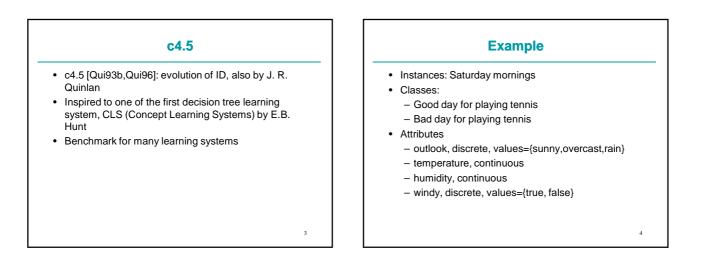
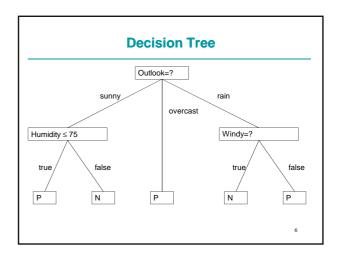


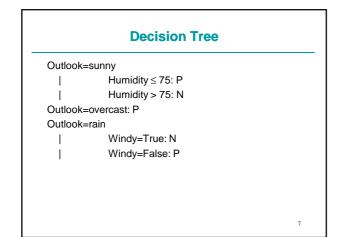
Decision Tree

- Examples of systems that learn decision trees: c4.5, CLS, IDR, ASSISTANT, ID5, CART, ID3.
- Suitable problems:
 - Instances are described by attribute-value couples
 - The target function has discrete valuesDisjunctive descriptions of concepts may be
 - required - The training set may contain errors (noise)
 - The training set may contain incomplete data



		Train	ing set	t	
No	Outlook	Temp (°F)	Humid (%)	Windy	Class
D1	sunny	75	70	Т	Р
D2	sunny	80	90	Т	N
D3	sunny	85	85	F	Ν
D4	sunny	72	95	F	Ν
D5	sunny	69	70	F	Р
D6	overcast	72	90	Т	Р
D7	overcast	83	78	F	Р
D8	overcast	64	65	Т	Р
D9	overcast	81	75	F	Р
D10	rain	71	80	Т	N
D11	rain	65	70	Т	N
D12	rain	75	80	F	Р
D13	rain	68	80	F	Р





Notation

- Let T be the training set,
- Let $\{C_1, C_2, \dots, C_k\}$ be the set of classes;

Tree Building Algorithm

- build_tree(T) returns a tree:
 - T contains examples from the same class • Return a leaf with label the class
 - T contains examples from more than one class
 - T is partitioned into subsets T_1, T_2, \ldots, T_n according to a test on an attribute
 - Call the algorithm recursively on the subsets: $-child_i=build_tree(T_i) \text{ for } i=1,...n$
 - Return a subtree with the root associated to the test and childs child₁,...,child_n.

Example of build_tree

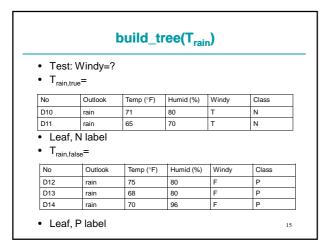
<u>T=</u> _{No}	Outlook	Temp (°F)	Humid (%)	Windy	Class
D1	sunny	75	70	Т	Р
D2	sunny	80	90	Т	Ν
D3	sunny	85	85	F	Ν
D4	sunny	72	95	F	Ν
D5	sunny	69	70	F	Р
D6	overcast	72	90	Т	Р
D7	overcast	83	78	F	Р
D8	overcast	64	65	Т	Р
D9	overcast	81	75	F	Р
D10	rain	71	80	Т	Ν
D11	rain	65	70	Т	Ν
D12	rain	75	80	F	Р
D13	rain	68	80	F	Р
D14	rain	70	96	F	Р

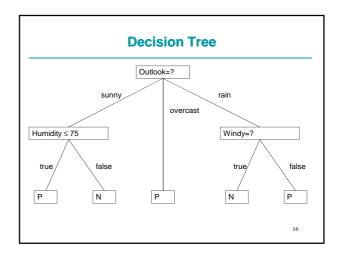
Test on Outlook						
• T _{su}	unny=					
No	Outlook	Temp (°F)	Humid (%)	Windy	Class	
D1	sunny	75	70	т	Р	
D2	sunny	80	90	т	N	
D3	sunny	85	85	F	N	
D4	sunny	72	95	F	N	
D5	sunny	69	70	F	Р	
• T _{ov}	ercast=					
No	Outlook	Temp (°F)	Humid (%)	Windy	Class	
D7	overcast	83	78	F	Р	
D8	overcast	64	65	Т	Р	
D9	overcast	81	75	F	Р	

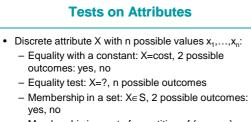
No	Outlook	Temp (°F)	Humid (%)	Windy	Class
D10	rain	71	80	Т	N
D11	rain	65	70	т	N
D12	rain	75	80	F	P
D13	rain	68	80	F	Р
D14	rain	70	96	F	Р

