Bayesian Networks

Fabrizio Riguzzi

-Acknowledgments: some slides from

- Andrew Moore's tutorials http://www.autonlab.org/tutorials/
- Irina Rish and Moninder Singh's tutorial http://www.research.ibm.com/people/r/rish/

Summary

- Conditional independence
- Definition of Bayesian network
- Inference
- Learning
- Markov networks

Domain Modeling

- We use a set of random variables to describe the domain of interest
- Example: home intrusion detection system, variables:
- Earthquake E, values $e_{1}=$ no, $e_{2}=$ moderate, $e_{3}=$ severe
- Burglary B, values: $b_{1}=$ no, $b_{2}=y e s$ through door, $b_{3}=y e s$ through window
- Alarm A, values $a_{1}=n o, a_{2}=y e s$
- Neighbor call N, values $n_{1}=n o, n_{2}=y e s$

Inference

- We would like to answer the following questions
- What is the probability of a burglary through the door? (compute $\mathrm{P}\left(\mathrm{b}_{2}\right)$, belief computation)
- What is the probability of a burglary through the door given that the neighbor called ? (compute $\mathrm{P}\left(\mathrm{b}_{2} \mid \mathrm{n}_{2}\right)$, belief updating)

Inference

- What is the probability of a burglary through the door given that there was a moderate earthquake and the neighbor called ? (compute $\mathrm{P}\left(\mathrm{b}_{2} \mid \mathrm{n}_{2}, \mathrm{e}_{2}\right)$, belief updating)
- What is the probability of a burglary through the door and of the alarm ringing given that there was a moderate earthquake and the neighbor called ? (compute $\mathrm{P}\left(\mathrm{a}_{2}, \mathrm{~b}_{2} \mid\right.$ $\mathrm{n}_{2}, \mathrm{e}_{2}$), belief updating)
- What is the most likely value for burglary given that the neighbor called ($\operatorname{argmax}_{\mathrm{b}} \mathrm{P}\left(\mathrm{b} \mid \mathrm{n}_{2}\right)$, belief revision)

Types of Problems

- Diagnosis: P(cause|symptom)=?
- Prediction: P (symptom|cause)=?
- Classification: $\operatorname{argmax}_{\text {class }} \mathrm{P}($ class|data $)$

Inference

- In general, we want to compute the probability $\mathrm{P}(\mathbf{q} \mid \mathbf{e})$
- of a query \mathbf{q} (assignment of values to a set of variables Q)
- given the evidence \mathbf{e} (assignment of values to a set of variables \mathbf{E})

Joint Probability Distribution

- The joint probability distribution (jpd) of a set of variables \mathbf{U} is given by $\mathrm{P}(\mathbf{u})$ for all values \mathbf{u}
- For our example
- U=\{E,B,A,N\}
- We have the jpd if we know $\mathrm{P}(\mathbf{u})=\mathrm{P}(\mathrm{e}, \mathrm{b}, \mathrm{a}, \mathrm{n})$ for all the possible values e, b, a, n .

Inference

- If we know the jpd, we can answer all the possible queries:

$$
\begin{aligned}
P(\boldsymbol{q} \mid \boldsymbol{e}) & =\frac{P(\boldsymbol{q}, \boldsymbol{e})}{P(\boldsymbol{e})} \\
& =\frac{\sum_{\boldsymbol{x}, X=U \backslash \backslash \backslash E} P(\boldsymbol{x}, \boldsymbol{q}, \boldsymbol{e})}{\sum_{\boldsymbol{y}, Y=U \backslash E} P(\boldsymbol{y}, \boldsymbol{e})}
\end{aligned}
$$

Computational Cost

- If we have n binary variables $(|\mathbf{U}|=n)$, knowing the jpd requires storing $\mathrm{O}\left(2^{\mathrm{n}}\right)$ different values.
- Even if we had the space to store all the 2^{n} different values, computing $\mathrm{P}(\mathbf{q} \mid \mathbf{e})$ would require $\mathrm{O}\left(2^{\mathrm{n}}\right)$ operations
- Impractical for real world domains
- How to avoid the space and time problems? Use conditional independence assertions

Conditional Independence

- $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ vectors of multivalued variables
- \mathbf{X} and \mathbf{Y} are conditionally independent given \mathbf{Z} if

$$
\forall \boldsymbol{x}, \boldsymbol{y}, z: P(\boldsymbol{y}, z)>0 \rightarrow P(\boldsymbol{x} \mid \boldsymbol{y}, z)=P(\boldsymbol{x} \mid \boldsymbol{z})
$$

