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Decision Tree Learning Decision Tree Learning 
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Decision TreeDecision Tree

• Examples of systems that learn decision trees: c4.5, 
CLS, IDR, ASSISTANT, ID5, CART, ID3.

• Suitable problems:
– Instances are described by attribute-value couples
– The target function has discrete values
– Disjunctive descriptions of concepts may be 

required
– The training set may contain errors (noise)
– The training set may contain incomplete data
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c4.5c4.5

• c4.5 [Qui93b,Qui96]: evolution of ID, also by J. R. 
Quinlan

• Inspired to one of the first decision tree learning 
system, CLS (Concept Learning Systems) by E.B. 
Hunt

• Benchmark for many learning systems
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ExampleExample

• Instances: Saturday mornings
• Classes: 

– Good day for playing tennis
– Bad day for playing tennis

• Attributes
– outlook, discrete, values={sunny,overcast,rain}
– temperature, continuous
– humidity, continuous
– windy, discrete, values={true, false}
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Training setTraining set

No Outlook Temp (°F) Humid (%) Windy Class

D1 sunny 75 70 T P

D2 sunny 80 90 T N

D3 sunny 85 85 F N

D4 sunny 72 95 F N

D5 sunny 69 70 F P

D6 overcast 72 90 T P

D7 overcast 83 78 F P

D8 overcast 64 65 T P

D9 overcast 81 75 F P

D10 rain 71 80 T N

D11 rain 65 70 T N

D12 rain 75 80 F P

D13 rain 68 80 F P

D14 rain 70 96 F P
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Decision TreeDecision Tree
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Decision TreeDecision Tree

Outlook=sunny
| Humidity ≤ 75: P
| Humidity > 75: N

Outlook=overcast: P
Outlook=rain

| Windy=True: N
| Windy=False: P
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NotationNotation

• Let T be the training set,
• Let {C1,C2,…,Ck} be the set of classes; 
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Tree Building AlgorithmTree Building Algorithm

• build_tree(T) returns a tree:
– T contains examples from the same class

• Return a leaf with label the class
– T contains examples from more than one class

• T is partitioned into subsets T1,T2,…,Tn
according to a test on an attribute

• Call the algorithm recursively on the subsets:
– childi=build_tree(Ti) for i=1,…n

• Return a subtree with the root associated to the 
test and childs child1,…,childn. 

10

Example of build_treeExample of build_tree

T=
No Outlook Temp (°F) Humid (%) Windy Class

D1 sunny 75 70 T P

D2 sunny 80 90 T N

D3 sunny 85 85 F N

D4 sunny 72 95 F N

D5 sunny 69 70 F P

D6 overcast 72 90 T P

D7 overcast 83 78 F P

D8 overcast 64 65 T P

D9 overcast 81 75 F P

D10 rain 71 80 T N

D11 rain 65 70 T N

D12 rain 75 80 F P

D13 rain 68 80 F P

D14 rain 70 96 F P
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Test on OutlookTest on Outlook

• Tsunny=

No Outlook Temp (°F) Humid (%) Windy Class

D1 sunny 75 70 T P

D2 sunny 80 90 T N

D3 sunny 85 85 F N

D4 sunny 72 95 F N

D5 sunny 69 70 F P

No Outlook Temp (°F) Humid (%) Windy Class

D7 overcast 83 78 F P

D8 overcast 64 65 T P

D9 overcast 81 75 F P

• Tovercast=
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Test on OutlookTest on Outlook

• Train=

No Outlook Temp (°F) Humid (%) Windy Class

D10 rain 71 80 T N

D11 rain 65 70 T N

D12 rain 75 80 F P

D13 rain 68 80 F P

D14 rain 70 96 F P
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build_tree(Tbuild_tree(Tsunnysunny))

• Test: Humidity ≤ 75
• Tsunny, Humidity ≤ 75

No Outlook Temp (°F) Humid (%) Windy Class

D1 sunny 75 70 T P

D5 sunny 69 70 F P

No Outlook Temp (°F) Humid (%) Windy Class

D2 sunny 80 90 T N

D3 sunny 85 85 F N

D4 sunny 72 95 F N

• Leaf, P label
• Tsunny, Humidity > 75

• Leaf, N label
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build_tree(Tbuild_tree(Tovercastovercast))

No Outlook Temp (°F) Humid (%) Windy Class

D7 overcast 83 78 F P

D8 overcast 64 65 T P

D9 overcast 81 75 F P

• Tovercast=

• Leaf, P label
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build_tree(Tbuild_tree(Trainrain))

• Test: Windy=?
• Train,true=

No Outlook Temp (°F) Humid (%) Windy Class

D10 rain 71 80 T N

D11 rain 65 70 T N

No Outlook Temp (°F) Humid (%) Windy Class

D12 rain 75 80 F P

D13 rain 68 80 F P

D14 rain 70 96 F P

• Leaf, N label
• Train,false=

• Leaf, P label
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Decision TreeDecision Tree
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Tests on AttributesTests on Attributes

• Discrete attribute X with n possible values x1,…,xn: 
– Equality with a constant: X=cost, 2 possible 

outcomes: yes, no
– Equality test: X=?, n possible outcomes
– Membership in a set: X∈S, 2 possible outcomes: 

yes, no
– Membership in a set of a partition of {x1,…,xn}: one 

outcome per set
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Test on Discrete AttributesTest on Discrete Attributes

• Example of membership in a set of a partition:
– Attribute Outlook, partition of the set of values 

{{sunny},{rain,overcast}}

Outlook=?

