Bayesian Networks

Fabrizio Riguzzi

- •Acknowledgments: some slides from
 - Andrew Moore's tutorials http://www.autonlab.org/tutorials/
 - Irina Rish and Moninder Singh's tutorial http://www.research.ibm.com/people/r/rish/

Summary

- Conditional independence
- Definition of Bayesian network
- Inference
- Learning
- Markov networks

Domain Modeling

- We use a set of random variables to describe the domain of interest
- Example: home intrusion detection system, variables:
 - Earthquake E, values e₁=no, e₂=moderate, e₃=severe
 - Burglary B, values: b₁=no, b₂=yes through door, b₃=yes through window
 - Alarm A, values a₁=no, a₂=yes
 - Neighbor call N, values n₁=no, n₂=yes

3

Inference

- We would like to answer the following questions
 - What is the probability of a burglary through the door? (compute P(b₂), belief computation)
 - What is the probability of a burglary through the door given that the neighbor called ? (compute $P(b_2|n_2)$, belief updating)

Inference

- What is the probability of a burglary through the door given that there was a moderate earthquake and the neighbor called ? (compute $P(b_2|n_2,e_2)$, belief updating)
- What is the probability of a burglary through the door and of the alarm ringing given that there was a moderate earthquake and the neighbor called ? (compute P(a₂,b₂| n₂,e₂), belief updating)
- What is the most likely value for burglary given that the neighbor called (argmax_b $P(b|n_2)$, belief revision)

5

Types of Problems

- Diagnosis: P(cause|symptom)=?
- Prediction: P(symptom|cause)=?
- Classification: argmax_{class} P(class|data)

Inference

- In general, we want to compute the probability $P(\mathbf{q}|\mathbf{e})$
 - of a query q (assignment of values to a set of variables
 Q)
 - given the evidence **e** (assignment of values to a set of variables **E**)

7

Joint Probability Distribution

- The **joint probability distribution** (jpd) of a set of variables **U** is given by P(**u**) for all values **u**
- For our example
 - $U = \{E, B, A, N\}$
 - We have the jpd if we know $P(\mathbf{u})=P(e,b,a,n)$ for all the possible values e, b, a, n.

Inference

• If we know the jpd, we can answer all the possible queries:

$$P(q|e) = \frac{P(q, e)}{P(e)}$$

$$= \frac{\sum_{x, X=U \setminus Q \setminus E} P(x, q, e)}{\sum_{y, Y=U \setminus E} P(y, e)}$$

9

Computational Cost

- If we have n binary variables ($|\mathbf{U}|=n$), knowing the jpd requires storing O(2ⁿ) different values.
- Even if we had the space to store all the 2ⁿ different values, computing P(**q**|**e**) would require O(2ⁿ) operations
- Impractical for real world domains
- How to avoid the space and time problems? Use conditional independence assertions

Conditional Independence

- X, Y, Z vectors of multivalued variables
- X and Y are conditionally independent given Z if

$$\forall x, y, z: P(y, z) > 0 \rightarrow P(x|y, z) = P(x|z)$$

- We write I < X, Z, Y >
- Special case: X and Y are independent if

$$\forall x, y: P(y) > 0 \rightarrow P(x|y) = P(x)$$

• We write I<**X**,{},**Y**>

11

Chain Rule

- n random variables X₁,...,X_n
- Let $U = \{X_1, ..., X_n\}$
- Joint event $\mathbf{u} = (x_1, ..., x_n)$
- Chain rule:

$$P(u) = P(x_{1},...,x_{n})$$

$$= P(x_{n}|x_{n-1},...,x_{1})...P(x_{2}|x_{1})P(x_{1})$$

$$= \prod_{i=1}^{n} P(x_{i}|x_{i-1},...,x_{1})$$

Conditional Independence

- Π_{i} is a subset of $\{X_{i-1},...,X_{1}\}$ such that
- X_i is conditionally independent of $\{X_{i-1},...,X_1\}\backslash \Pi_i$ given Π_i