• I E	st: Humidit	y ≤ 75			
• T _s	unny, Humidity≤	75			
No	Outlook	Temp (°F)	Humid (%)	Windy	Class
D1	sunny	75	70	т	Р
D5	sunny	69	70	F	Р
• T _{su}	nny, Humidity > 7	75 Temp (°F)	Humid (%)	Windy	Class
No	Outlook				
No		80	90	т	N
	Outlook sunny sunny		90 85	T F	N N

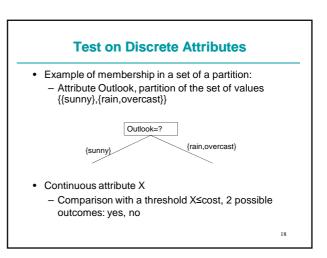
build_tree(T_{overcast}) • T_{overcast}= Outlook No Temp (°F) Humid (%) Windy Class D7 overcast 83 78 F Ρ D8 overcast 64 65 Т Ρ D9 overcast 81 75 Р • Leaf, P label 14







– Membership in a set of a partition of $\{x_1, \dots, x_n\}$: one outcome per set



Termination Condition

- c4.5 stops
 - When an uniform set is found
 - When an empty set is found
 - A leaf is returned with label the most frequent class in the father
 - When no test is such that at least two subsets contain a minimum number of cases.
 - The minimum number of cases is a userdefined parameter assuming value 2 by default

19

21

- Building the Tree
- Search in space of all possible trees

 Once a test is assigned to a node it is possible to backtrack
 - Infeasible
- Greedy search
 - Tests on nodes chosen irrevocably: once a test is assigned to a node it is not possible to backtrack

20

22

- Choice on the basis of a heuristic
- Most used heuristics
- Entropy
- Gini index

Choice of the Test

- Choice of the attribute
- Discrete attributes:
 - Choice of the type of test
 - Possibly choice of the constant or partition
- Continuous attributes
 - Choice of the threshold
- Usually only the equality test X=? is used for discrete attributes
 - Only the attribute must be chosen
- Constraints that the test must satisfy: at least two among $T_1, T_2, ..., T_n$ must contain a minimum number of examples

Entropy

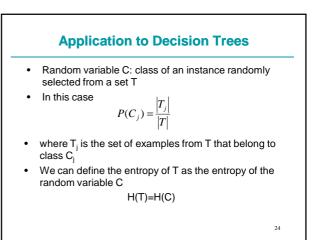
- In information theory, entropy is a measure of the uncertainty associated with a discrete random variable.
- Random variable C with k possible values C_1, \ldots, C_k , entropy H(C) is given by

$$H(C) = -\sum_{j=1}^{k} P(C_j) \log_2 P(C_j) = E[-\log_2 P(C)]$$

Also known as Shannon entropy

Information Theory Interpretation

- Suppose you want to transmit a series of messages made of the values of N random variables independent and identically distributed (i.i.d.)
- What is the minimum number of bits necessary to transmit these messages?
- Source coding theorem (Shannon 1948)
 - "The minimum number of bits necessary to encode the values of N i.i.d. random variables with negligible risk of information loss is N×H(X) as N tends to infinity, where H(X) is the entropy of the random variables"
 - H(X) is the minimum number of bits to encode the value of a random variable X



Entropy

- H(T) measures the minimum number of bits necessary for encoding, without loss, a message of the form
 - "The present example, randomly selected from the training set, belongs to class C_i"
- H(T) is also called info(T)

Entropy for Two Classes

- In the case of two classes, + and -, with probabilities $p_+=P(+)$ and $p_-=P(-)$

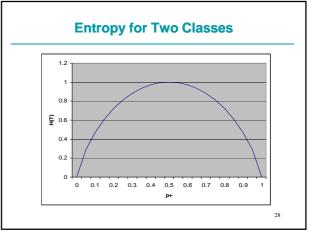
 $H(T) = -p_+ \times \log_2 p_+ - p_- \times \log_2 p_-$

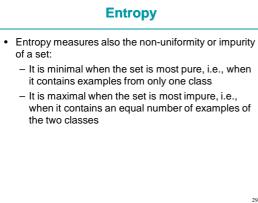
• Only one variable is independent: p_=1-p_+

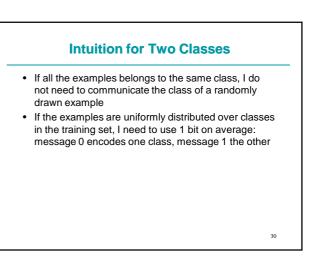
$$H(T) = -p_{+} \times \log_{2} p_{+} - (1 - p_{+}) \times \log_{2}(1 - p_{+})$$

