_i|\boldsymbol{\pi}_i)$ for all i and $\boldsymbol{\pi}_i$
- In this case

$$P(x_{1,...,x_n}) = \prod_{i=1}^{n} P(x_i | \boldsymbol{\pi}_i)$$
$$= \prod_{i=1}^{n} \theta_{x_i | \boldsymbol{\pi}_i}$$

Bayesian Network

• BNs are also called belief networks or directed acyclic graphical models

How to Build a Bayesian Network

- Choose an ordering X₁..X_n for the variables
- For i = 1 to n:
 - Add X_i node to the network
 - Set Π_i to be a minimal subset of {X₁...X_{i-1}} such that we have conditional independence of X_i and all other members of {X₁...X_{i-1}} given Π_i
 - Assign a value to $P(x_i | \boldsymbol{\pi}_i)$ for all the values of x_i and $\boldsymbol{\pi}_i$
- 22

20

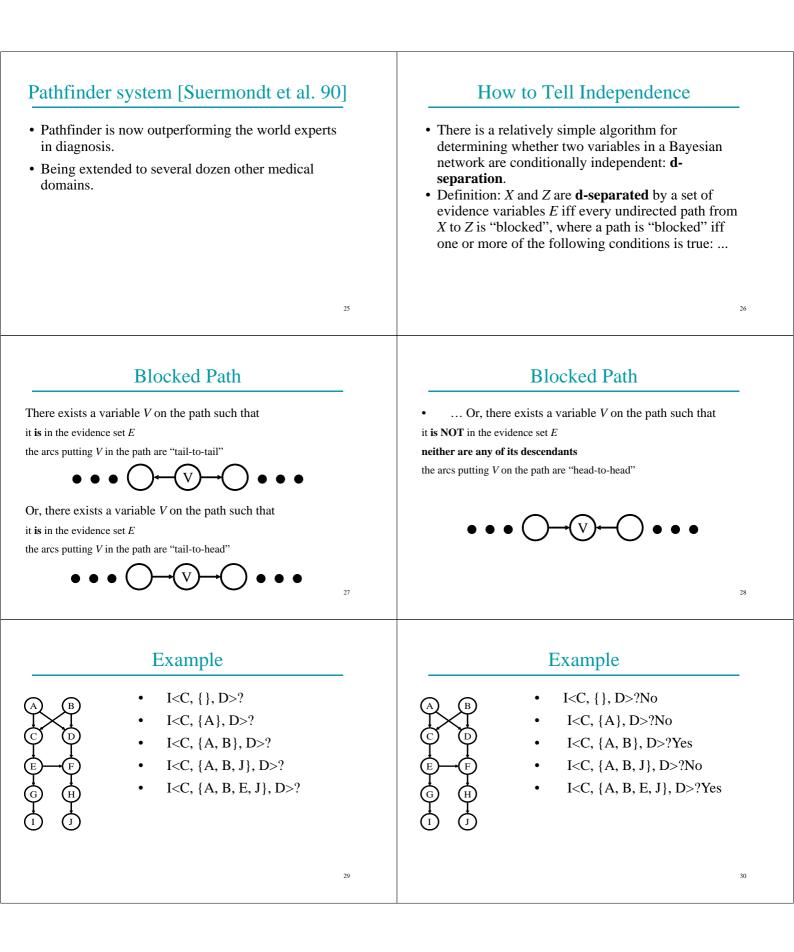
Building a Bayesian Network

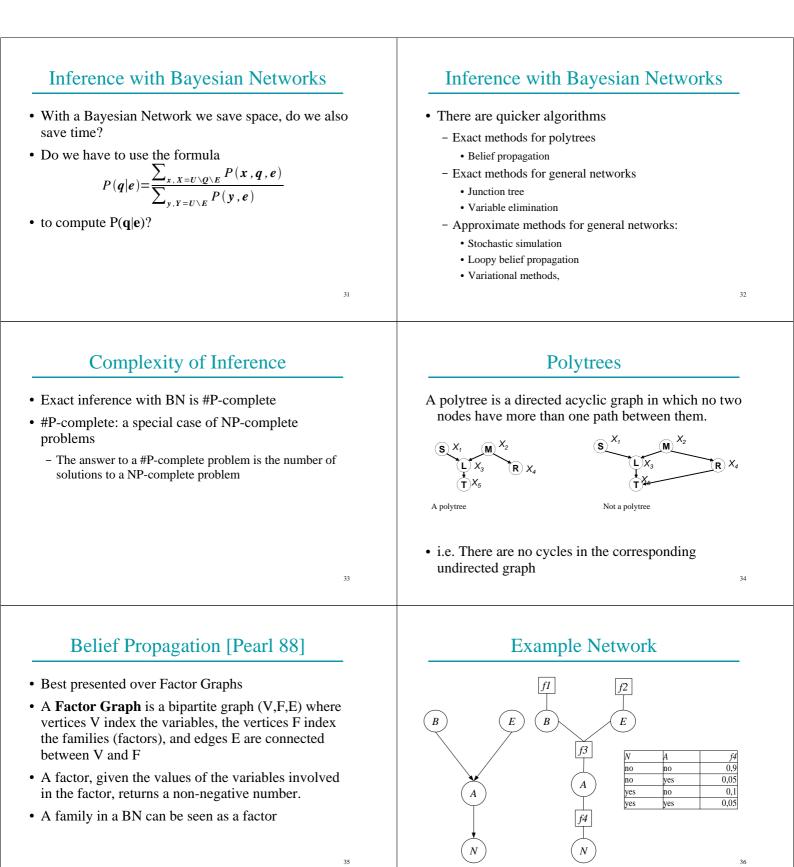
- Usually the expert considers a variable X as a child of Y if Y is a **direct cause** of X
- Correlation and causality are related but are **not** the same thing
 - See the book [Pearl 00]

Pathfinder system [Suermondt et al. 90]

- Diagnostic system for lymph-node diseases.
- 60 diseases and 100 symptoms and test-results.
- 14,000 probabilities
- Expert consulted to make net.
- 8 hours to determine variables.
- 35 hours for net topology.
- 40 hours for probability table values.

19





Messages

• The message from a variable node X to a neighbor factor node f is