$$P(x_i|x_{i-1},...,x_1) = P(x_i|\pi_i)$$
 whenever $P(x_{i-1},...,x_1) > 0$

- where π_i is a set of values for Π_i
- Π_{i} parents of X_{i}

13

Conditional Independence

• Knowing Π_i for all i we could write

$$P(u) = P(x_{1},...,x_{n})$$

$$= P(x_{n}|x_{n-1},...,x_{1})...P(x_{2}|x_{1})P(x_{1})$$

$$= P(x_{n}|\boldsymbol{\pi}_{n})...P(x_{2}|\boldsymbol{\pi}_{2})P(x_{1}|\boldsymbol{\pi}_{1})$$

$$= \prod_{i=1}^{n} P(x_{i}|\boldsymbol{\pi}_{i})$$

Conditional Independence

• In order to compute P(**u**) we have to store

$$P(x_i|\boldsymbol{\pi_i})$$

- for all values x_i and π_i
- $P(x_i | \pi_i)$: Conditional probability table
- If Π_i is much smaller than the set $\{X_{i-1},...,X_1\}$, then we have huge savings
- If k is the maximum number of parents of a variable, then storage is O(n2^k) instead of O(2ⁿ)

15

Graphical Representation

- We can represent the conditional independence assertions using a directed graph with a node per variable
- Π_i is the set of parents of X_i
- The graph is acyclic

Example Network

- Variable order: E,B,A,N
- Independencies

$$P(e)$$

$$P(b|e)=P(b)$$

$$P(a|b,e)=P(a|b,e)$$

$$P(n|a,b,e)=P(n|a)$$

17

Conditional Probability Tables

- Earthquake E, e₁=no, e₂=moderate, e₃=severe
- Burglary B,: b₁=no, b₂=yes through door, b₃=yes through window
- Alarm A, $a_1 = no$, $a_2 = yes$
- Neighbor call N, n₁=no, n₂=yes

P(B)	
B=no	0,7
B=door	0,1
B=windows	0,2

P(E)	
E=no	0,6
E=moderate	0,2
E=severe	0,2

P(A EB)	no,no	no,do	no,wi	mo,no	mo,do	mo,wi	se,no	se,do	se,wi
no	0,99	0,1	0,2	0,8	0,08	0,1	0,7	0,05	0,07
yes	0,01	0,9	0,8	0,2	0,92	0,9	0,3	0,95	0,93

P(N A)	A=no	A=yes
N=no	0,9	0,05
N=yes	0,1	0,95

Bayesian Network

- A Bayesian network [Pearl 85] (BN) B is a couple (G,Θ) where
 - G is a directed acyclic graph (DAG) (V,E) where
 - V is a set of vertices $\{X_1,...,X_n\}$
 - E is a set of edges, i.e. A set of couples (X_i, X_i)
 - $\langle X_1,...,X_n \rangle$ is a topological sort of G, i.e. $(X_i,X_i) \in E \Rightarrow i < j$
 - Θ is a set of conditional probability tables (cpts) $\{\theta_{x_i|\boldsymbol{\pi}_i} \in R | i=1,...,n, x_i \in X_i, \boldsymbol{\pi}_i \in \Pi_i\}$
 - where Π_i is the set of parents of X_i

19

Bayesian Network

• BNs are also called belief networks or directed acyclic graphical models

Bayesian Network

- A BN (G,Θ) represents a jpd P iff
 - given its parents in G, each variable is independent of its other predecessors

$$P(x_i|x_{i-1},\ldots,x_1)=P(x_i|\boldsymbol{\pi_i})$$

- $\theta_{xi|\pi i} = P(x_i|\pi_i)$ for all i and π_i
- In this case

$$P(x_{1,...,x_{n}}) = \prod_{i=1}^{n} P(x_{i}|\boldsymbol{\pi}_{i})$$
$$= \prod_{i=1}^{n} \theta_{x_{i}|\boldsymbol{\pi}_{i}}$$

21

How to Build a Bayesian Network

- Choose an ordering X_1 .. X_n for the variables
- For i = 1 to n:
 - Add X_i node to the network
 - Set Π_i to be a minimal subset of $\{X_1...X_{i-1}\}$ such that we have conditional independence of X_i and all other members of $\{X_1...X_{i-1}\}$ given Π_i
 - Assign a value to $P(x_i|\boldsymbol{\pi}_i)$ for all the values of x_i and $\boldsymbol{\pi}_i$

Building a Bayesian Network

- Usually the expert considers a variable X as a child of Y if Y is a **direct cause** of X
- Correlation and causality are related but are **not** the same thing
 - See the book [Pearl 00]

23

Pathfinder system [Suermondt et al. 90]

- Diagnostic system for lymph-node diseases.
- 60 diseases and 100 symptoms and test-results.
- 14,000 probabilities
- Expert consulted to make net.
- 8 hours to determine variables.
- 35 hours for net topology.
- 40 hours for probability table values.