26

Entropy for Two Classes • For $p_{*}=0.5$: $p_{*}=0.5$ $H(T) = -0.5 \times \log_{2} 0.5 - 0.5 \times \log_{2} 0.5 =$ $-0.5 \times (-1) - 0.5 \times (-1) = 1$ • For $p_{*}=0$: $p_{*}=1.0$ $H(T) = -0 \times \log_{2} 0 - 1 \times \log_{2} 1 = (-0 \times -\infty) - 0$ • In this case, we define $p_{+} \times \log_{2} p_{+} |_{p_{*}=0} \stackrel{def}{=} \lim_{p_{+} \to 0} p_{+} \times \log_{2} p_{+} = 0$ • So H(T)=0-0=0 • Similarly, if $p_{*}=1$ H(T)=0







Example

- · Play tennis problem
- Training set T: 14 examples, 9 positive, 5 negative
- Entropy of T
- Remember: log_ax=log₁₀x/log₁₀a=ln x/ln a
- log₁₀2=0.301
- $H(T) = -(9/14)\log_2(9/14) (5/14)\log_2(5/14) =$
- $= -(9/14)\log_{10}(9/14)/0.301 (5/14)\log_{10}(5/14)/0.301 =$
- =-0.643*(-0.192)/0.301-0.357*(-0.447)/0.301=
- =0.410+0.530=0.940

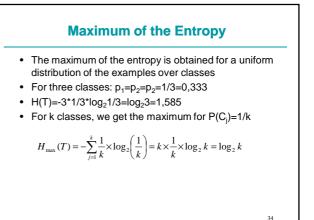
Entropy for Three Classes

- Three classes {C₁,C₂,C₃}:
 - $p_1 = P(C_1)$
 - $p_2 = P(C_2)$
 - $p_3 = P(C_3)$
 - Only two independent variables: $p_3=1-p_1-p_2$

$$H(T) = -p_1 \times \log_2 p_1 - p_2 \times \log_2 p_2 - (1 - p_1 - p_2) \times \log_2 (1 - p_1 - p_2)$$

32

Entropy for Three Classes



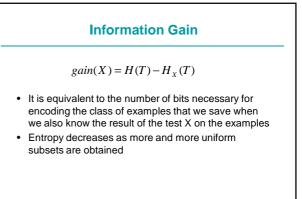
c4.5 Heuristic

- Assign to a test on an attribute the value given by the decrease of entropy (information gain) due to the partitioning of the set of examples according to the test
- Test X with n possible outcomes
- Set of examples T is partitioned into n subsets T_1, \dots, T_n
- Entropy after the partitioning: weighted average entropy in the subsets

$$H_X(T) = \sum_{i=1}^n \frac{|T_i|}{|T|} \times H(T_i)$$

35

31



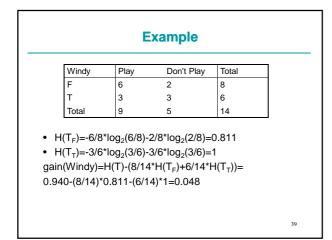
Attribute Choice

Example

- Test on the attribute Windy:
- Windy=F => T_F contains 6 positive and 2 negative examples
- Windy=T => T_T contains 3 positive and 3 negative examples

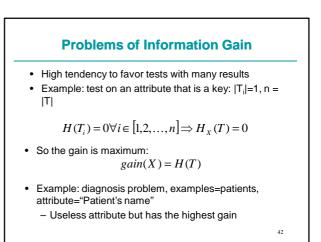
38

- T=[9,5]
- T_F=[6,2]
- T_T=[3,3]



 Test on the attribute outlook: 	
 Outlook=sunny => T_{sunny} contains 2 pos and 3 neg 	
 Outlook=overcast => T_{overcast} contains 4 pos and 0 neg 	
 Outlook=rain => T_{rain} contains 3 pos and 2 neg 	
• T=[9,5], T _{rain} =[3,2], T _{sunny} =[2,3], T _{overcast} =[4,0]	

Outlook	Play	Don't Play	Total
unny	2	3	5
vercast	4	0	4
ain	3	2	5
tal	9	5	14
tlook)=l)*H(T _{ove}	H(T)-((5/1 _{rrcast}))=	5 4)*H(T _{rain})+(5/ 357*0.971-0.28	′14)*H



- The gain is normalized with respect to the entropy of the test itself
- The random variable in this case is the value of the attribute X

$$H(X) = -\sum_{i=1}^{n} \frac{|T_i|}{|T|} \times \log_2\left(\frac{|T_i|}{|T|}\right)$$

Gain ratio

$$gain ratio(X) = \frac{gain(X)}{H(X)}$$

Gain Ratio in the Diagnosis example

X=patient name

$$gain(X) = H(T) \le \log_2 k$$
$$H(X) = -\sum_{i=1}^n \frac{1}{n} \log_2 \frac{1}{n} = n \frac{1}{n} \log_2 n = \log_2 n$$
$$gainratio(X) \le \frac{\log_2 k}{\log_2 n}$$
If n>>k⇒gain ratio(X) is small

44

46

- H(X) is also called splitinfo
- Example

 gainratio(Windy)=gain(Windy)/H(Windy)

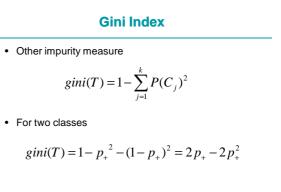
 $H(Windy)=-8/14*log_2(8/14)-6/14*log_2(6/14)=0.985$