{rain,overcast}{sunny}

• Continuous attribute X
– Comparison with a threshold X≤cost, 2 possible 

outcomes: yes, no
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Termination ConditionTermination Condition

• c4.5 stops
– When an uniform set is found
– When an empty set is found

• A leaf is returned with label the most frequent 
class in the father

– When no test is such that at least two subsets 
contain a minimum number of cases.

• The minimum number of cases is a user-
defined parameter assuming value 2 by default
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Building the TreeBuilding the Tree

• Search in space of all possible trees
– Once a test is assigned to a node it is possible to 

backtrack
– Infeasible

• Greedy search
– Tests on nodes chosen irrevocably: once a test is 

assigned to a node it is not possible to backtrack
– Choice on the basis of a heuristic
– Most used heuristics

• Entropy
• Gini index
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Choice of the TestChoice of the Test

• Choice of the attribute
• Discrete attributes:

– Choice of the type of test
– Possibly choice of the constant or partition 

• Continuous attributes
– Choice of the threshold

• Usually only the equality test X=? is used for discrete 
attributes
– Only the attribute must be chosen

• Constraints that the test must satisfy: at least two 
among T1,T2,…,Tn must contain a minimum number 
of examples
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EntropyEntropy

• In information theory, entropy is a measure of the 
uncertainty associated with a discrete random 
variable. 

• Random variable C with k possible values C1,…,Ck, 
entropy H(C) is given by

)](log[)(log)()( 2
1

2 CPECPCPCH
k

j
jj −=−= ∑

=

• Also known as Shannon entropy
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Information Theory InterpretationInformation Theory Interpretation

• Suppose you want to transmit a series of messages 
made of the values of N random variables 
independent and identically distributed (i.i.d.)

• What is the minimum number of bits necessary to 
transmit these messages?

• Source coding theorem (Shannon 1948) 
– “The minimum number of bits necessary to 

encode the values of N i.i.d. random variables with 
negligible risk of information loss is N×H(X) as N 
tends to infinity, where H(X) is the entropy of the 
random variables”

– H(X) is the minimum number of bits to encode the 
value of a random variable X
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Application to Decision Trees Application to Decision Trees 

• Random variable C: class of an instance randomly 
selected from a set T

• In this case

T

T
CP

j

j =)(

• where Tj is the set of examples from T that belong to 
class Cj

• We can define the entropy of T as the entropy of the 
random variable C

H(T)=H(C)
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EntropyEntropy

• H(T) measures the minimum number of bits 
necessary for encoding, without loss, a message of 
the form
– “The present example, randomly selected from the 

training set, belongs to class Cj”
• H(T) is also called info(T)
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Entropy for Two ClassesEntropy for Two Classes

• In the case of two classes, + and -, with probabilities 
p+=P(+) and p-=P(-)

−−++ ×−×−= ppppTH 22 loglog)(

• Only one variable is independent: p-=1-p+

)1(log)1(log)( 22 ++++ −×−−×−= ppppTH
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Entropy for Two ClassesEntropy for Two Classes

• For p+=0.5: p-=0.5

0)0(1log10log0)( 22 −−∞×−=×−×−=TH

• In this case, we define

0loglim|log 2
0

02 =×=× ++→=++
+

+
pppp

p

def

p

1)1(5.0)1(5.0

5.0log5.05.0log5.0)( 22

=−×−−×−
=×−×−=TH

• For p+=0: p-=1.0

• So H(T)=0-0=0
• Similarly, if p+=1 H(T)=0
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Entropy for Two ClassesEntropy for Two Classes
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EntropyEntropy

• Entropy measures also the non-uniformity or impurity 
of a set:
– It is minimal when the set is most pure, i.e., when 

it contains examples from only one class 
– It is maximal when the set is most impure, i.e., 

when it contains an equal number of examples of 
the two classes
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Intuition for Two ClassesIntuition for Two Classes

• If all the examples belongs to the same class, I do 
not need to communicate the class of a randomly 
drawn example

• If the examples are uniformly distributed over classes 
in the training set, I need to use 1 bit on average: 
message 0 encodes one class, message 1 the other
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ExampleExample

• Play tennis problem
• Training set T: 14 examples, 9 positive, 5 negative
• Entropy of T
• Remember: logax=log10x/log10a=ln x/ln a
• log102=0.301
H(T)=-(9/14)log2(9/14)-(5/14)log2(5/14)=

=-(9/14)log10(9/14)/0.301-(5/14)log10(5/14)/0.301=

=-0.643*(-0.192)/0.301-0.357*(-0.447)/0.301=

=0.410+0.530=0.940
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Entropy for Three ClassesEntropy for Three Classes

• Three classes {C1,C2,C3}: 
– p1=P(C1)
– p2=P(C2)
– p3=P(C3)
– Only two independent variables: p3=1-p1-p2

)1(log)1(

loglog)(

21221

222121
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Entropy for Three ClassesEntropy for Three Classes
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Maximum of the EntropyMaximum of the Entropy

• The maximum of the entropy is obtained for a uniform 
distribution of the examples over classes

• For three classes: p1=p2=p2=1/3=0,333
• H(T)=-3*1/3*log21/3=log23=1,585
• For k classes, we get the maximum for P(Cj)=1/k
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c4.5 Heuristicc4.5 Heuristic

• Assign to a test on an attribute the value given by the 
decrease of entropy (information gain) due to the 
partitioning of the set of examples according to the 
test

• Test X with n possible outcomes
• Set of examples T is partitioned into n subsets 