$$\mu_{X \to f}(x) = \prod_{h \in nb(X) \setminus X} \mu_{h \to X}(x)$$

- where nb(X) is the set of neighbor of X, the set of factors X appears in
- The message from a factor to a variable is

μ

$$\mu_{f \to X}(x) = \sum_{\neg [X]} (f(x) \prod_{Y \in nb(f) \setminus X} \mu_{Y \to f}(y))$$

• Where nb(f) is the set of arguments of f and the sum is over all of these except X

Incorporation of Evidence

- For each factor f, for each combination of values of the arguments that is incompatible with the evidence, f(x) is set to 0
- Example: evidence N=yes, factor f4 becomes

Message schedules

- The order in which messages are updated
- Asynchronous schedules: messages are updated sequentially, one arc at a time
- Synchronous schedules: all messages are updated in parallel.
- Flooding (asynchronous): messages are passed from each variable to each corresponding factor and back at each step
- The most widely used and generally best-performing method

Belief

• The unnormalized belief of each variable X_i in iteration k can be computed from the equation

$$b_i(x_i) = \prod_{f \in nb(X_i)} \mu_{f \to X_i}(x_i)$$

- For example, if X₁ has 3 values x₁₁, x₁₂, x₁₃, their probabilities are
- $B=b_1(x_{11})+b_1(x_{12})+b_1(x_{13})$
- $P(x_{11}) = b_1(x_{11})/B$ $P(x_{12}) = b_1(x_{12})/B$ $P(x_{13}) = b_1(x_{13})/B$