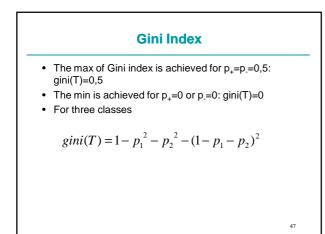
 gainratio(Windy)=0.048/0.985=0.048

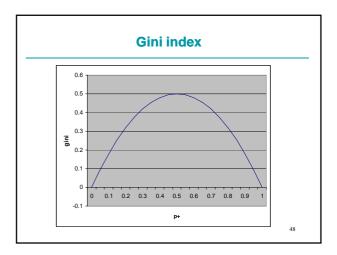
 gainratio(Outlook)=gain(Outlook)/H(Outlook)

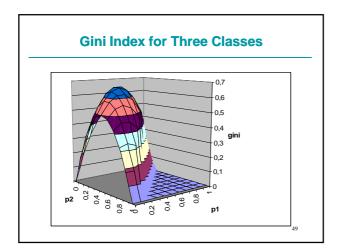
 $H(Outlook)=-5/14*log_2(5/14)-5/14*log_2(5/14) 4/14*log_2(4/14)=1.577$

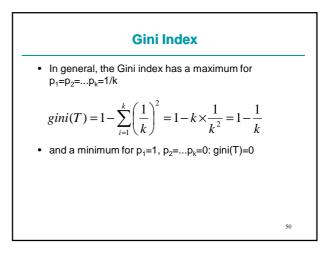
 gainratio(Outlook)=0.246/1.577=0.156











Gini index

• Gini index after the split on attribute X

$$gini_X(T) = \sum_{j=1}^n \frac{|T_j|}{|T|} \times gini(T_j)$$

- The attribute X that gives the lowest gini_x(T) is chosen for the split
- · Gini index is used by CART

Tests on Continuous Attributes Suppose continuous attribute X assumes m values in T Let <V₁,V₂,....,V_m> be the values ordered from the smallest to the largest The test X ≤ V_i divides the m values into two groups:

- $X \leq V_i : \{V_1, \dots, V_i\}$
- $X > V_i : \{V_{i+1}, ..., V_m\}$

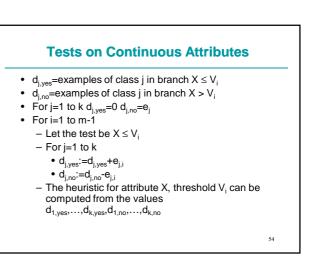
51

53

- So we have m-1 candidates for the threshold: $V_{1},\,...,\,\,V_{m\text{-}1}$
- · Each candidate must be evaluated

52

Evaluation of a test: Sort the examples on the basis of the attribute X Count the examples Let e_{j,i} be the number of examples that have value V_i for X and belong to class C_j for j=1,...,k, i=1,...,m-1 Let e_j be the number of examples that belong to class C_j for k=1,...,k Each test has two possible outcomes: yes or no



Attributes with Unknown Value

- · If the training set contains examples with one or more attributes unspecified
- For example
- <?,72,90,T,P>
- · How do we take into account this example when computing the heuristic and when splitting the example set?
- 55

57

Attributes with Unknown Value

- Test evaluation:
 - Consider a discrete attribute X with n values {x1,...,xn}
 - Let F be the set of examples of T that have X known - F provides us with a distribution of examples into values and
 - class P(x_i,C_j) – We assume that the unknown values have the same distribution $\mathsf{P}(x_{ij}C_j)$ with respect to the attribute and the class

 - Therefore the examples with unknown values do not alter the value of the entropy or of the Gini index

56

Attributes with Unknown Value

- Entropy of the partitioning: the unknown value is considered as a value of its own
- Let T_{n+1} be the set of examples of T with unknown value for X

$$H(X) = -\sum_{i=1}^{n+1} \frac{|T_i|}{|T|} \times \log_2\left(\frac{|T_i|}{|T|}\right)$$

Attributes with Unknown Value • c4.5 further penalizes attributes with unknown values by multiplying the gain by the probability that the attribute is known • If F is the set of examples of T with X known $gain(X) = \frac{|F|}{|T|} \times (H(F) - H_X(F))$ 58

	E	cample		
••		ample databa		
		rature=72, Humi	alty=90, wind	y= i
s replaced b	у			
Outlook_2	Tomporati	ro_72 Uumiditu	-00 Windy-T	
		re=72, Humidity=		
		re=72, Humidity⊧ tlook over F a		
				1
The frequence	cies of Ou	tlook over F a	re	- -
The frequent	cies of Ou Play	tlook over F a	Total	_
The frequent	cies of Ou Play 2	tlook over F a	Total 5	