T1,…,Tn

• Entropy after the partitioning: weighted average 
entropy in the subsets

)()(
1 i

n

i

i
X TH

T

T
TH ×=∑ =
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IInformation Gain

• It is equivalent to the number of bits necessary for 
encoding the class of examples that we save when 
we also know the result of the test X on the examples

• Entropy decreases as more and more uniform 
subsets are obtained

)()()( THTHXgain X−=
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Attribute ChoiceAttribute Choice

• The attribute with the highest information gain is 
selected for splitting the current set of examples
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ExampleExample

• Test on the attribute Windy:
• Windy=F => TF contains 6 positive and 2 negative 

examples
• Windy=T => TT contains 3 positive and 3 negative 

examples
• T=[9,5]
• TF=[6,2] 
• TT=[3,3]
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ExampleExample

• H(TF)=-6/8*log2(6/8)-2/8*log2(2/8)=0.811
• H(TT)=-3/6*log2(3/6)-3/6*log2(3/6)=1
gain(Windy)=H(T)-(8/14*H(TF)+6/14*H(TT))=
0.940-(8/14)*0.811-(6/14)*1=0.048

Windy Play Don’t Play Total

F 6 2 8

T 3 3 6

Total 9 5 14
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ExampleExample

• Test on the attribute outlook:
• Outlook=sunny => Tsunny contains 2 pos and 3 neg
• Outlook=overcast => Tovercast contains 4 pos and 0 

neg
• Outlook=rain => Train contains 3 pos and 2 neg
• T=[9,5],  Train=[3,2], Tsunny=[2,3], Tovercast=[4,0] 
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ExampleExample

gain(Outlook)=H(T)-((5/14)*H(Train)+(5/14)*H(Tsunny)+
(4/14)*H(Tovercast))=
0.940-0.357*0.971-0.357*0.971-0.286*0=0.246

Outlook Play Don’t Play Total

Sunny 2 3 5

Overcast 4 0 4

Rain 3 2 5

Total 9 5 14
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Problems of Information GainProblems of Information Gain

• High tendency to favor tests with many results
• Example: test on an attribute that is a key: |Ti|=1, n = 

|T| 

• So the gain is maximum:

[ ] 0)(,,2,10)( =⇒∈∀= THniTH Xi K

)()( THXgain =

• Example: diagnosis problem, examples=patients, 
attribute=“Patient’s name”
– Useless attribute but has the highest gain
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Normalized GainNormalized Gain

• The gain is normalized with respect to the entropy of 
the test itself 

• The random variable in this case is the value of the 
attribute X

• Gain ratio
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Gain Ratio in the Diagnosis exampleGain Ratio in the Diagnosis example

• X=patient name

kTHXgain 2log)()( ≤=
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• If n>>k⇒gain ratio(X) is small
• H(X) is also called splitinfo
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ExampleExample

gainratio(Windy)=gain(Windy)/H(Windy)
H(Windy)=-8/14*log2(8/14)-6/14*log2(6/14)=0.985
gainratio(Windy)=0.048/0.985=0.048

gainratio(Outlook)=gain(Outlook)/H(Outlook)
H(Outlook)=-5/14*log2(5/14)-5/14*log2(5/14) -

4/14*log2(4/14)=1.577
gainratio(Outlook)=0.246/1.577=0.156
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Gini IndexGini Index

• Other impurity measure

∑
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Gini IndexGini Index

• The max of Gini index is achieved for p+=p-=0,5: 
gini(T)=0,5

• The min is achieved for p+=0 or p-=0: gini(T)=0
• For three classes

2
21
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1 )1(1)( ppppTgini −−−−−=
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Gini indexGini index
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Gini Index for Three ClassesGini Index for Three Classes
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Gini IndexGini Index

• In general, the Gini index has a maximum for 
p1=p2=...pk=1/k
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• and a minimum for p1=1, p2=...pk=0: gini(T)=0
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Gini indexGini index

• Gini index after the split on attribute X

)()(
1 i

n

j

i
X Tgini

T

T
Tgini ×=∑ =

• The attribute X that gives the lowest giniX(T) is 
chosen for the split

• Gini index is used by CART
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Tests on Continuous AttributesTests on Continuous Attributes

• Suppose continuous attribute X assumes m values in 
T

• Let <V1,V2,….,Vm> be the values ordered from the 
smallest to the largest

• The test X ≤ Vi divides the m values into two groups:
• X ≤ Vi : {V1,…,Vi} 
• X > Vi : {Vi+1,…,Vm} 
• So we have m-1 candidates for the threshold: V1, ..., 

Vm-1

• Each candidate must be evaluated
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Tests on Continuous AttributesTests on Continuous Attributes

• Evaluation of a test:
– Sort the examples on the basis of the attribute X
– Count the examples

• Let ej,i be the number of examples that have 
value Vi for X and belong to class Cj for 
j=1,…,k, i=1,…,m-1

• Let ej be the number of examples that belong to 
class Cj for k=1,…,k

– Each test has two possible outcomes: yes or no
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Tests on Continuous AttributesTests on Continuous Attributes

• dj,yes=examples of class j in branch X ≤ Vi

• dj,no=examples of class j in branch X > Vi

• For j=1 to k dj,yes=0 dj,no=ej

• For i=1 to m-1
– Let the test be X ≤ Vi

– For j=1 to k 
• dj,yes:=dj,yes+ej,i

• dj,no:=dj,no-ej,i

– The heuristic for attribute X, threshold Vi can be 
computed from the values 
d1,yes,…,dk,yes,d1,no,…,dk,no
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Attributes with Unknown ValueAttributes with Unknown Value