- We write $\mathrm{I}\langle\mathbf{X}, \mathbf{Z}, \mathbf{Y}>$
- Special case: \mathbf{X} and \mathbf{Y} are independent if

$$
\forall \boldsymbol{x}, \boldsymbol{y}: P(\boldsymbol{y})>0 \rightarrow P(\boldsymbol{x} \mid \boldsymbol{y})=P(\boldsymbol{x})
$$

- We write $\mathrm{I}<\mathbf{X},\{ \}, \mathbf{Y}>$

Chain Rule

- n random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
- Let $\mathbf{U}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$
- Joint event $\mathbf{u}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
- Chain rule:

$$
\begin{aligned}
P(\boldsymbol{u}) & =P\left(x_{1,}, \ldots, x_{n}\right) \\
& =P\left(x_{n} \mid x_{n-1} \ldots, x_{1}\right) \ldots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid x_{i-1} \ldots, x_{1}\right)
\end{aligned}
$$

Conditional Independence

- Π_{i} is a subset of $\left\{X_{i-1}, \ldots, X_{1}\right\}$ such that
- X_{i} is conditionally independent of $\left\{\mathrm{X}_{\mathrm{i}-1}, \ldots, \mathrm{X}_{1}\right\} \backslash \boldsymbol{\Pi}_{\mathrm{i}}$ given Π_{i}

$$
P\left(x_{i} \mid x_{i-1} \ldots, x_{1}\right)=P\left(x_{i} \mid \pi_{i}\right) \quad \text { whenever } \mathrm{P}\left(\mathrm{x}_{\mathrm{i}-1}, \ldots, \mathrm{x}_{1}\right)>0
$$

- where $\boldsymbol{\pi}_{\mathrm{i}}$ is a set of values for $\boldsymbol{\Pi}_{\mathrm{i}}$
- Π_{i} parents of X_{i}

Conditional Independence

- Knowing Π_{i} for all i we could write

$$
\begin{aligned}
P(\boldsymbol{u}) & =P\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{n} \mid x_{n-1} \ldots, x_{1}\right) \ldots P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
& =P\left(x_{n} \mid \boldsymbol{\pi}_{\boldsymbol{n}}\right) \ldots P\left(x_{2} \mid \boldsymbol{\pi}_{\mathbf{2}}\right) P\left(x_{1} \mid \boldsymbol{\pi}_{\mathbf{1}}\right) \\
& =\prod_{i=1}^{n} P\left(x_{i} \mid \boldsymbol{\pi}_{\boldsymbol{i}}\right)
\end{aligned}
$$

Conditional Independence

- In order to compute $\mathrm{P}(\mathbf{u})$ we have to store

$$
P\left(x_{i} \mid \boldsymbol{\pi}_{i}\right)
$$

- for all values x_{i} and $\boldsymbol{\pi}_{\mathrm{i}}$
- $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \boldsymbol{\pi}_{\mathrm{i}}\right)$: Conditional probability table
- If Π_{i} is much smaller than the set $\left\{X_{i-1}, \ldots, X_{1}\right\}$, then we have huge savings
- If k is the maximum number of parents of a variable, then storage is $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{k}}\right)$ instead of $\mathrm{O}\left(2^{\mathrm{n}}\right)$

Graphical Representation

- We can represent the conditional independence assertions using a directed graph with a node per variable
- Π_{i} is the set of parents of X_{i}
- The graph is acyclic

Example Network

- Variable order: E,B,A,N

- Independencies

$$
\begin{aligned}
& P(e) \\
& P(b \mid e)=P(b) \\
& P(a \mid b, e)=P(a \mid b, e) \\
& P(n \mid a, b, e)=P(n \mid a)
\end{aligned}
$$

Conditional Probability Tables

- Earthquake $\mathrm{E}, \mathrm{e}_{1}=$ no, $\mathrm{e}_{2}=$ moderate, $\mathrm{e}_{3}=$ severe
- Burglary $B,: b_{1}=n o, b_{2}=y e s ~ t h r o u g h ~ d o o r, ~ b_{3}=y e s ~ t h r o u g h ~ w i n d o w ~$
- Alarm A, $a_{1}=n o, a_{2}=y e s$
- Neighbor call $\mathrm{N}, \mathrm{n}_{1}=\mathrm{no}, \mathrm{n}_{2}=\mathrm{yes}$

$\mathrm{P}(\mathrm{B})$	
$\mathrm{B}=$ no	0,7
$\mathrm{~B}=$ door	0,1
$\mathrm{~B}=$ windows	0,2

$\mathrm{P}(\mathrm{E})$	
$\mathrm{E}=$ no	0,6
$\mathrm{E}=$ moderate	0,2
$\mathrm{E}=$ severe	0,2