		Exar	nple		
	Outlook	Play	Don't Play	Total	
	Sunny	2	3	5	
	Overcast	3	0	3	
	Rain	3	2	5	
	Total	8	5	13	
`	utlook(F)=5/13 +3/13*(-3/3	3*(-2/5*log ₂ 3*log ₂ (3/3)-	3*log ₂ (5/13) (2/5)-3/5*log 0/3*log ₂ (0/3 -2/5*log2(2/	g ₂ (3/5))))	
0	n(Outlook)= s than befor	· · ·	61-0.747)=0	0.199 (slightly	60

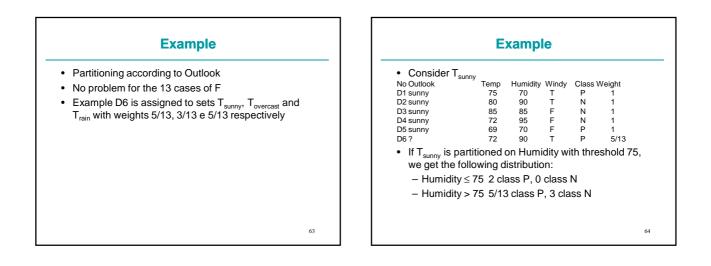
Example

- H(Outlook)=-5/14*log₂(5/14)-3/14*log₂(3/14)-5/14*log₂(5/14)-1/14*log₂(1/14)=1.809
- gainratio(Outlook)=0.199/1.809=0.110

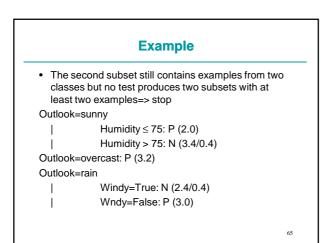
Partitioning In which subset of a node with test on X do we put an example with X unknown? Partitioning is generalized in a probabilistic sense: – Each example of T is assigned a weight, initially 1 – Each example is inserted in every subset T_i with a weight If we partition on discrete attribute X – If example e, with weight w in T, has X=x_i, e is put in T_i with weight 0 – If example e, with weight w in T, has X=?, e is put

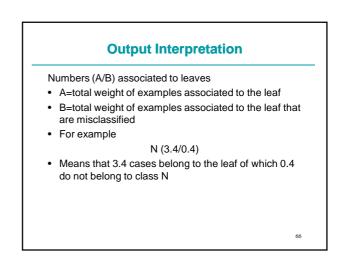
- in T_i with weight $w \times P(x_i)$
- $P(x_i)$ can be estimated by relative frequency in F

62



61





Classification of Unseen Cases with All Values Known

- An unseen (new) case e with all attributes known is classified by
 - Traversing the tree from the root by following the branches that correspond to the values of the case
 - Suppose that the leaf
 - Pos (A/B)
 - is reached, then e is classified as Pos with probability (A-B)/A and Neg with probability B/A
 - In the case of more than two classes, the distribution of examples into classes at the leaf is used

67

69

Classification of Unseen Cases with Unkown Values

- If e has X unknown
- e is associated with a weight w, initially set to 1 $% \left({{{\mathbf{x}}_{i}}} \right)$
- When traversing the tree, if the attribute at the current node is unknown in e we explore all subtrees.
- Subtree T_i is explored by assigning e to T_i with weight $w \times P(x_i)$
- P(x) is estimated by considering by relative frequency over T
- The information about relative frequencies are stored in the leaves that are descendants of T

68

70

Classification of Unseen Cases with Unkown Values

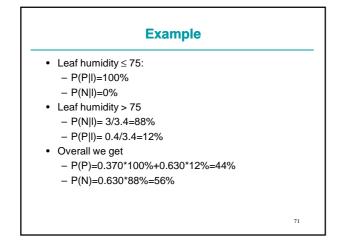
- In the end more than one leaf will be reached
- Let L be the set of leaves that are reached
- Let w_I=P(I) be the weight of e that reaches I
- Let P(C_j|I) be that an example in I belongs to class C_j (estimated by relative frequency)

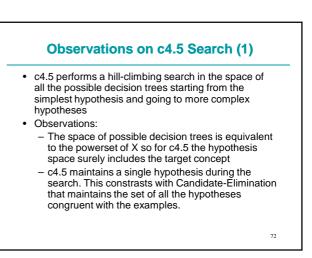
• Then

$$P(C_j) = \sum_{l \in L} P(C_l, l) = \sum_{l \in L} P(C_j \mid l) \times P(l)$$

Example
Outlook=sunny, Temperature=70, Humidity=?, Windy=F
Outlook=sunny => first subtree
Humidity=?=> we cannot determine whether Humidity ≤ 75
We follow both branches with weights

Branch Humidity ≤ 75: w=2.0/5.4=0.370
Branch Humidity > 75: w=3.4/5.4=0.630





Observations on c4.5 Search (2)

- c4.5 does not performs backtracking during the search. So it runs the risk of incurring in a solution only locally optimal
- c4.5 uses all the training examples at every step for deciding how to refine the tree, differently from the methods such as Find-S or Candidate-Elimination that take decisions in an incremental way on the basis of individual examples. The result is that the search of c4.5 is less sensible to errors in the single examples.