• If the training set contains examples with one or more 
attributes unspecified

• For example
<?,72,90,T,P>

• How do we take into account this example when 
computing the heuristic and when splitting the 
example set?
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Attributes with Unknown ValueAttributes with Unknown Value

• Test evaluation: 

– Consider a discrete attribute X with n values {x1,…,xn}

– Let F be the set of examples of T that have X known

– F provides us with a distribution of examples into values and 
class P(xi,Cj)

– We assume that the unknown values have the same 
distribution P(xi,Cj) with respect to the attribute and the class 

– Therefore the examples with unknown values do not alter 
the value of the entropy or of the Gini index
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Attributes with Unknown ValueAttributes with Unknown Value

• Entropy of the partitioning: the unknown value is 
considered as a value of its own

• Let Tn+1 be the set of examples of T with unknown 
value for X
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Attributes with Unknown ValueAttributes with Unknown Value

• c4.5 further penalizes attributes with unknown values 
by multiplying the gain by the probability that the 
attribute is known

• If F is the set of examples of T with X known

))()(()( FHFH
T

F
Xgain X−×=
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ExampleExample

• Suppose that in the example database the case D6 :
Outlook=overcast, Temperature=72, Humidity=90, Windy=T

• is replaced by
Outlook=?, Temperature=72, Humidity=90, Windy=T

• The frequencies of Outlook over F are

Outlook Play Don’t Play Total

Sunny 2 3 5

Overcast 3 0 3

Rain 3 2 5

Total 8 5 13
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ExampleExample

• H(F)=-8/13*log2(8/13)-5/13*log2(5/13)=0.961
• HOutlook(F)=5/13*(-2/5*log2(2/5)-3/5*log2(3/5))

+3/13*(-3/3*log2(3/3)-0/3*log2(0/3))
+5/13*(-3/5*log2(3/5)-2/5*log2(2/5))
=0.747

• gain(Outlook)=13/14*(0.961-0.747)=0.199 (slightly 
less than before)

Outlook Play Don’t Play Total

Sunny 2 3 5

Overcast 3 0 3

Rain 3 2 5

Total 8 5 13
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ExampleExample

• H(Outlook)=-5/14*log2(5/14)-3/14*log2(3/14)-
5/14*log2(5/14)-1/14*log2(1/14)=1.809

• gainratio(Outlook)=0.199/1.809=0.110
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PartitioningPartitioning

• In which subset of a node with test on X do we put an 
example with X unknown?

• Partitioning is generalized in a probabilistic sense: 
– Each example of T is assigned a weight, initially 1
– Each example is inserted in every subset Ti with a 

weight
• If we partition on discrete attribute X

– If example e, with weight w in T, has X=xi, e is put 
in Ti with weight w and in Tj with j≠i with weight 0

– If example e, with weight w in T, has X=?, e is put 
in Ti with weight w × P(xi)

– P(xi) can be estimated by relative frequency in F
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Example Example 

• Partitioning according to Outlook
• No problem for the 13 cases of F 
• Example D6 is assigned to sets Tsunny, Tovercast and 

Train with weights 5/13, 3/13 e 5/13 respectively
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ExampleExample

• Consider Tsunny
No Outlook Temp     Humidity  Windy    Class Weight
D1 sunny 75 70 T P 1
D2 sunny 80 90 T N 1
D3 sunny 85 85 F N 1
D4 sunny 72 95 F N 1
D5 sunny 69 70 F P 1
D6 ? 72 90 T P 5/13

• If Tsunny is partitioned on Humidity with threshold 75, 
we get the following distribution:
– Humidity ≤ 75 2 class P, 0 class N
– Humidity > 75 5/13 class P, 3 class N
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ExampleExample

• The second subset still contains examples from two 
classes but no test produces two subsets with at 
least two examples=> stop

Outlook=sunny
| Humidity ≤ 75: P (2.0) 
| Humidity > 75: N (3.4/0.4)

Outlook=overcast: P (3.2)
Outlook=rain

| Windy=True: N (2.4/0.4)
| Wndy=False: P (3.0)
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Output InterpretationOutput Interpretation

Numbers (A/B) associated to leaves
• A=total weight of examples associated to the leaf
• B=total weight of examples associated to the leaf that 

are misclassified
• For example

N (3.4/0.4)
• Means that 3.4 cases belong to the leaf of which 0.4 

do not belong to class N
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Classification of Unseen Cases with All Classification of Unseen Cases with All 
Values KnownValues Known

• An unseen (new) case e with all attributes known is 
classified by
– Traversing the tree from the root by following the 

branches that correspond to the values of the 
case

– Suppose that the leaf 
Pos (A/B)

is reached, then e is classified as Pos with 
probability (A-B)/A and Neg with probability B/A

– In the case of more than two classes, the 
distribution of examples into classes at the leaf is 
used
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Classification of Unseen Cases withClassification of Unseen Cases with
Unkown ValuesUnkown Values

• If e has X unknown
• e is associated with a weight w, initially set to 1
• When traversing the tree, if the attribute at the current 

node is unknown in e we explore all subtrees.
• Subtree Ti is explored by assigning e to Ti with weight 

w × P(x
j
)

• P(x
j
) is estimated by considering by relative 

frequency over T
• The information about relative frequencies are stored 

in the leaves that are descendants of T
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Classification of Unseen Cases withClassification of Unseen Cases with
Unkown ValuesUnkown Values