Bayesian Network

- A Bayesian network [Pearl 85] (BN) B is a couple (G, Θ) where
- G is a directed acyclic graph (DAG) (V,E) where
- V is a set of vertices $\left\{X_{1}, \ldots, X_{n}\right\}$
- E is a set of edges, i.e. A set of couples $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)$
- $\left\langle\mathrm{X}_{\mathrm{i}}, \ldots, \mathrm{X}_{\mathrm{n}}\right\rangle$ is a topological sort of G, i.e. $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right) \in \mathrm{E} \Rightarrow \mathrm{i}<\mathrm{j}$
- Θ is a set of conditional probability tables (cpts)

$$
\left\{\theta_{x_{i} \mid \pi_{i}} \in R \mid i=1, \ldots, n, x_{i} \in X_{i}, \boldsymbol{\pi}_{i} \in \Pi_{i}\right\}
$$

- where Π_{i} is the set of parents of X_{i}

Bayesian Network

- BNs are also called belief networks or directed acyclic graphical models

Bayesian Network

- A BN (G, Θ) represents a jpd P iff
- given its parents in G, each variable is independent of its other predecessors

$$
P\left(x_{i} \mid x_{i-1} \ldots, x_{1}\right)=P\left(x_{i} \mid \pi_{i}\right)
$$

- $\theta_{\mathrm{xi} \mid \mathrm{ri}}=\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \boldsymbol{\pi}_{\mathrm{i}}\right)$ for all i and $\boldsymbol{\pi}_{\mathrm{i}}$
- In this case

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} P\left(x_{i} \mid \boldsymbol{\pi}_{i}\right) \\
& =\prod_{i=1}^{n} \theta_{x|j| \pi_{i}}
\end{aligned}
$$

How to Build a Bayesian Network

- Choose an ordering X_{1}.. X_{n} for the variables
- For $\mathrm{i}=1$ to n :
- Add X_{i} node to the network
- Set Π_{i} to be a minimal subset of $\left\{X_{1} \ldots X_{i-1}\right\}$ such that we have conditional independence of X_{i} and all other members of $\left\{\mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{i}-1}\right\}$ given $\boldsymbol{\Pi}_{\mathrm{i}}$
- Assign a value to $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}} \mid \boldsymbol{\pi}_{\mathrm{i}}\right)$ for all the values of x_{i} and $\boldsymbol{\pi}_{\mathrm{i}}$

Building a Bayesian Network

- Usually the expert considers a variable X as a child of Y if Y is a direct cause of X
- Correlation and causality are related but are not the same thing
- See the book [Pearl 00]

Pathfinder system [Suermondt et al. 90]

- Diagnostic system for lymph-node diseases.
- 60 diseases and 100 symptoms and test-results.
- 14,000 probabilities
- Expert consulted to make net.
- 8 hours to determine variables.
- 35 hours for net topology.
- 40 hours for probability table values.

Pathfinder system [Suermondt et al. 90]

- Pathfinder is now outperforming the world experts in diagnosis.
- Being extended to several dozen other medical domains.

How to Tell Independence

- There is a relatively simple algorithm for determining whether two variables in a Bayesian network are conditionally independent: dseparation.
- Definition: X and Z are d-separated by a set of evidence variables E iff every undirected path from X to Z is "blocked", where a path is "blocked" iff one or more of the following conditions is true: ...

Blocked Path

There exists a variable V on the path such that
it is in the evidence set E the arcs putting V in the path are "tail-to-tail"

Or, there exists a variable V on the path such that it is in the evidence set E the arcs putting V in the path are "tail-to-head"

Blocked Path

- ... Or, there exists a variable V on the path such that
it is NOT in the evidence set E
neither are any of its descendants the arcs putting V on the path are "head-to-head"
 -

Example

Example

- I<C, \{\}, D>?No
- I<C, \{A\}, D>?No
- $\mathrm{I}<\mathrm{C},\{\mathrm{A}, \mathrm{B}\}, \mathrm{D}>$?Yes
- I<C, \{A, B, J\}, D>?No
- I<C, \{A, B, E, J\}, D>?Yes

Inference with Bayesian Networks

- With a Bayesian Network we save space, do we also save time?
- Do we have to use the formula

$$
P(\boldsymbol{q} \mid \boldsymbol{e})=\frac{\sum_{\boldsymbol{x}, X=U \backslash Q \backslash E} P(\boldsymbol{x}, \boldsymbol{q}, \boldsymbol{e})}{\sum_{\boldsymbol{y}, Y=U \backslash E} P(\boldsymbol{y}, \boldsymbol{e})}
$$

- to compute $\mathrm{P}(\mathbf{q} \mid \mathbf{e})$?