73

75

c4.5 Inductive Bias (1)

- c4.5 inductive bias is [Mit97]:
 - Shortest trees are preferred to the longer ones.
 The trees that put closer to the root the attributes with the highest information gain are preferred.
- Even if c4.5 hypothesis space is the powerset of X, thanks to this inductive bias, c4.5 is able to generalize anyway
- Differences with Candidate-Elimination: Candidate-Elimination searches in a complete way an incomplete hypothesis space while c4.5 searches in an incomplete way a complete hypothesis space

74

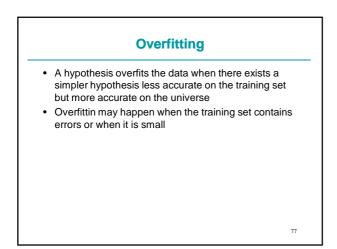
76

c4.5 Inductive Bias (2)

- c4.5: preference bias (or search bias)
- Candidate-Elimination: restriction bias (or language bias)
- In general, a preference bias is better because it allows to work with a complete hypothesis space
- Some algorithms use both

Why preferring shorter hypotheses?

- Question largely debated by philosophers
- William of Occam in 1320 was the first to tackle the problem [Mit97]:
 - Occam's razor: prefer the simplest hypothesis that describes the data
- Is this true?
 - In favor: simplest hypothesis are fewer than more complex ones, so it is more difficult to find a short hypothesis that describes the data by chance.
 - Against: if we define a small set of hypotheses (e. g. the trees with 17 nodes), then we should prefer those.





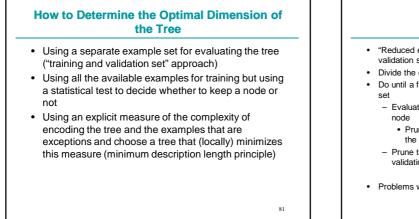
Overfitting

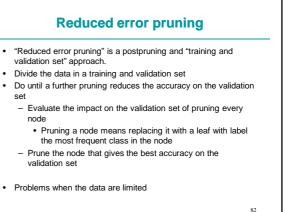
- Example: consider the previous training set plus <sunny,80,70,strong,N>
- which should be positive but it is erroneously classified as negative
- The tree h' learned from the new training set is more complex than the tree h learned from the original training set
- However, since the new example is incorrect, h' will make more mistakes than h on U

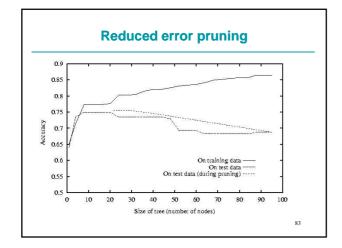
79

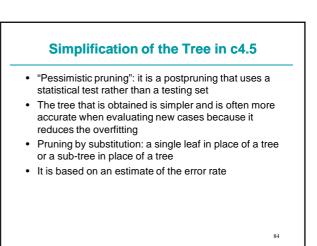
Approaches to Avoid Overfitting

- Stop the growth before reaching a tree that perfectly classifies the training examples (prepruning)
- Grow the tree and prune it afterwards (postpruning)



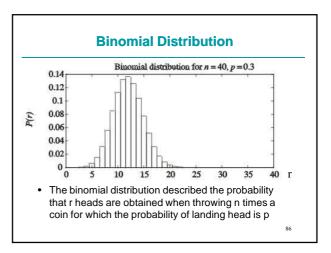


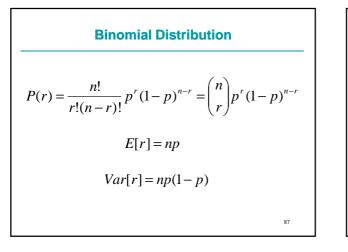


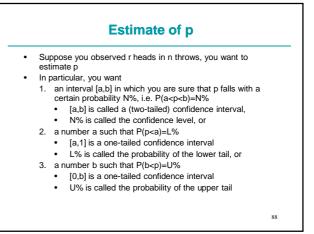


- Consider a leaf that covers N training cases of which E erroneously
- The error on the training set is E/N
- · Consider E as events in N trials
- We ask what is the probability of the error event on the entire population of cases covered by the leaf
- The probability of the error has a binomial distribution

85

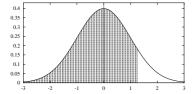


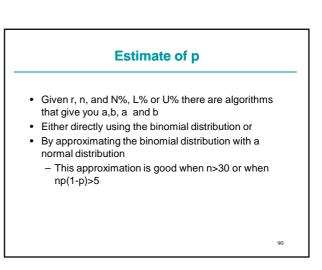




One-tailed Confidence Interval

• We consider one-tailed confidence of the form [0,b]





Confidence Interval

- · Let's go back to learning
- Suppose you have E error over N examples
- E corresponds to r, N to n and the true error probability to p
- · We want to estimate the true error probability
- We use one-tailed confidence intervals [0,b]
- · Let CF be the probability of the confidence interval (U%)
- Let $U_{CF}(E,N)$ be the upper bound of the confidence interval, i.e. let U_{CF}(E,N)=b