Pathfinder system [Suermondt et al. 90]

- Pathfinder is now outperforming the world experts in diagnosis.
- Being extended to several dozen other medical domains.

25

How to Tell Independence

- There is a relatively simple algorithm for determining whether two variables in a Bayesian network are conditionally independent: **d**-**separation**.
- Definition: *X* and *Z* are **d-separated** by a set of evidence variables *E* iff every undirected path from *X* to *Z* is "blocked", where a path is "blocked" iff one or more of the following conditions is true: ...

Blocked Path

There exists a variable *V* on the path such that

it **is** in the evidence set *E*

the arcs putting *V* in the path are "tail-to-tail"

Or, there exists a variable V on the path such that

it **is** in the evidence set E

the arcs putting *V* in the path are "tail-to-head"

27

Blocked Path

• ... Or, there exists a variable V on the path such that it is **NOT** in the evidence set E

neither are any of its descendants

the arcs putting V on the path are "head-to-head"

Example

- I<C, {}, D>?
- $I < C, \{A\}, D > ?$
- I<C, {A, B}, D>?
- I<C, {A, B, J}, D>?
- I<C, {A, B, E, J}, D>?

29

Example

- I<C, {}, D>?No
- I<C, {A}, D>?No
- I<C, {A, B}, D>?Yes
- I<C, {A, B, J}, D>?No
- I<C, {A, B, E, J}, D>?Yes

Inference with Bayesian Networks

- With a Bayesian Network we save space, do we also save time?
- Do we have to use the formula

$$P(q|e) = \frac{\sum_{x, X=U \setminus Q \setminus E} P(x, q, e)}{\sum_{y, Y=U \setminus E} P(y, e)}$$

• to compute P(q|e)?

31

Inference with Bayesian Networks

- There are quicker algorithms
 - Exact methods for polytrees
 - Belief propagation
 - Exact methods for general networks
 - Junction tree
 - Variable elimination
 - Approximate methods for general networks:
 - Stochastic simulation
 - Loopy belief propagation
 - Variational methods,

Complexity of Inference

- Exact inference with BN is #P-complete
- #P-complete: a special case of NP-complete problems
 - The answer to a #P-complete problem is the number of solutions to a NP-complete problem

33

Polytrees

A polytree is a directed acyclic graph in which no two nodes have more than one path between them.

A polytree

Not a polytree

• i.e. There are no cycles in the corresponding undirected graph

Belief Propagation [Pearl 88]

- Best presented over Factor Graphs
- A **Factor Graph** is a bipartite graph (V,F,E) where vertices V index the variables, the vertices F index the families (factors), and edges E are connected between V and F
- A factor, given the values of the variables involved in the factor, returns a non-negative number.
- A family in a BN can be seen as a factor

Example Network

35

Messages

• The message from a variable node X to a neighbor factor node f is

$$\mu_{X \to f}(x) = \prod_{h \in nb(X) \setminus X} \mu_{h \to X}(x)$$

- where nb(X) is the set of neighbor of X, the set of factors X appears in
- The message from a factor to a variable is

$$\mu_{f \to X}(x) = \sum_{\neg \{X\}} (f(\mathbf{x}) \prod_{Y \in nb(f) \setminus X} \mu_{Y \to f}(y))$$

• Where nb(f) is the set of arguments of f and the sum is over all of these except X

Belief

• The unnormalized belief of each variable X_i in iteration k can be computed from the equation

$$b_i(x_i) = \prod_{f \in nb(X_i)} \mu_{f \to X_i}(x_i)$$

- For example, if X_1 has 3 values x_{11} , x_{12} , x_{13} , their probabilities are
- $B=b_1(x_{11})+b_1(x_{12})+b_1(x_{13})$
- $P(x_{11})=b_1(x_{11})/B$ $P(x_{12})=b_1(x_{12})/B$ $P(x_{13})=b_1(x_{13})/B$