Inference with Bayesian Networks

- There are quicker algorithms
- Exact methods for polytrees
- Belief propagation
- Exact methods for general networks
- Junction tree
- Variable elimination
- Approximate methods for general networks:
- Stochastic simulation
- Loopy belief propagation
- Variational methods,

Complexity of Inference

- Exact inference with BN is \#P-complete
- \#P-complete: a special case of NP-complete problems
- The answer to a \#P-complete problem is the number of solutions to a NP-complete problem

Polytrees

A polytree is a directed acyclic graph in which no two nodes have more than one path between them.

A polytree

Not a polytree

- i.e. There are no cycles in the corresponding undirected graph

Belief Propagation [Pearl 88]

- Best presented over Factor Graphs
- A Factor Graph is a bipartite graph (V,F,E) where vertices V index the variables, the vertices F index the families (factors), and edges E are connected between V and F
- A factor, given the values of the variables involved in the factor, returns a non-negative number.
- A family in a BN can be seen as a factor

Example Network

Messages

- The message from a variable node X to a neighbor factor node f is

$$
\mu_{X \rightarrow f}(x)=\prod_{h \in n b(X) \backslash X} \mu_{h \rightarrow X}(x)
$$

- where $\mathrm{nb}(\mathrm{X})$ is the set of neighbor of X , the set of factors X appears in
- The message from a factor to a variable is

$$
\mu_{f \rightarrow X}(x)=\sum_{\lceil\{X\}}\left(f(\boldsymbol{x}) \prod_{Y \in n b(f) \backslash X} \mu_{Y \rightarrow f}(y)\right)
$$

- Where $n b(f)$ is the set of arguments of f and the sum is over all of these except X

Belief

- The unnormalized belief of each variable X_{i} in iteration k can be computed from the equation

$$
b_{i}\left(x_{i}\right)=\prod_{f \in n b\left(X_{i}\right)} \mu_{f \rightarrow X_{i}}\left(x_{i}\right)
$$

- For example, if X_{1} has 3 values $\mathrm{x}_{11}, \mathrm{x}_{12}, \mathrm{X}_{13}$, their probabilities are
- $\mathrm{B}=\mathrm{b}_{1}\left(\mathrm{x}_{11}\right)+\mathrm{b}_{1}\left(\mathrm{x}_{12}\right)+\mathrm{b}_{1}\left(\mathrm{x}_{13}\right)$
- $\mathrm{P}\left(\mathrm{x}_{11}\right)=\mathrm{b}_{1}\left(\mathrm{x}_{11}\right) / \mathrm{B} \quad \mathrm{P}\left(\mathrm{x}_{12}\right)=\mathrm{b}_{1}\left(\mathrm{x}_{12}\right) / \mathrm{B} \quad \mathrm{P}\left(\mathrm{x}_{13}\right)=\mathrm{b}_{1}\left(\mathrm{x}_{13}\right) / \mathrm{B}$

Incorporation of Evidence

- For each factor f , for each combination of values of the arguments that is incompatible with the evidence, $f(\mathbf{x})$ is set to 0
- Example: evidence $\mathrm{N}=$ yes, factor f 4 becomes

N	A	$f 4$
no	no	0,9
no	yes	0,05
yes	no	0,1
yes	yes	0,05

N	A	$f 4$
no	no	0
no	yes	0
yes	no	0,1
yes	yes	0,05

Algorithm

- Initialize all messages to 1 or randomly
- Loop
- Select an arc
- Compute the value of the message on the arc
- Until the messages do not change anymore
- If the network is a polytree, this algorithm converges
- Various strategies for selecting the arc to update

Message schedules

- The order in which messages are updated
- Asynchronous schedules: messages are updated sequentially, one arc at a time
- Synchronous schedules: all messages are updated in parallel.
- Flooding (asynchronous): messages are passed from each variable to each corresponding factor and back at each step
- The most widely used and generally best-performing method

General Networks

- Networks that have a cycle in their undirected version

- Three possibilities
- Conditioning
- Clustering
- Approximations

Conditioning

Clustering

- Group together variables so that the resulting network is a polytree and use belief propagation

- Problem: how to find a good clustering?

Join Trees

- Technique for clustering variables
- Steps:
- Obtain an undirected version of the network
- Perform a graph operation on it (triangulation)
- Each clique is a compound variable
- Add direction to the edges

Junction Tree

- The resulting inference algorithm [Lauritzen, Spiegelhalter 1988] is called
- Junction tree algorithm (jt), or
- Clique propagation

Approximate Methods

- Stochastic simulation:
- Generate N samples from BN
- Count: N_{e} : samples that satisfy $\mathbf{e}, \mathrm{N}_{\mathrm{qe}}$ samples that satisfy q,e
$-\mathrm{P}(\mathrm{q} \mid \mathbf{e})=\mathrm{N}_{\mathrm{qe}} / \mathrm{N}_{\mathrm{e}}$
- Loopy belief propagation:
- bp in networks with cycles
- Experiments have shown that it converges also in network with cycles, often to good quality solutions