• In the end more than one leaf will be reached
• Let L be the set of leaves that are reached
• Let wl=P(l) be the weight of e that reaches l
• Let P(Cj|l) be the probability that an example in l 

belongs to class Cj

(estimated by relative frequency)
• Then

∑ ∑
∈ ∈

×==
Ll Ll

jjj lPlCPlCPCP )()|(),()(
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ExampleExample

• Unseen example e
Outlook=sunny, Temperature=70, Humidity=?, Windy=F

• Outlook=sunny => first subtree
• Humidity=?=> we cannot determine whether 

Humidity ≤ 75
• We follow both branches with weights

– Branch Humidity ≤ 75: w=2.0/5.4=0.370
– Branch Humidity > 75: w=3.4/5.4=0.630
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ExampleExample

• Leaf humidity ≤ 75:
– P(P|l)=100%
– P(N|l)=0%

• Leaf humidity > 75
– P(N|l)= 3/3.4=88%
– P(P|l)= 0.4/3.4=12%

• Overall we get
– P(P)=0.370*100%+0.630*12%=44%
– P(N)=0.630*88%=56%
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Observations on c4.5 Search (1)Observations on c4.5 Search (1)

• c4.5 performs a hill-climbing search in the space of 
all the possible decision trees starting from the 
simplest hypothesis and going to more complex 
hypotheses

• Observations:
– The space of possible decision trees is equivalent 

to the powerset of X so for c4.5 the hypothesis 
space surely includes the target concept

– c4.5 maintains a single hypothesis during the 
search. This constrasts with Candidate-Elimination 
that maintains the set of all the hypotheses 
congruent with the examples.
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Observations on c4.5 Search (2)Observations on c4.5 Search (2)

– c4.5 does not performs backtracking during the 
search. So it runs the risk of incurring in a solution 
only locally optimal

– c4.5 uses all the training examples at every step 
for deciding how to refine the tree, differently from 
the methods such as Find-S or Candidate-
Elimination that take decisions in an incremental 
way on the basis of individual examples. The 
result is that the search of c4.5 is less sensible to 
errors in the single examples.
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c4.5 Inductive Bias (1)c4.5 Inductive Bias (1)

• c4.5 inductive bias is [Mit97]:
– Shortest trees are preferred to the longer ones. 

The trees that put closer to the root the attributes 
with the highest information gain are preferred.

• Even if c4.5 hypothesis space is the powerset of X, 
thanks to this inductive bias, c4.5 is able to 
generalize anyway

• Differences with Candidate-Elimination: Candidate-
Elimination searches in a complete way an 
incomplete hypothesis space while c4.5 searches in 
an incomplete way a complete hypothesis space
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c4.5 Inductive Bias (2)c4.5 Inductive Bias (2)

• c4.5: preference bias (or search bias)
• Candidate-Elimination: restriction bias (or language 

bias)

• In general, a preference bias is better because it 
allows to work with a complete hypothesis space

• Some algorithms use both
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Why preferring shorter hypotheses?Why preferring shorter hypotheses?

• Question largely debated by philosophers
• William of Occam in 1320 was the first to tackle the 

problem [Mit97]: 
– Occam’s razor: prefer the simplest hypothesis that 

describes the data
• Is this true?

– In favor: simplest hypothesis are fewer than more 
complex ones, so it is more difficult to find a short 
hypothesis that describes the data by chance.

– Against: if we define a small set of hypotheses (e. 
g. the trees with 17 nodes), then we should prefer 
those.
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OverfittingOverfitting

• A hypothesis overfits the data when there exists a 
simpler hypothesis less accurate on the training set 
but more accurate on the universe

• Overfitting may happen when the training set 
contains errors or when it is small

78

OverfittingOverfitting
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OverfittingOverfitting

• Example: consider the previous training set plus
<sunny,80,70,strong,N>

• which should be positive but it is erroneously 
classified as negative

• The tree h’ learned from the new training set is more 
complex than the tree h learned from the original 
training set

• However, since the new example is incorrect, h’ will 
make more mistakes than h on U
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Approaches to Avoid OverfittingApproaches to Avoid Overfitting

• Stop the growth before reaching a tree that perfectly 
classifies the training examples (prepruning)

• Grow the tree and prune it afterwards (postpruning)



41

81

How to Determine the Optimal Dimension of How to Determine the Optimal Dimension of 
the Treethe Tree

• Using a separate example set for evaluating the tree 
(“training and validation set” approach)

• Using all the available examples for training but using 
a statistical test to decide whether to keep a node or 
not

• Using an explicit measure of the complexity of 
encoding the tree and the examples that are 
exceptions and choose a tree that (locally) minimizes 
this measure (minimum description length principle)
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Reduced error pruningReduced error pruning

• “Reduced error pruning” is a postpruning and “training and 
validation set” approach.