Incorporation of Evidence

- For each factor f, for each combination of values of the arguments that is incompatible with the evidence, f(x) is set to 0
- Example: evidence N=yes, factor f4 becomes

N	A	f4
no	no	0,9
no	yes	0,05
yes	no	0,1
yes	yes	0,05

N	A	f4
no	no	0
no	yes	0
yes	no	0,1
yes	yes	0,05

39

Algorithm

- Initialize all messages to 1 or randomly
- Loop
 - Select an arc
 - Compute the value of the message on the arc
- Until the messages do not change anymore
- If the network is a polytree, this algorithm converges
- Various strategies for selecting the arc to update

Message schedules

- The order in which messages are updated
- Asynchronous schedules: messages are updated sequentially, one arc at a time
- Synchronous schedules: all messages are updated in parallel.
- Flooding (asynchronous): messages are passed from each variable to each corresponding factor and back at each step
- The most widely used and generally best-performing method

General Networks

 Networks that have a cycle in their undirected version

- Three possibilities
 - Conditioning
 - Clustering
 - Approximations

Conditioning

43

Clustering

• Group together variables so that the resulting network is a polytree and use belief propagation

• Problem: how to find a good clustering?

Join Trees

- Technique for clustering variables
- Steps:
 - Obtain an undirected version of the network
 - Perform a graph operation on it (triangulation)
 - Each clique is a compound variable
 - Add direction to the edges

45

Junction Tree

- The resulting inference algorithm [Lauritzen, Spiegelhalter 1988] is called
 - Junction tree algorithm (jt), or
 - Clique propagation

Approximate Methods

- Stochastic simulation:
 - Generate N samples from BN
 - Count: N_e: samples that satisfy e, N_{qe} samples that satisfy
 q,e
 - $-P(q|e)=N_{qe}/N_{e}$
- Loopy belief propagation:
 - bp in networks with cycles
 - Experiments have shown that it converges also in network with cycles, often to good quality solutions

47

Stochastic Simulation

- Let $X_1,...,X_n$ be a topological sort of the variables
- For i=1 to n
 - Find parents, if any, of X_i . Call them $X_{p(i,1)}$, $X_{p(i,2)}$, ... $X_{p(i,p(i))}$.
 - Recall the values that those parents were randomly given: $x_{p(i,1)}, x_{p(i,2)}, ... x_{p(i,p(i))}$.
 - Look up in the cpt for:

$$P(X_i \!\!=\!\! x_i \mid X_{p(i,1)} \!\!=\!\! x_{p(i,1)} \!\!,\! X_{p(i,2)} \!\!=\!\! x_{p(i,2)} \!\!... X_{p(i,p(i))} \!\!=\!\! x_{p(i,p(i))})$$

- Randomly choose x_i according to this probability

Problems in Building BN

- Assessing conditional independence is not always easy for humans
- Usually done on the basis of causal information
- Assigning a number to each cpt entry is also difficult for humans

49

Problems in Building BN

- Often we do not have an expert but we are given a set of observations D={u¹,...u^N}
- \mathbf{u}^{j} is an assignment to all the variables $\mathbf{U}=\{X_{1},...,X_{n}\}$
- How to infer the parameters and/or the structure from D?

Learning

- We want to find a BN over U such that the probability of the data P(D) is maximized
- P(D) is also called the **likelihood** of the data
- We assume that all the samples are independent and identically distributed (iid) so

$$P(D) = \prod_{i=1}^{N} P(\mathbf{u}^{i})$$

• Often the natural log of P(D) (**log likelihood**) is considered

$$\log P(D) = \sum_{i=1}^{N} \log P(\boldsymbol{u}^{i})$$

51

Learning BN

- Tasks
 - Computing the parameters given a fixed structure or
 - finding the structure and the parameters
- Properties of data:
 - complete data: in each data vectors **u**^j, the values of all the variables are observed
 - incomplete data

Parameter Learning from Complete Data

Parameters to be learned

$$\theta_{x_i|\boldsymbol{\pi}_i} = P(x_i|\boldsymbol{\pi}_i)$$

- for all x_{i} , π_{i} , i=1,...,n
- The values of the parameters that maximize the likelihood can be computed in closed form