Stochastic Simulation

- Let X_{1}, \ldots, X_{n} be a topological sort of the variables
- For $\mathrm{i}=1$ to n
- Find parents, if any, of X_{i}. Call them $X_{p(i, 1)}, X_{p(i, 2)}, \ldots$ $X_{p(i, p(i))}$.
- Recall the values that those parents were randomly given: $\mathrm{x}_{\mathrm{p}(\mathrm{i}, 1)}, \mathrm{x}_{\mathrm{p}(\mathrm{i}, 2)}, \ldots \mathrm{x}_{\mathrm{p}(\mathrm{i}, \mathrm{p}(\mathrm{i})}$.
- Look up in the cpt for:

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mid \mathrm{X}_{\mathrm{p}(\mathrm{i}, 1)}=\mathrm{X}_{\mathrm{p}(\mathrm{i}, 1)}, \mathrm{X}_{\mathrm{p}(\mathrm{i}, 2)}=\mathrm{x}_{\mathrm{p}(\mathrm{i}, 2)} \ldots \mathrm{X}_{\mathrm{p}(\mathrm{i}, \mathrm{p}(\mathrm{i})}=\mathrm{X}_{\mathrm{p}(\mathrm{i}, \mathrm{p}(\mathrm{i}))}\right)
$$

- Randomly choose x_{i} according to this probability

Problems in Building BN

- Assessing conditional independence is not always easy for humans
- Usually done on the basis of causal information
- Assigning a number to each cpt entry is also difficult for humans

Problems in Building BN

- Often we do not have an expert but we are given a set of observations $D=\left\{\mathbf{u}^{1}, \ldots \mathbf{u}^{\mathrm{N}}\right\}$
- \mathbf{u}^{j} is an assignment to all the variables $\mathbf{U}=\left\{X_{1}, \ldots, X_{n}\right\}$
- How to infer the parameters and/or the structure from D ?

Learning

- We want to find a BN over \mathbf{U} such that the probability of the data $P(D)$ is maximized
- $\mathrm{P}(\mathrm{D})$ is also called the likelihood of the data
- We assume that all the samples are independent and identically distributed (iid) so

$$
P(D)=\prod_{i=1}^{N} P\left(\boldsymbol{u}^{i}\right)
$$

- Often the natural log of $\mathrm{P}(\mathrm{D})(\log$ likelihood) is considered

$$
\log P(D)=\sum_{i=1}^{N} \log P\left(\boldsymbol{u}^{i}\right)
$$

Learning BN

- Tasks
- Computing the parameters given a fixed structure or
- finding the structure and the parameters
- Properties of data:
- complete data: in each data vectors \mathbf{u}^{j}, the values of all the variables are observed
- incomplete data

Parameter Learning from Complete Data

- Parameters to be learned

$$
\theta_{x_{i} \mid \pi_{i}}=P\left(x_{i} \mid \boldsymbol{\pi}_{i}\right)
$$

- for all $\mathrm{x}_{\mathrm{i}}, \boldsymbol{\pi}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$
- The values of the parameters that maximize the likelihood can be computed in closed form

Maximum Likelihood Parameters

- Given by relative frequency
- If N_{y} be the number of vectors of D where $\mathbf{Y}=\mathbf{y}$.

$$
\theta_{x \mid \pi_{i}}=\frac{N_{x_{i, ~} \pi_{i}}}{N_{\pi_{i}}}
$$

- Counting: for each i , for each value $\boldsymbol{\pi}_{\mathrm{i}}$ we must collect

$$
C_{\pi_{i}}=\left\langle N_{x_{i}^{\prime}, \pi_{i}}, \ldots, N_{x_{x_{i}^{\prime}, \pi_{i}}}\right\rangle
$$

- where v_{i} is the number of values of X_{i}

Naive Bayes Special Case

- We want to perform classification
- One variable C represents the class
- The variables \mathbf{X} represent the attributes
- Model:

- X_{i} independent from X_{j} given C

Naive Bayes Special Case

- Conditional probability tables (case of Boolean variables):

	$\mathrm{C}=$ true	$\mathrm{C}=$ false
$\mathrm{X}_{\mathrm{i}}=$ true	$\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\right.$ true $\mid \mathrm{C}=$ true $)$	$\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\right.$ true $\mid \mathrm{C}=$ false $)$
$\mathrm{X}_{\mathrm{i}}=$ false	$\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\right.$ false $\mid \mathrm{C}=$ true $)$	$\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\right.$ false $\mid \mathrm{C}=$ false $)$