91

93

c4.5 Tree Pruning

- c4.5 considers $N^*U_{CF}(E,N)$ instead of E as an estimate of the number of errors in a leaf
- c4.5 uses CF=25% by default
- The estimate of the number of errors of a tree is the sum of the estimate of the number of errors in each leaf
- c4.5 replaces a tree with a leaf if the estimated ٠ number of errors in the leaf is smaller than those of the tree

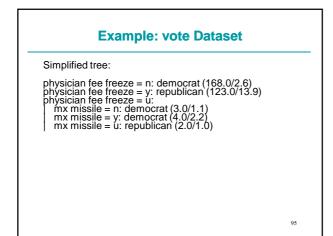
92

· The same for replacing trees with sub-trees

Example: vote Dataset

- · Instances: members of the US congress
- Attributes: votes expressed by the member regarding 16 questions
- Classes: democratic, republican

Example: vote Dataset bysician fee freeze = n: adoption of the budget resolution = y: democrat (151.0) adoption of the budget resolution = u: democrat (1.0) adoption of the budget resolution = n: education spending = n: democrat (9.0) education spending = v: republican (1.0) bysician fee freeze = y: synfuels corporation cutback = n: republican (97.0/3.0) synfuels corporation cutback = n: republican (4.0) synfuels corporation cutback = y: duty free exports = v: democrat (2.0) duty free exports = n: democrat (5.0/2.0) education spending = y: republican (13.0/2.0) duty free exports = n: democrat (5.0/2.0) education spending = y: democrat (1.0) duty free exports = n: democrat (1.0) duty free exports = n: democrat (1.0) bysician fee freeze = u: water project cost sharing = y: democrat (4.0) water project cost sharing = y: mx missile = n: republican (0.0) mx missile = y: democrat (3.0/1.0) mx missile = u: republican (2.0) 94



Example: vote Dataset
 The sub-tree education spending = n: democrat (6.0) education spending = y: democrat (9.0) education spending = u: republican (1.0) was replaced by the leaf democrat because First leaf E=0 N=6 U_{25%}(0,6)=0.206 Second leaf E=0 N=9 U_{25%}(0,9)=0.143 Third leaf E=0 N=4 U_{25%}(0,4)=0.750
 Third leaf E=0 N=1 U_{25%}(0,1)=0.750
 So the estimate of the number of errors for the sub- tree is
6*0.206+9*0.143+1*0.750=3.273

Example: vote Dataset

• If the sub-tree education spending = n: democrat (6.0) education spending = y: democrat (9.0) education spending = u: republican (1.0)

 was replaced by the leaf democrat, it would cover 16 cases with 1 error so the estimate of the number of errors would be:

16*U_{25%}(1,16)=16*0.157=2.512

• Since the estimate is lower for the leaf than for the sub-tree, it is replaced by the leaf

97

99

101

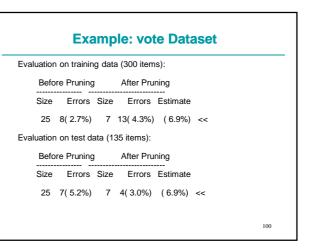
Example: vote Dataset

- The sub-tree immediately above takes the form adoption of the budget resolution = y: democrat (151.0) adoption of the budget resolution = u: democrat (16/1) adoption of the budget resolution = n: democrat (16/1)
- The estimate of the number of errors for the sub-tree is
 - 151*U_{25%}(0,151)+1*U_{25%}(0,1)+2.512=4.642
- If the sub-tree was replaced by the leaf democrat the estimate of the number of errors would be $168^* U_{25\%}(1,168) = 2.610$
- Therefore it is convenient to perform the substitution

98

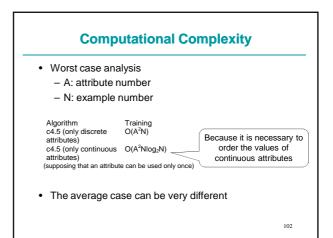
Pruned Trees

- The numbers (N/P) that appear close to the leaves mean:
 - N number of training example covered by the leaf
 - P number of predicted errors if N new cases would be classified by the tree (N*U_{CF}(E,N))
- Estimate of the error on new cases of the pruned trees=errors predicted in the leaves / number of cases in the training set
- In the vote dataset the sum of errors predicted in the leaves is 20.8 over a total of 300 cases in the training set => 6.9% error



Example: vote Dataset

- The error on the training set is higher for the pruned tree than for the unpruned tree
- but, as expected, the error on the unseen cases is lower



Examples of Usage

- · Results of the labor negotiations in Canada in the years 1987--88.
- Concepts: acceptable or unacceptable contract.
- Contract: 16 attributes, not all applicable to all cases.
- Classes: acceptable (good) or not acceptable (bad).
- Aim: obtaining a system able to judge the acceptability of a new contract.