• Divide the data in a training and validation set

• Do until a further pruning reduces the accuracy on the validation 
set

– Evaluate the impact on the validation set of pruning every 
node

• Pruning a node means replacing it with a leaf with label 
the most frequent class in the node

– Prune the node that gives the best accuracy on the 
validation set

• Problems when the data are limited
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Reduced error pruningReduced error pruning
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Simplification of the Tree inSimplification of the Tree in c4.5c4.5

• “Pessimistic pruning”: it is a postpruning that uses a 
statistical test rather than a testing set

• The tree that is obtained is simpler and is often more 
accurate when evaluating new cases because it 
reduces the overfitting

• Pruning by substitution: a single leaf in place of a tree 
or a sub-tree in place of a tree

• It is based on an estimate of the error rate
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Simplification of the Tree inSimplification of the Tree in c4.5c4.5

• Consider a leaf that covers N training cases of which 
E erroneously

• The error on the training set is E/N
• Consider E as events in N trials
• We ask what is the probability of the error event on 

the entire population of cases covered by the leaf
• The probability of the error has a binomial distribution

86

Binomial DistributionBinomial Distribution

• The binomial distribution described the probability 
that r heads are obtained when throwing n times a 
coin for which the probability of landing head is p 

r
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Binomial DistributionBinomial Distribution
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Estimate of pEstimate of p

• Suppose you observed r heads in n throws, you want to 
estimate p

• In particular, you want 
1. an interval [a,b] in which you are sure that p falls with a 

certain probability N%, i.e. P(a<p<b)=N%
• [a,b] is called a (two-tailed) confidence interval, 
• N% is called the confidence level, or

2. a number a such that P(a<p)=L%
• [a,1] is a one-tailed confidence interval
• L% is called the probability of the lower tail, or

3. a number b such that P(p<b)=U%
• [0,b] is a one-tailed confidence interval
• U% is called the probability of the upper tail
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OneOne--tailed Confidence Intervaltailed Confidence Interval

• We consider one-tailed confidence of the form [0,b]
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Estimate of pEstimate of p

• Given r, n, and N%, L% or U% there are algorithms 
that give you a,b, a  and b

• Either directly using the binomial distribution or
• By approximating the binomial distribution with a 

normal distribution
– This approximation is good when n>30 or when 

np(1-p)>5
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Confidence IntervalConfidence Interval

• Let’s go back to learning
• Suppose you have E error over N examples
• E corresponds to r, N to n and the true error 

probability to p
• We want to estimate the true error probability 
• We use one-tailed confidence intervals [0,b]
• Let CF be the probability of the confidence interval 

(U%)
• Let UCF(E,N) be the upper bound of the confidence 

interval, i.e. let UCF(E,N)=b
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c4.5 Tree Pruningc4.5 Tree Pruning

• c4.5 considers N*UCF(E,N) instead of E as an 
estimate of the number of errors in a leaf

• c4.5 uses CF=25% by default
• The estimate of the number of errors of a tree is the 

sum of the estimate of the number of errors in each 
leaf

• c4.5 replaces a tree with a leaf if the estimated 
number of errors in the leaf is smaller than those of 
the tree

• The same for replacing trees with sub-trees
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Example: vote DatasetExample: vote Dataset

• Instances: members of the US congress
• Attributes: votes expressed by the member regarding 

16 questions
• Classes: democratic, republican
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Example: vote DatasetExample: vote Dataset

physician fee freeze = n:
|   adoption of the budget resolution = y: democrat (151.0)
|   adoption of the budget resolution = u: democrat (1.0)
|   adoption of the budget resolution = n:
|   |   education spending = n: democrat (6.0)
|   |   education spending = y: democrat (9.0)
|   |   education spending = u: republican (1.0)
physician fee freeze = y:
|   synfuels corporation cutback = n: republican (97.0/3.0)
|   synfuels corporation cutback = u: republican (4.0)
|   synfuels corporation cutback = y:
|   |   duty free exports = y: democrat (2.0)
|   |   duty free exports = u: republican (1.0)
|   |   duty free exports = n:
|   |   |   education spending = n: democrat (5.0/2.0)
|   |   |   education spending = y: republican (13.0/2.0)
|   |   |   education spending = u: democrat (1.0)
physician fee freeze = u:
|   water project cost sharing = n: democrat (0.0)
|   water project cost sharing = y: democrat (4.0)
|   water project cost sharing = u:
|   |   mx missile = n: republican (0.0)
|   |   mx missile = y: democrat (3.0/1.0)
|   |   mx missile = u: republican (2.0)
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Example: vote DatasetExample: vote Dataset

Simplified tree:

physician fee freeze = n: democrat (168.0/2.6)
physician fee freeze = y: republican (123.0/13.9)
physician fee freeze = u:
|   mx missile = n: democrat (3.0/1.1)
|   mx missile = y: democrat (4.0/2.2)
|   mx missile = u: republican (2.0/1.0)

96

Example: vote DatasetExample: vote Dataset

• The sub-tree
education spending = n: democrat (6.0)
education spending = y: democrat (9.0)
education spending = u: republican (1.0)

• was replaced by the leaf democrat because
• First leaf E=0 N=6 U25%(0,6)=0.206
• Second leaf E=0 N=9 U25%(0,9)=0.143
• Third leaf E=0 N=1 U25%(0,1)=0.750
• So the estimate of the number of errors for the sub-

tree is
6*0.206+9*0.143+1*0.750=3.273
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Example: vote DatasetExample: vote Dataset

• If the sub-tree
education spending = n: democrat (6.0)
education spending = y: democrat (9.0)
education spending = u: republican (1.0)

• was replaced by the leaf democrat, it would cover 16 
cases with 1 error so the estimate of the number of 
errors would be:

16*U25%(1,16)=16*0.157=2.512
• Since the estimate is lower for the leaf than for the 

sub-tree, it is replaced by the leaf
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Example: vote DatasetExample: vote Dataset

• The sub-tree immediately above takes the form
adoption of the budget resolution = y: democrat (151.0)
adoption of the budget resolution = u: democrat (1.0)
adoption of the budget resolution = n: democrat (16/1)