Algorithm

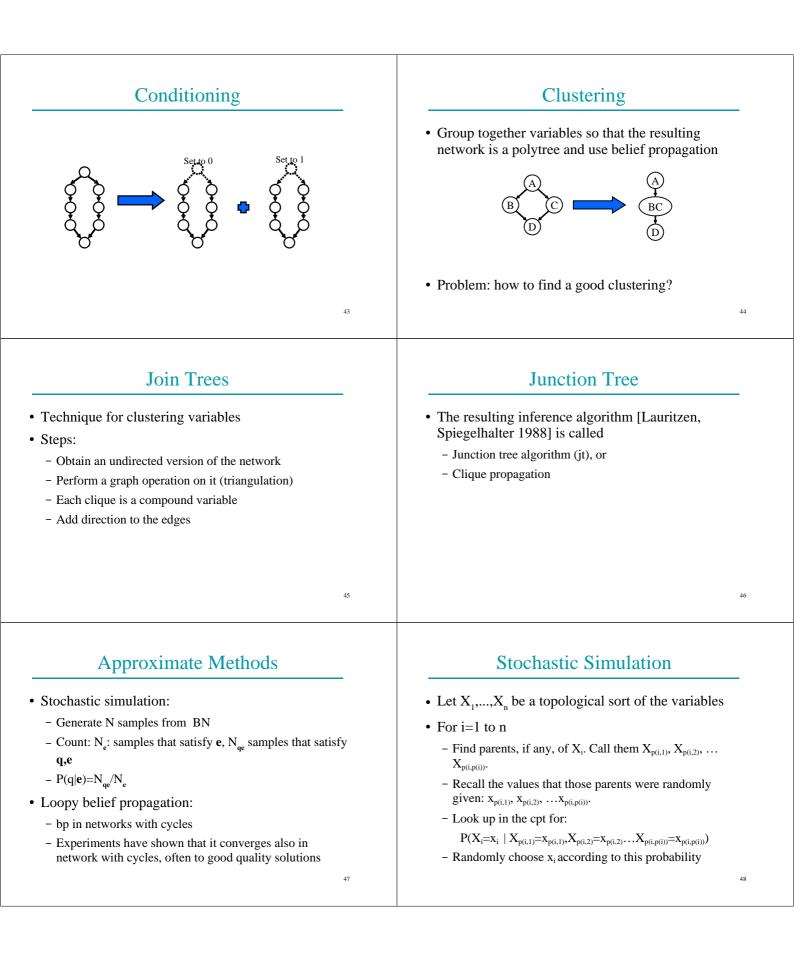
- Initialize all messages to 1 or randomly
- Loop

39

- Select an arc
- Compute the value of the message on the arc
- Until the messages do not change anymore
- If the network is a polytree, this algorithm converges
- Various strategies for selecting the arc to update

General Networks

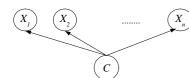
- Networks that have a cycle in their undirected version
- Three possibilities
 - Conditioning
 - Clustering
 - Approximations



Problems in Building BN	Problems in Building BN
 Assessing conditional independence is not always easy for humans 	 Often we do not have an expert but we are given a set of observations D={u¹,u^N}
• Usually done on the basis of causal information	• \mathbf{u}^{j} is an assignment to all the variables $\mathbf{U}=\{\mathbf{X}_{1},,\mathbf{X}_{n}\}$
• Assigning a number to each cpt entry is also difficult for humans	• How to infer the parameters and/or the structure from D?
49	50
Learning	Learning BN
• We want to find a BN over U such that the	• Tasks
probability of the data P(D) is maximized	- Computing the parameters given a fixed structure or
• P(D) is also called the likelihood of the data	- finding the structure and the parameters
• We assume that all the samples are independent and identically distributed (iid) so	• Properties of data:
$P(D) = \prod_{i=1}^{N} P(u^{i})$	 complete data: in each data vectors u^j, the values of all the variables are observed
• Often the natural log of P(D) (log likelihood) is	- incomplete data
considered $\log P(D) = \sum_{i=1}^{N} \log P(u^{i})$	
51	52
Parameter Learning from Complete Data	Maximum Likelihood Parameters
• Parameters to be learned	• Given by relative frequency
$\theta_{x_i \mid \boldsymbol{\pi}_i} = P(x_i \mid \boldsymbol{\pi}_i)$	• If N_y be the number of vectors of D where $Y=y$.
• for all x_i , $\boldsymbol{\pi}_i$, $i=1,,n$	$\theta_{x_i \boldsymbol{\pi}_i} = \frac{N_{x_i,\boldsymbol{\pi}_i}}{N}$
• The values of the parameters that maximize the likelihood can be computed in closed form	 Counting: for each i, for each value π_i we must collect
	$C_{\boldsymbol{\pi}_i} = \langle N_{x_i^1, \boldsymbol{\pi}_i}, \dots, N_{x_i^{v_i}, \boldsymbol{\pi}_i} \rangle$
	• where v_i is the number of values of X_i