Example

No	Outlook	Temp	Humid	Windy	Class
D1	sunny	mild	normal	T	P
D2	sunny	hot	high	T	N
D3	sunny	hot	high	F	N
D4	sunny	mild	high	F	N
D5	sunny	cool	normal	F	P
D6	overcast	mild	high	T	P
D7	overcast	hot	high	F	P
D8	overcast	cool	normal	T	P
D9	overcast	hot	normal	F	P
D10	rain	mild	high	T	N
D11	rain	cool	normal	T	N
D12	rain	mild	normal	F	P
D13	rain	cool	normal	F	P
D14	rain	mild	high	F	P

	$\mathrm{C}=\mathrm{P}$	$\mathrm{C}=\mathrm{N}$
Humid=normal	$6 / 9=0.66666$	$1 / 5=0.2$
Humid=high	$3 / 9=0.33333$	$4 / 5=0.8$

Queries

- Computing the probability of a class given values for the attributes: $\mathrm{P}\left(\mathrm{c} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$

$$
P\left(c \mid x_{1}, \ldots, x_{n}\right)=\frac{P\left(c, x_{1,}, \ldots, x_{n}\right)}{P\left(x_{1} \ldots x_{n}\right)}=\frac{P\left(x_{1}, \ldots, x_{n} \mid c\right) P(c)}{P\left(x_{1} \ldots x_{n}\right)}
$$

- Since the attributes are independent given the class

$$
P\left(c \mid x_{1}, \ldots, x_{n}\right)=\frac{P\left(x_{1} \mid c\right) \ldots P\left(x_{n} \mid c\right) P(c)}{P\left(x_{1} \ldots x_{n}\right)}
$$

Example

- We want to classify <Outlook=sunny,Temp=cool,Humid=high,Windy=T>
- We have to compute P(Class=P|Outlook=sunny,Temp=cool,Humid=high,Windy=T)
- We compute only the parameters we need
$\mathrm{P}($ Class $=\mathrm{P})=9 / 14=0.64$
$\mathrm{P}($ Class $=\mathrm{N})=5 / 14=0.36$
$\mathrm{P}($ Outlook=sunny \mid Class $=P)=2 / 9=0.222$
$\mathrm{P}($ Outlook=sunny \mid Class $=\mathrm{N})=3 / 5=0.6$
$\mathrm{P}($ Temp $=$ cool \mid Class $=\mathrm{P})=3 / 9=0.333$
$\mathrm{P}($ Temp $=$ cool | Class=N $)=1 / 5=0.2$
$\mathrm{P}($ Humid $=$ high \mid Class $=P)=3 / 9=0.333$
$\mathrm{P}($ Humid $=$ high \mid Class $=\mathrm{N})=4 / 5=0.8$
$\mathrm{P}($ Windy $=\mathrm{T} \mid$ Class $=\mathrm{P})=3 / 9=0.33$
$\mathrm{P}($ Windy $=\mathrm{T} \mid$ Class $=\mathrm{N})=3 / 5=0.6$

Example

$\mathrm{P}($ Class $=\mathrm{P}$, Outlook=sunny,Temp=cool,Humid=high,Windy=T $)=0.0053$
P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Windy=T) $=0.0206$

- We can compute $\mathrm{P}($ Outlook=sunny,Temp=cool,Humid=high,Windy=T) by marginalization:
$\mathrm{P}($ Outlook=sunny,Temp=cool,Humid=high,Windy=T $)=$
P(Class=P,Outlook=sunny,Temp=cool,Humid=high,Windy=T) +
P(Class=N,Outlook=sunny,Temp=cool,Humid=high,Windy=T)= 0.0053+0.0206=0.0259
- So
$\mathrm{P}($ Class $=\mathrm{P} \mid$ Outlook=sunny,Temp=cool,Humid=high,Windy=T)=0.0053/0.0259= 0.205
$\mathrm{P}($ Class $=\mathrm{P} \mid$ Outlook=sunny,Temp=cool,Humid=high,Windy=T)=0.0206/0.0259= 0.795

Structure Learning from Complete Data

- Perform a local search in the space of possible structures
- HGC algorithm [Heckerman, Geiger, Chickering 95]:
- Start with a structure BestG' (possibly empty)
- Repeat
- BestG=BestG'
- Let $\operatorname{Ref}=\{\mathrm{G} \mid \mathrm{G}$ is obtained from BestG' by adding, deleting or reversing an arc \}
- Let BestG'= $\operatorname{argmax}_{\text {G }^{\prime}}\{\operatorname{score}(G) \mid G \in \operatorname{Ref}\}$
- while score(BestG')-score(BestG)>0

Structure Score

$$
\begin{aligned}
\operatorname{score}(G) & =\log P(D \mid G) \\
P(D \mid G) & =\int \rho(D, \Theta \mid G) d \Theta \\
& =\int P(D \mid \Theta, G) \rho(\Theta \mid G) d \Theta
\end{aligned}
$$