53

Maximum Likelihood Parameters

- Given by relative frequency
- If N_{y} be the number of vectors of D where Y=y. $\theta_{x_{i}|\pi_{i}} = \frac{N_{x_{i},\pi_{i}}}{N_{\pi_{i}}}$

$$\theta_{x_i|\boldsymbol{\pi}_i} = \frac{N_{x_i,\boldsymbol{\pi}_i}}{N_{\boldsymbol{\pi}_i}}$$

• Counting: for each i, for each value π_i we must collect

$$C_{\boldsymbol{\pi}_i} = \langle N_{x_i^1, \boldsymbol{\pi}_i}, \dots, N_{x_i^{v_i}, \boldsymbol{\pi}_i} \rangle$$

• where v_i is the number of values of X_i

Naive Bayes Special Case

- We want to perform classification
- One variable C represents the class
- \bullet The variables **X** represent the attributes
- Model:

• X_i independent from X_j given C

55

Naive Bayes Special Case

• Conditional probability tables (case of Boolean variables):

	C=true	C=false
X _i =true	P(X _i =true C=true)	P(X _i =true C=false)
X _i =false	P(X _i =false C=true)	P(X _i =false C=false)

Example

No	Outlook	Temp	Humid	Windy	Class
D1	sunny	mild	normal	T	P
D2	sunny	hot	high	T	N
D3	sunny	hot	high	F	N
D4	sunny	mild	high	F	N
D5	sunny	cool	normal	F	P
D6	overcast	mild	high	T	P
D7	overcast	hot	high	F	P
D8	overcast	cool	normal	T	P
D9	overcast	hot	normal	F	P
D10	rain	mild	high	T	N
D11	rain	cool	normal	T	N
D12	rain	mild	normal	F	P
D13	rain	cool	normal	F	P
D14	rain	mild	high	F	P

	C=P	C=N
Humid=normal	6/9=0.66666	1/5=0.2
Humid=high	3/9=0.33333	4/5=0.8

57

Queries

• Computing the probability of a class given values for the attributes: $P(c|x_1,...,x_n)$

$$P(c|x_{1},...,x_{n}) = \frac{P(c,x_{1},...,x_{n})}{P(x_{1}...x_{n})} = \frac{P(x_{1},...,x_{n}|c)P(c)}{P(x_{1}...x_{n})}$$

• Since the attributes are independent given the class

$$P(c|x_1,...,x_n) = \frac{P(x_1|c)...P(x_n|c)P(c)}{P(x_1...x_n)}$$

Example

- We want to classify <Outlook=sunny,Temp=cool,Humid=high,Windy=T>
- We have to compute P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)
- We compute only the parameters we need

```
P(Class=P)=9/14=0.64

P(Class=N)=5/14=0.36

P(Outlook=sunny | Class=P)=2/9=0.222

P(Outlook=sunny | Class=N)=3/5=0.6

P(Temp=cool | Class=P)=3/9=0.333

P(Temp=cool | Class=N)=1/5=0.2

P(Humid=high | Class=P)=3/9=0.333

P(Humid=high | Class=N)=4/5=0.8

P(Windy=T | Class=P)=3/9=0.33

P(Windy=T | Class=N)=3/5=0.6
```

59

Example

P(Class=P,Outlook=sunny,Temp=cool,Humid=high,Windy=T) = 0.0053 P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Windy=T) = 0.0206

• We can compute P(Outlook=sunny,Temp=cool,Humid=high,Windy=T) by marginalization:

```
P(Outlook=sunny,Temp=cool,Humid=high,Windy=T)=
P(Class=P,Outlook=sunny,Temp=cool,Humid=high,Windy=T) +
P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Windy=T)=
0.0053+0.0206=0.0259
```

• So

```
P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)=0.0053/0.0259=0.205
P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)=0.0206/0.0259=
```

P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)=0.0206/0.0259=0.795

Structure Learning from Complete Data

- Perform a local search in the space of possible structures
- HGC algorithm [Heckerman, Geiger, Chickering 95]:
 - Start with a structure BestG' (possibly empty)
 - Repeat
 - BestG=BestG'
 - Let Ref={G|G is obtained from BestG' by adding, deleting or reversing an arc}
 - Let $BestG'=argmax_{G'} \{score(G)|G \in Ref\}$
 - while score(BestG')-score(BestG)>0