- · We want to perform classification
- One variable C represents the class
- The variables X represent the attributes
- Model:

Humid=high



• X_i independent from X_i given C

Example

No	Outlook	Temp	Humid	Windy	Cla	ass
D1	sunny	mild	normal	Т	Р	
D2	sunny	hot	high	Т	Ν	
D3	sunny	hot	high	F	Ν	
D4	sunny	mild	high	F	Ν	
D5	sunny	cool	normal	F	Р	
D6	overcast	mild	high	Т	Р	
D7	overcast	hot	high	F	Р	
D8	overcast	cool	normal	Т	Р	
D9	overcast	hot	normal	F	Р	
D10	rain	mild	high	Т	Ν	
D11	rain	cool	normal	Т	Ν	
D12	rain	mild	normal	F	Р	
D13	rain	cool	normal	F	Р	
D14	rain	mild	high	F	Р	
			C=P			C=N
	Humid=norm	nal	6/9=0.666	666		1/5=0.2

3/9=0.33333

57

55

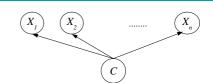
Example

4/5=0.8

- We want to classify <Outlook=sunny,Temp=cool,Humid=high,Windy=T>
 We have to compute
- P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T) • We compute only the parameters we need

 $\begin{array}{l} P(Class=P)=9/14=0.64\\ P(Class=N)=5/14=0.36\\ P(Outlook=sunny \mid Class=P)=2/9=0.222\\ P(Outlook=sunny \mid Class=N)=3/5=0.6\\ P(Temp=cool \mid Class=P)=3/9=0.333\\ P(Temp=cool \mid Class=N)=1/5=0.2\\ P(Humid=high \mid Class=N)=4/5=0.8\\ P(Windy=T \mid Class=P)=3/9=0.33\\ P(Windy=T \mid Class=N)=3/5=0.6\\ \end{array}$

Naive Bayes Special Case



• Conditional probability tables (case of Boolean variables):

X=true P(X=true C=true)	D(V-tmuelC-felce)
A new second s	$P(X_{i} = true C = false)$
X _i =false P(X _i =false C=true)) $P(X_i = false C = false)$

Queries

• Computing the probability of a class given values for the attributes: P(c|x₁,...,x_n)

$$P(c|x_{1,...,x_{n}}) = \frac{P(c, x_{1,...,x_{n}})}{P(x_{1,...,x_{n}})} = \frac{P(x_{1,...,x_{n}}|c)P(c)}{P(x_{1,...,x_{n}})}$$

• Since the attributes are independent given the class

$$P(c|x_{1},...,x_{n}) = \frac{P(x_{1}|c)...P(x_{n}|c)P(c)}{P(x_{1}...x_{n})}$$

58

Example

P(Class=P,Outlook=sunny,Temp=cool,Humid=high,Windy=T) = 0.0053
P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Windy=T) = 0.0206
We can compute P(Outlook=sunny,Temp=cool,Humid=high,Windy=T) by marginalization:
P(Outlook=sunny,Temp=cool,Humid=high,Windy=T)=
P(Class=P,Outlook=sunny,Temp=cool,Humid=high,Windy=T) +
P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Windy=T)=
0.0053+0.0206=0.0259
So
P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)=0.0053/0.0259=
0.205
P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)=0.0206/0.0259=
0.795