- where

$$
\begin{aligned}
& \rho(\Theta \mid G)=\prod_{i, \pi_{i}} \rho\left(\theta_{\pi_{i}}\right) \\
& \theta_{\pi_{i}}=\left\langle\theta_{x_{i}^{i} \mid \pi_{i}}, \ldots, \theta_{x_{i}^{v} \mid \pi_{i}}\right\rangle
\end{aligned}
$$

- and $\rho\left(\theta_{\pi \mathrm{i}}\right)$ is the prior density of the vector $\theta_{\pi \mathrm{i}}$

Prior Density of the Parameters

- A common choice for the form of the prior density is the Dirichlet probability density
- In this case $\rho\left(\theta_{\pi i}\right)$ is described by v_{i} parameters

$$
C^{\prime}{ }_{\pi_{i}}^{\prime}=\left\langle N^{\prime}{ }_{x_{i}^{\prime}, \pi_{i}}, \ldots, N_{x_{x_{i}^{\prime \prime}, \pi_{i}}}\right\rangle
$$

- Prior counts: it is as if we had previously observed some data on which the counts are $\mathrm{N}_{\mathrm{x}, \mathrm{mi}}^{\prime}$

Structure Score

- If the priors for the parameters are Dirichlet, then the score is called BD (for Bayesian Dirichlet) and

$$
B D(G)=\sum_{i} B D_{i}(G)
$$

- where $\mathrm{BD}_{\mathrm{i}}(\mathrm{G})$ depends only on C_{i} and $\mathrm{C}_{\mathrm{i}}^{\prime}$, the counts for the family of X_{i}

$$
\begin{aligned}
& C_{i}=\left\langle C_{\left.\pi_{i}^{\prime}, \ldots, C_{\pi_{i}^{\prime}}\right\rangle}\right\rangle \\
& C^{\prime}{ }_{i}=\left\langle C^{\prime}{ }_{\pi_{i}^{\prime}}, \ldots, C^{\prime}{ }_{\pi_{i}^{\prime}}^{\prime}\right\rangle
\end{aligned}
$$

Structure Score

$$
B D_{i}(G)=\sum_{\pi_{i}} \log \frac{\Gamma\left(N_{\pi_{i}}\right)}{\Gamma\left(N_{\pi_{i}}+N_{\pi_{i}}{ }^{\prime}\right)}+\sum_{x_{i}} \log \frac{\Gamma\left(N_{x_{i} \pi_{i}}+N^{\prime}{ }_{x_{i}, \pi_{i}}\right)}{\Gamma\left(N_{x_{i} \pi_{i}}\right)}
$$

- Where Γ is the Gamma function, an extension of the factorial function with its argument shifted down by 1 , to real and complex numbers. That is, if n is a positive integer:

$$
\Gamma(n)=(n-1)!
$$

- otherwise

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

Gamma Function

Gamma function

Log Gamma Function

Structure Score

- $\mathrm{BD}(\mathrm{G})$ is decomposable:
- It can be computed independently for each family
- Each edge operation involves
- 1 family (addition, deletion) or
- 2 families (reversal)
- $\mathrm{BD}(\mathrm{G})$ can be quickly computed from $\mathrm{BD}\left(\right.$ BestG') $\left.^{\prime}\right)$ by changing only the score of the affected families

Parameter Learning from Incomplete Data

- The maximum likelihood parameters cannot be computed in closed form
- An iterative algorithm is necessary: the EM algorithm
- Finds a (possibly) local maximum of the likelihood

EM Algorithm

- Initialize the parameters at random Θ
- Repeat
- Expectation step:
- compute the probability $\mathrm{P}(\mathrm{y} \mid \mathrm{e})$ of each value y of the missing attributes using (G, Θ) and inference
- Compute Θ by maximum likelihood on D^{\prime}
- Relative frequency for each family
- If a variable Y is unobserved in an example e that matches $\mathrm{x}_{\mathrm{i}} \pi_{\mathrm{i}}$, instead of adding 1 to $\mathrm{N}_{\mathrm{x}, \pi \mathrm{i}}$ we add $\mathrm{P}(\mathrm{y} \mid \mathrm{e})$

Structure Learning from Incomplete Data

- There is no decomposable score
- HGC would not be efficient
- Structural EM:
- Start with a structure BestG' (possibly empty)
- Repeat
- BestG=BestG'
- Compute the parameters of BestG with EM
- Optimize a lower bound of the likelihood of the observed data
- Let BestG' the optimum
- Until no improvement