61

Structure Score

score
$$(G) = \log P(D|G)$$

 $P(D|G) = \int \rho(D, \Theta|G) d\Theta$
 $= \int P(D|\Theta, G) \rho(\Theta|G) d\Theta$

where

$$\rho(\boldsymbol{\Theta}|\boldsymbol{G}) = \prod_{i, \boldsymbol{\pi}_i} \rho(\boldsymbol{\theta}_{\boldsymbol{\pi}_i})$$
$$\boldsymbol{\theta}_{\boldsymbol{\pi}_i} = \langle \boldsymbol{\theta}_{x_i^1 | \boldsymbol{\pi}_i}, \dots, \boldsymbol{\theta}_{x_i^{\nu_i} | \boldsymbol{\pi}_i} \rangle$$

• and $\rho(\theta_{\pi i})$ is the prior density of the vector $\theta_{\pi i}$

Prior Density of the Parameters

- A common choice for the form of the prior density is the **Dirichlet probability density**
- In this case $\rho(\theta_{\pi i})$ is described by v_i parameters

$$C'_{\pi_i} = \langle N'_{x_i^1, \pi_i}, \dots, N'_{x_i^{\nu_i}, \pi_i} \rangle$$

• Prior counts: it is as if we had previously observed some data on which the counts are $N'_{xi,\pi i}$

63

Structure Score

• If the priors for the parameters are Dirichlet, then the score is called BD (for Bayesian Dirichlet) and

$$BD(G) = \sum_{i} BD_{i}(G)$$

• where $BD_i(G)$ depends only on C_i and C'_i , the counts for the family of X_i

$$C_{i} = \langle C_{\pi_{i}^{1}}, \dots, C_{\pi_{i}^{r_{i}}} \rangle$$

$$C'_{i} = \langle C'_{\pi_{i}^{1}}, \dots, C'_{\pi_{i}^{r_{i}}} \rangle$$

Structure Score

$$BD_{i}(G) = \sum_{\pi_{i}} \log \frac{\Gamma(N_{\pi_{i}})}{\Gamma(N_{\pi_{i}} + N'_{\pi_{i}})} + \sum_{x_{i}} \log \frac{\Gamma(N_{x_{i}, \pi_{i}} + N'_{x_{i}, \pi_{i}})}{\Gamma(N_{x_{i}, \pi_{i}})}$$

• Where Γ is the Gamma function, an extension of the factorial function with its argument shifted down by 1, to real and complex numbers. That is, if n is a positive integer:

$$\Gamma(n)=(n-1)!$$

otherwise

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

65

Gamma Function

Log Gamma Function

67

Structure Score

- BD(G) is **decomposable**:
 - It can be computed independently for each family
- Each edge operation involves
 - 1 family (addition, deletion) or
 - 2 families (reversal)
- BD(G) can be quickly computed from BD(BestG') by changing only the score of the affected families

Parameter Learning from Incomplete Data

- The maximum likelihood parameters cannot be computed in closed form
- An iterative algorithm is necessary: the EM algorithm
- Finds a (possibly) local maximum of the likelihood

69

EM Algorithm

- Initialize the parameters at random Θ
- Repeat
 - Expectation step:
 - compute the probability P(y|e) of each value y of the missing attributes using (G,Θ) and inference
 - Compute Θ by maximum likelihood on D'
 - Relative frequency for each family
 - If a variable Y is unobserved in an example e that matches x_{i} , π_{i} , instead of adding 1 to $N_{xi,\pi i}$ we add P(y|e)

Structure Learning from Incomplete Data

- There is no decomposable score
- HGC would not be efficient
- Structural EM:
 - Start with a structure BestG' (possibly empty)
 - Repeat
 - BestG=BestG'
 - Compute the parameters of BestG with EM
 - Optimize a lower bound of the likelihood of the observed data
 - Let BestG' the optimum
 - Until no improvement

71

Applications of BN

- Monitoring of emergency care patients
- Model of barley crops yield
- Diagnosis of carpal tunnel syndrome
- Insulin dose adjustment (DBN) in diabetes
- Predicting hails in northern Colorado
- Evaluating insurance applications