59

Structure Learning from Complete Data

- Perform a local search in the space of possible structures
- HGC algorithm [Heckerman, Geiger, Chickering 95]:
 - Start with a structure BestG' (possibly empty)
 - Repeat
 - BestG=BestG'
 - Let Ref={G|G is obtained from BestG' by adding, deleting or reversing an arc}
 - Let $BestG'=argmax_{G'} \{score(G) | G \in Ref \}$
 - while score(BestG')-score(BestG)>0

Prior Density of the Parameters

- A common choice for the form of the prior density is the **Dirichlet probability density**
- In this case $\rho(\theta_{\pi i})$ is described by v parameters

 $C'_{\pi_i} = \langle N'_{x_i^1, \pi_i}, \dots, N'_{x_i^{v_i}, \pi_i} \rangle$

• Prior counts: it is as if we had previously observed some data on which the counts are $N'_{xi,\pi i}$

Structure Score

score (G) = log P(D|G)

$$P(D|G) = \int \rho(D, \Theta|G) d\Theta$$

$$= \int P(D|\Theta, G) \rho(\Theta|G) d\Theta$$

• where

61

63

65

$$\rho(\Theta|G) = \prod_{i, \pi_i} \rho(\theta_{\pi_i})$$
$$\theta_{\pi_i} = \langle \theta_{x_i^1|\pi_i}, \dots, \theta_{x_i^{\nu}|\pi_i} \rangle$$

• and $\rho(\theta_{\pi i})$ is the prior density of the vector $\theta_{\pi i}$

62

64

Structure Score

• If the priors for the parameters are Dirichlet, then the score is called BD (for Bayesian Dirichlet) and

$$BD(G) = \sum_{i} BD_{i}(G)$$

 where BD_i(G) depends only on C_i and C'_i, the counts for the family of X_i

$$C_{i} = \langle C_{\pi_{i}^{1}}, \dots, C_{\pi_{i}^{r_{i}}} \rangle$$
$$C'_{i} = \langle C'_{\pi_{i}^{1}}, \dots, C'_{\pi_{i}^{r_{i}}} \rangle$$

Structure Score

$$BD_{i}(G) = \sum_{\boldsymbol{\pi}_{i}} \log \frac{\Gamma(N_{\boldsymbol{\pi}_{i}})}{\Gamma(N_{\boldsymbol{\pi}_{i}} + N'_{\boldsymbol{\pi}_{i}})} + \sum_{\boldsymbol{x}_{i}} \log \frac{\Gamma(N_{\boldsymbol{x}_{i},\boldsymbol{\pi}_{i}} + N'_{\boldsymbol{x}_{i},\boldsymbol{\pi}_{i}})}{\Gamma(N_{\boldsymbol{x}_{i},\boldsymbol{\pi}_{i}})}$$

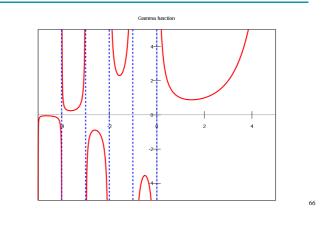
• Where Γ is the Gamma function, an extension of the factorial function with its argument shifted down by 1, to real and complex numbers. That is, if n is a positive integer:

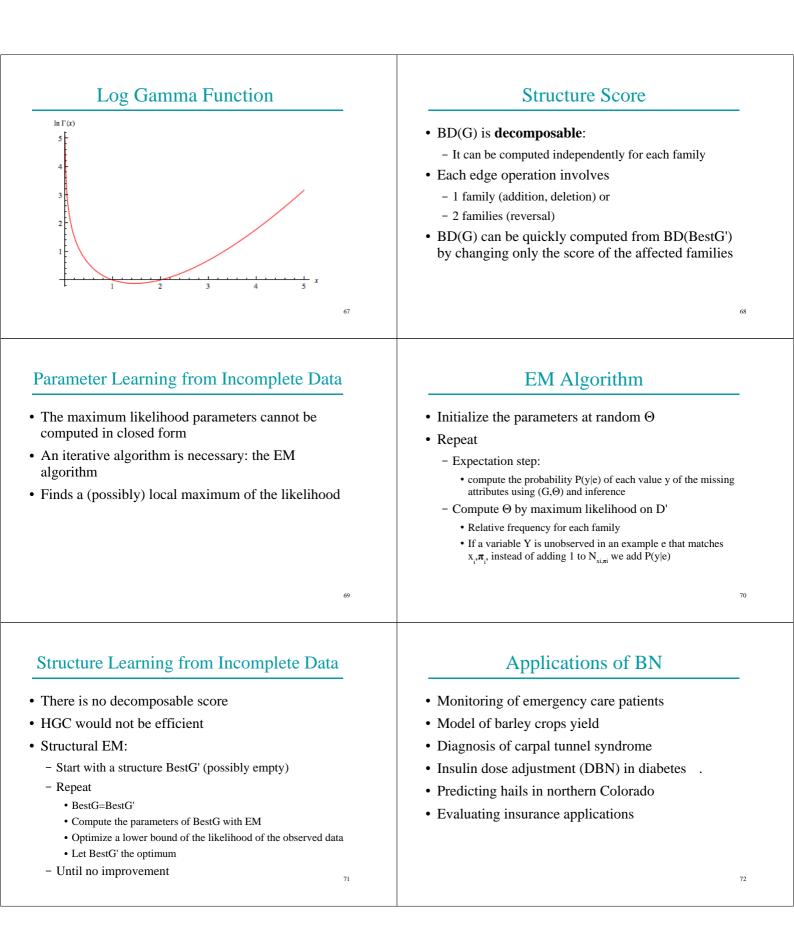
$$\Gamma(n) = (n-1)!$$

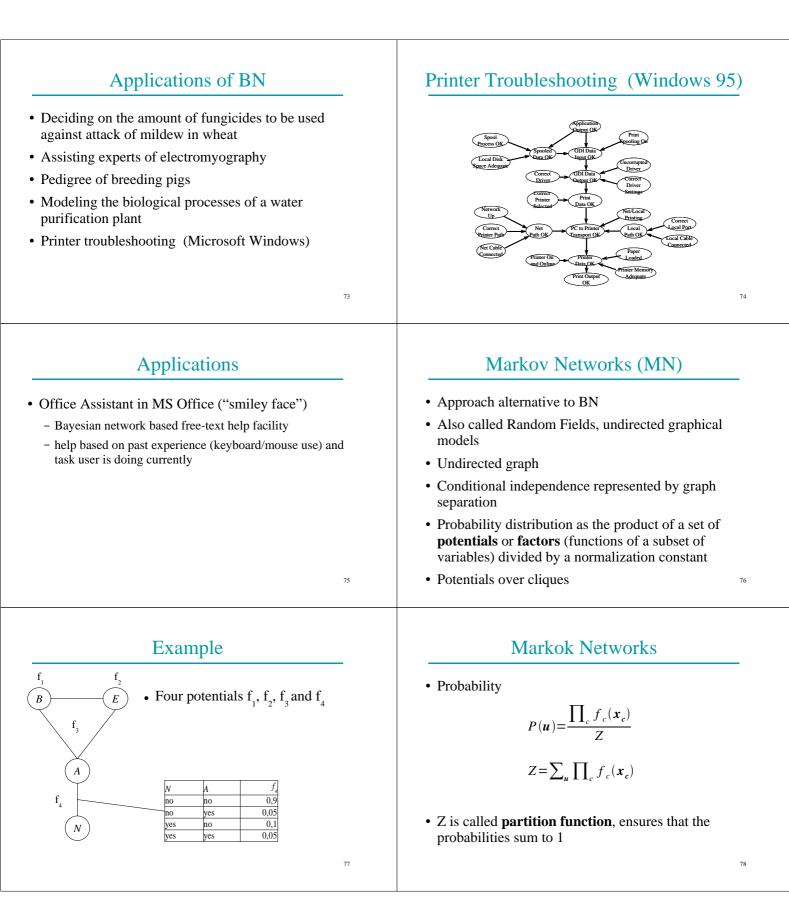
• otherwise

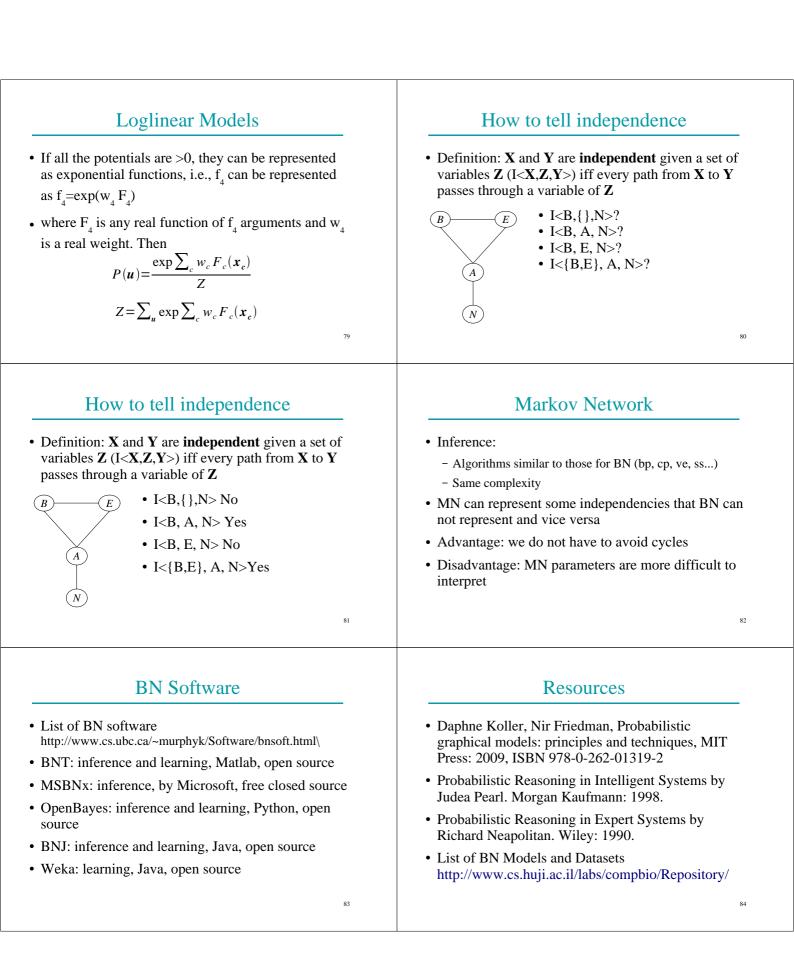
$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

Gamma Function









References

- [Pearl 85] Pearl, J., "Bayesian Networks: a Model of Self-Activated Memory for Evidential Reasoning," UCLA CS Technical Report 850021, Proceedings, Cognitive Science Society, UC Irvine, 329-334, August 15-17, 1985.
- [Pearl 00] Pearl, J., Causality: Models, Reasoning, and Inference, Cambridge University Press, 2000
- [Suermondt et al. 90] Henri Jacques Suermondt, Gregory F. Cooper, David Heckerman, "A combination of cutset conditioning with clique-tree propagation in the Pathfinder system", UAI '90.

References

- [Pearl 88] Judea Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann: 1998.
- [Lauritzen, Spiegelhalter 1988]
- [Heckerman, Geiger, Chickering 95] D. Heckerman, D. Geiger, D. M. Chickering: "Learning Bayesian Networks: The Combination of Knowledge and Statistical Data", Machine Learning, 20(3), 1995