Applications of BN

- Monitoring of emergency care patients
- Model of barley crops yield
- Diagnosis of carpal tunnel syndrome
- Insulin dose adjustment (DBN) in diabetes
- Predicting hails in northern Colorado
- Evaluating insurance applications

Applications of BN

- Deciding on the amount of fungicides to be used against attack of mildew in wheat
- Assisting experts of electromyography
- Pedigree of breeding pigs
- Modeling the biological processes of a water purification plant
- Printer troubleshooting (Microsoft Windows)

Printer Troubleshooting (Windows 95)

Applications

- Office Assistant in MS Office ("smiley face")
- Bayesian network based free-text help facility
- help based on past experience (keyboard/mouse use) and task user is doing currently

Markov Networks (MN)

- Approach alternative to BN
- Also called Random Fields, undirected graphical models
- Undirected graph
- Conditional independence represented by graph separation
- Probability distribution as the product of a set of potentials or factors (functions of a subset of variables) divided by a normalization constant
- Potentials over cliques

Example

Markok Networks

- Probability

$$
\begin{aligned}
& P(\boldsymbol{u})=\frac{\prod_{c} f_{c}\left(\boldsymbol{x}_{c}\right)}{Z} \\
& Z=\sum_{u} \prod_{c} f_{c}\left(\boldsymbol{x}_{c}\right)
\end{aligned}
$$

- Z is called partition function, ensures that the probabilities sum to 1

Loglinear Models

- If all the potentials are >0, they can be represented as exponential functions, i.e., f_{4} can be represented as $\mathrm{f}_{4}=\exp \left(\mathrm{w}_{4} \mathrm{~F}_{4}\right)$
- where F_{4} is any real function of f_{4} arguments and w_{4} is a real weight. Then

$$
\begin{aligned}
& P(\boldsymbol{u})=\frac{\exp \sum_{c} w_{c} F_{c}\left(\boldsymbol{x}_{\boldsymbol{c}}\right)}{Z} \\
& Z=\sum_{u} \exp \sum_{c} w_{c} F_{c}\left(\boldsymbol{x}_{\boldsymbol{c}}\right)
\end{aligned}
$$

How to tell independence

- Definition: \mathbf{X} and \mathbf{Y} are independent given a set of variables $\mathbf{Z}(\mathbf{I}<\mathbf{X}, \mathbf{Z}, \mathbf{Y}\rangle)$ iff every path from \mathbf{X} to \mathbf{Y} passes through a variable of \mathbf{Z}

How to tell independence

- Definition: \mathbf{X} and \mathbf{Y} are independent given a set of variables $\mathbf{Z}(\mathbf{I}\langle\mathbf{X}, \mathbf{Z}, \mathbf{Y}\rangle)$ iff every path from \mathbf{X} to \mathbf{Y} passes through a variable of \mathbf{Z}

Markov Network

- Inference:
- Algorithms similar to those for BN (bp, cp, ve, ss...)
- Same complexity
- MN can represent some independencies that BN can not represent and vice versa
- Advantage: we do not have to avoid cycles
- Disadvantage: MN parameters are more difficult to interpret

BN Software

- List of BN software http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html\
- BNT: inference and learning, Matlab, open source
- MSBNx: inference, by Microsoft, free closed source
- OpenBayes: inference and learning, Python, open source
- BNJ: inference and learning, Java, open source
- Weka: learning, Java, open source

Resources

- Daphne Koller, Nir Friedman, Probabilistic graphical models: principles and techniques, MIT Press: 2009, ISBN 978-0-262-01319-2
- Probabilistic Reasoning in Intelligent Systems by Judea Pearl. Morgan Kaufmann: 1998.
- Probabilistic Reasoning in Expert Systems by Richard Neapolitan. Wiley: 1990.
- List of BN Models and Datasets http://www.cs.huji.ac.il/labs/compbio/Repository/

References

- [Pearl 85] Pearl, J., "Bayesian Networks: a Model of Self-Activated Memory for Evidential Reasoning," UCLA CS Technical Report 850021, Proceedings, Cognitive Science Society, UC Irvine, 329-334, August 15-17, 1985.
- [Pearl 00] Pearl, J., Causality: Models, Reasoning, and Inference, Cambridge University Press, 2000
- [Suermondt et al. 90] Henri Jacques Suermondt, Gregory F. Cooper, David Heckerman, "A combination of cutset conditioning with clique-tree propagation in the Pathfinder system", UAI ' 90 .

References

- [Pearl 88] Judea Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann: 1998.
- [Lauritzen, Spiegelhalter 1988]
- [Heckerman, Geiger, Chickering 95] D. Heckerman, D. Geiger, D. M. Chickering: "Learning Bayesian Networks: The Combination of Knowledge and Statistical Data", Machine Learning, 20(3), 1995