103

105

Data Divided in Some File

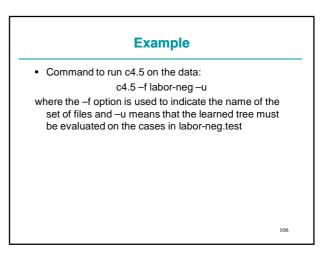
• labor-neg.names: description of the problem in term of classes and attributes comment

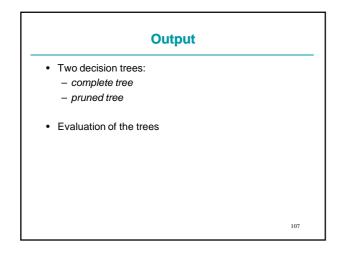
good, bad	classes
duration: wage increase first year:	continuous attributes
wage increase second year: wage increase third year: cost of living adjustment: working hours:	continuous none, tcf, tc values
pension:	none, ret_allw, empl_contr
standby pay:	continuous
shift differential:	continuous
education allowance:	yes, no
statutory holidays:	continuous
vacation:	below average, average, generous
longterm disability assistance:	yes, no
contribution to dental plan:	none, half, full
bereavement assistance:	yes, no
contribution to health plan:	none, half, full

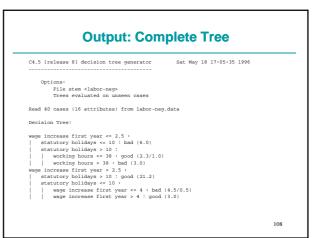
104

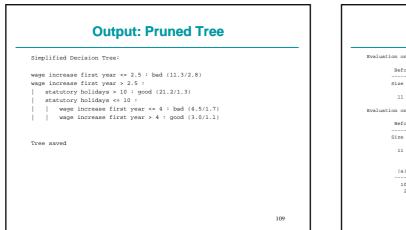
Training set

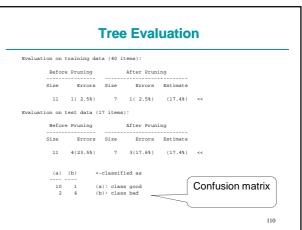
- Labor-neg.test: set of new cases, to be used to evaluate the learned tree (same formats of labor-neg.data)

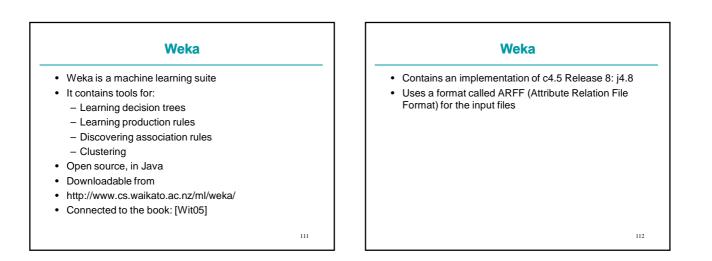




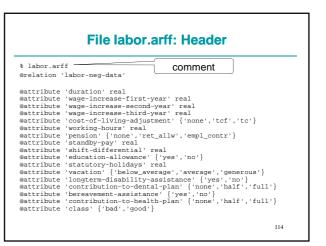








ARFF	
A single file	
Two sections:	
– Header	
– Data	
 Header: attribute definition 	
 — @relation <dataset name=""></dataset> 	
– @attribute <attribute name=""> {<val1>, <val2 <valn>}</valn></val2 </val1></attribute>	>,,
• or	
 — @attribute <attribute name=""> real</attribute> 	
• The last attribute is usually used as the class	



Data Section

- @data tag followed by the description of the examples, one description per row (ending with a line feed) as in c4.5
- Every example is described by the list of values for every attribute separated by, (comma)
- Each value corresponds to the attribute in the same position in the header
- The declarations @relation, @attribute and @data are case insensitive.

115

117

control Control system <

ARFF

- Other formats for the attributes - integer, string, date
- integer: the attribute can take only integer values
- string: the attribute can take arbitrary string values
 - String attributes are treated as nominal attributes

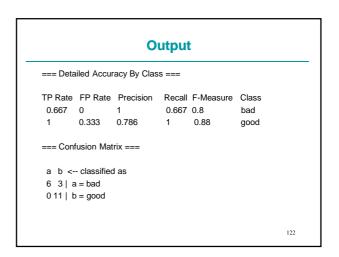
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Weka Execution

- Double click on Weka (weka.jar)
- · Click on Explorer
- Click on Open file... : select the file to be opened, for example labor.arff
- Click on Classify
- Choice of the algorithm: j48
- Setting the test options: for example, select Percentage Split to select a fraction of the examples to be used for testing
- Click on Start

	Output	
J48 pruned tree		
wage-increase-first-yea	= 10: bad (10.77/4.77)	
Number of Leaves :	3	
Size of the tree :	5	
Time taken to build mo	del: 0.08 seconds	120

=== Evaluation on test split === === Summary ===				
=== Summary ===				
Correctly Classified Instances	17	85	%	
Incorrectly Classified Instances	3	15	%	
Kappa statistic		0.6875		
Mean absolute error		0.2806		
Root mean squared error		0.3729		
Relative absolute error		58.3712 %		
Root relative squared error		72.0645 %		
Total Number of Instances		20		



1

0.8 0.6 0.4

0.2

124

0.0

Precision