Applications of BN

- Deciding on the amount of fungicides to be used against attack of mildew in wheat
- Assisting experts of electromyography
- Pedigree of breeding pigs
- Modeling the biological processes of a water purification plant
- Printer troubleshooting (Microsoft Windows)

73

Printer Troubleshooting (Windows 95)

Applications

- Office Assistant in MS Office ("smiley face")
 - Bayesian network based free-text help facility
 - help based on past experience (keyboard/mouse use) and task user is doing currently

75

Markov Networks (MN)

- Approach alternative to BN
- Also called Random Fields, undirected graphical models
- Undirected graph
- Conditional independence represented by graph separation
- Probability distribution as the product of a set of potentials or factors (functions of a subset of variables) divided by a normalization constant
- Potentials over cliques

Example

77

Markok Networks

• Probability

$$P(\boldsymbol{u}) = \frac{\prod_{c} f_{c}(\boldsymbol{x}_{c})}{Z}$$

$$Z = \sum_{u} \prod_{c} f_{c}(\boldsymbol{x}_{c})$$

• Z is called **partition function**, ensures that the probabilities sum to 1

Loglinear Models

- If all the potentials are >0, they can be represented as exponential functions, i.e., f_4 can be represented as f_4 =exp(w_4 F_4)
- where F_4 is any real function of f_4 arguments and w_4 is a real weight. Then

$$P(\boldsymbol{u}) = \frac{\exp \sum_{c} w_{c} F_{c}(\boldsymbol{x}_{c})}{Z}$$

$$Z = \sum_{u} \exp \sum_{c} w_{c} F_{c}(\boldsymbol{x}_{c})$$

79

How to tell independence

 Definition: X and Y are independent given a set of variables Z (I<X,Z,Y>) iff every path from X to Y passes through a variable of Z

- $I < B, \{\}, N > ?$
- I<B, A, N>?
- I<B, E, N>?
- $I < \{B,E\}, A, N > ?$

How to tell independence

 Definition: X and Y are independent given a set of variables Z (I<X,Z,Y>) iff every path from X to Y passes through a variable of Z

- $I < B, \{\}, N > No$
- I<B, A, N> Yes
- I<B, E, N> No
- I<{B,E}, A, N>Yes

81

Markov Network

- Inference:
 - Algorithms similar to those for BN (bp, cp, ve, ss...)
 - Same complexity
- MN can represent some independencies that BN can not represent and vice versa
- Advantage: we do not have to avoid cycles
- Disadvantage: MN parameters are more difficult to interpret

BN Software

- List of BN software http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html\
- BNT: inference and learning, Matlab, open source
- MSBNx: inference, by Microsoft, free closed source
- OpenBayes: inference and learning, Python, open source
- BNJ: inference and learning, Java, open source
- Weka: learning, Java, open source

83

Resources

- Daphne Koller, Nir Friedman, Probabilistic graphical models: principles and techniques, MIT Press: 2009, ISBN 978-0-262-01319-2
- Probabilistic Reasoning in Intelligent Systems by Judea Pearl. Morgan Kaufmann: 1998.
- Probabilistic Reasoning in Expert Systems by Richard Neapolitan. Wiley: 1990.
- List of BN Models and Datasets http://www.cs.huji.ac.il/labs/compbio/Repository/

References

- [Pearl 85] Pearl, J., "Bayesian Networks: a Model of Self-Activated Memory for Evidential Reasoning," UCLA CS Technical Report 850021, Proceedings, Cognitive Science Society, UC Irvine, 329-334, August 15-17, 1985.
- [Pearl 00] Pearl, J., Causality: Models, Reasoning, and Inference, Cambridge University Press, 2000
- [Suermondt et al. 90] Henri Jacques Suermondt, Gregory F. Cooper, David Heckerman, "A combination of cutset conditioning with clique-tree propagation in the Pathfinder system", UAI '90.

References

- [Pearl 88] Judea Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann: 1998.
- [Lauritzen, Spiegelhalter 1988]
- [Heckerman, Geiger, Chickering 95] D. Heckerman, D. Geiger, D. M. Chickering: "Learning Bayesian Networks: The Combination of Knowledge and Statistical Data", Machine Learning, 20(3), 1995