• The estimate of the number of errors for the sub-tree 
is

151*U25%(0,151)+1*U25%(0,1)+2.512=4.642
• If the sub-tree was replaced by the leaf democrat the 

estimate of the number of errors would be
168*U25%(1,168) =2.610

• Therefore it is convenient to perform the substitution
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Pruned TreesPruned Trees

• The numbers (N/P) that appear close to the leaves 
mean:
– N number of training example covered by the leaf
– P number of predicted errors if N new cases would 

be classified by the tree (N*UCF(E,N))
• Estimate of the error on new cases of the pruned 

trees=errors predicted in the leaves / number of 
cases in the training set

• In the vote dataset the sum of errors predicted in the 
leaves is 20.8 over a total of 300 cases in the training 
set => 6.9% error
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Example: vote DatasetExample: vote Dataset

Evaluation on training data (300 items):

Before Pruning           After Pruning
---------------- ---------------------------
Size      Errors   Size      Errors   Estimate

25    8( 2.7%)      7   13( 4.3%)    ( 6.9%)   <<

Evaluation on test data (135 items):

Before Pruning           After Pruning
---------------- ---------------------------
Size      Errors   Size      Errors   Estimate

25    7( 5.2%)      7    4( 3.0%)    ( 6.9%)   <<



51

101

Example: vote DatasetExample: vote Dataset

• The error on the training set is higher for the pruned 
tree than for the unpruned tree

• but, as expected, the error on the unseen cases is 
lower
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Computational ComplexityComputational Complexity

• Worst case analysis
– A: attribute number
– N: example number

Algorithm Training 
c4.5 (only discrete 
attributes) 

O(A2N) 

c4.5 (only continuous 
attributes) 

O(A2Nlog2N) 
(Ssj 

(supposing that an attribute can be used only once) 

• The average case can be very different

Because it is necessary to 
order the values of 

continuous attributes
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Examples of UsageExamples of Usage

• Results of the labor negotiations in Canada in the 
years 1987--88.

• Concepts: acceptable or unacceptable contract. 
• Contract: 16 attributes, not all applicable to all cases.
• Classes: acceptable (good) or not acceptable (bad). 
• Aim: obtaining a system able to judge the 

acceptability of a new contract.
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Data Divided in Some FileData Divided in Some File

• labor-neg.names: description of the problem in term 
of classes and attributes

|  Classes
|  -------
good, bad.
|  Attributes
|  ----------
duration:                       continuous
wage increase first year:       continuous
wage increase second year:      continuous
wage increase third year:       continuous
cost of living adjustment:      none, tcf, tc
working hours:                  continuous
pension:                        none, ret_allw, emp l_contr
standby pay:                    continuous
shift differential:             continuous
education allowance:            yes, no
statutory holidays:             continuous
vacation:                       below average, aver age, generous
longterm disability assistance: yes, no
contribution to dental plan:    none, half, full
bereavement assistance:         yes, no
contribution to health plan:    none, half, full

comment

classes

attributes

values
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Training setTraining set

• Labor-neg.data: attributes not applicable or 
unknown: “?”

1,5.0,?,?,?,40,?,?,2,?,11,average,?,?,yes,?,good
3,3.7,4.0,5.0,tc,?,?,?,?,yes,?,?,?,?,yes,?,good
3,4.5,4.5,5.0,?,40,?,?,?,?,12,average,?,half,yes,half,good
2,2.0,2.5,?,?,35,?,?,6,yes,12,average,?,?,?,?,good
3,6.9,4.8,2.3,?,40,?,?,3,?,12,below average,?,?,?,?,good
3,3.5,4.0,4.6,none,36,?,?,3,?,13,generous,?,?,yes,full,good
1,3.0,?,?,none,36,?,?,10,no,11,generous,?,?,?,?,good
2,4.0,5.0,?,tcf,35,?,13,5,?,15,generous,?,?,?,?,good
2,2.5,3.0,?,?,40,none,?,?,?,11,below average,?,?,?,?,bad
3,3.5,4.0,4.6,tcf,27,?,?,?,?,?,?,?,?,?,?,good
2,4.5,4.0,?,?,40,?,?,4,?,10,generous,?,half,?,full,good
1,6.0,?,?,?,38,?,8,3,?,9,generous,?,?,?,?,good
2,3.0,3.0,?,none,33,?,?,?,yes,12,generous,?,?,yes,full,good
3,2.0,2.5,?,?,35,none,?,?,?,10,average,?,?,yes,full,bad
3,4.5,4.5,5.0,none,40,?,?,?,no,11,average,?,half,?,?,good
2,2.5,2.5,?,?,38,empl_contr,?,?,?,10,average,?,?,?,?,bad
1,2.0,?,?,tc,40,ret_allw,4,0,no,11,generous,no,none,no,none,bad
3,2.0,2.5,2.0,?,37,empl_contr,?,?,?,10,average,?,?,yes,none,bad
2,4.5,4.0,?,none,40,?,?,4,?,12,average,yes,full,yes,half,good

Labor-neg.test: set of new cases, to be used to evaluate 
the learned tree (same formats of labor-neg.data)
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ExampleExample

• Command to run c4.5 on the data:
c4.5 –f labor-neg –u

where the –f option is used to indicate the name of the 
set of files and –u means that the learned tree must 
be evaluated on the cases in labor-neg.test
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OutputOutput

• Two decision trees:
– complete tree
– pruned tree

• Evaluation of the trees
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Output: Complete TreeOutput: Complete Tree

C4.5 [release 8] decision tree generator        Sat May 18 17:05:35 1996

----------------------------------------

Options:

File stem <labor-neg>

Trees evaluated on unseen cases

Read 40 cases (16 attributes) from labor-neg.data

Decision Tree:

wage increase first year <= 2.5 :

|   statutory holidays <= 10 : bad (6.0)

|   statutory holidays > 10 :

|   |   working hours <= 38 : good (2.3/1.0)

|   |   working hours > 38 : bad (3.0)

wage increase first year > 2.5 :

|   statutory holidays > 10 : good (21.2)

|   statutory holidays <= 10 :

|   |   wage increase first year <= 4 : bad (4.5/0.5)

|   |   wage increase first year > 4 : good (3.0)
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Output: Pruned TreeOutput: Pruned Tree

Simplified Decision Tree:

wage increase first year <= 2.5 : bad (11.3/2.8)

wage increase first year > 2.5 :

|   statutory holidays > 10 : good (21.2/1.3)

|   statutory holidays <= 10 :

|   |   wage increase first year <= 4 : bad (4.5/1. 7)

|   |   wage increase first year > 4 : good (3.0/1. 1)

Tree saved
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Tree EvaluationTree Evaluation

Evaluation on training data (40 items):

Before Pruning           After Pruning

---------------- ---------------------------

Size      Errors   Size      Errors   Estimate

11    1( 2.5%)      7    1( 2.5%)    (17.4%)   <<

Evaluation on test data (17 items):

Before Pruning           After Pruning

---------------- ---------------------------

Size      Errors   Size      Errors   Estimate

11    4(23.5%)      7    3(17.6%)    (17.4%)   <<

(a)  (b)      <-classified as

---- ----

10    1      (a): class good

2    4      (b): class bad
Confusion matrix
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WekaWeka

• Weka is a machine learning suite
• It contains tools for:

– Learning decision trees
– Learning production rules
– Discovering association rules
– Clustering

• Open source, in Java
• Downloadable from
• http://www.cs.waikato.ac.nz/ml/weka/
• Connected to the book: [Wit05]
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WekaWeka

• Contains an implementation of c4.5 Release 8: j4.8
• Uses a format called ARFF (Attribute Relation File 

Format) for the input files
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ARFFARFF

• A single file
• Two sections: 

– Header
– Data

• Header: attribute definition
– @relation <dataset name>
– @attribute <attribute name> {<val1>, <val2>, …, 

<valn>}
• or

– @attribute <attribute name> real
• The last attribute is usually used as the class
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File labor.arff: HeaderFile labor.arff: Header

% labor.arff
@relation 'labor-neg-data'

@attribute 'duration' real
@attribute 'wage-increase-first-year' real
@attribute 'wage-increase-second-year' real
@attribute 'wage-increase-third-year' real
@attribute 'cost-of-living-adjustment' {'none','tcf ','tc'}
@attribute 'working-hours' real
@attribute 'pension' {'none','ret_allw','empl_contr '}
@attribute 'standby-pay' real
@attribute 'shift-differential' real
@attribute 'education-allowance' {'yes','no'}
@attribute 'statutory-holidays' real
@attribute 'vacation' {'below_average','average','g enerous'}
@attribute 'longterm-disability-assistance' {'yes', 'no'}
@attribute 'contribution-to-dental-plan' {'none','h alf','full'}
@attribute 'bereavement-assistance' {'yes','no'}
@attribute 'contribution-to-health-plan' {'none','h alf','full'}
@attribute 'class' {'bad','good'}

comment
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Data SectionData Section

• @data tag followed by the description of the 
examples, one description per row (ending with a line 
feed) as in c4.5

• Every example is described by the list of values for 
every attribute separated by , (comma)

• Each value corresponds to the attribute in the same 
position in the header

• The declarations @relation, @attribute and @data
are case insensitive. 
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Labor.arff: DataLabor.arff: Data

@data
1,5,?,?,?,40,?,?,2,?,11,'average',?,?,'yes',?,'good '
3,3.7,4,5,'tc',?,?,?,?,'yes',?,?,?,?,'yes',?,'good'
2,2,2.5,?,?,35,?,?,6,'yes',12,'average',?,?,?,?,'go od'
3,6.9,4.8,2.3,?,40,?,?,3,?,12,'below_average',?,?,? ,?,'good‘

...

The single quotes (‘) are necessary only if the values 
contain spaces
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ARFFARFF

• Other formats for the attributes
– integer, string, date

• integer: the attribute can take only integer values
• string: the attribute can take arbitrary string values  

– String attributes are treated as nominal attributes
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ARFFARFF

• date: date attributes.  Format:
@attribute <name> date [<date-format>] 

• where <date-format> is an optional string that 
specifies how the values are to be interpreted and 
printed.  The default format is the ISO-8601 format 
"yyyy-MM-dd'T'HH:mm:ss“

• Example
@RELATION Timestamps 
@ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss" 
@DATA 
"2001-04-03 12:12:12" 
"2001-05-03 12:59:55" 
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Weka ExecutionWeka Execution

• Double click on Weka (weka.jar)
• Click on Explorer
• Click on Open file… : select the file to be opened, for 

example labor.arff
• Click on Classify
• Choice of the algorithm: j48
• Setting the test options: for example, select 

Percentage Split to select a fraction of the examples 
to be used for testing

• Click on Start
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OutputOutput

J48 pruned tree
------------------

wage-increase-first-year <= 2.5: bad (15.27/2.27)
wage-increase-first-year > 2.5
|   statutory-holidays <= 10: bad (10.77/4.77)
|   statutory-holidays > 10: good (30.96/1.0)

Number of Leaves  : 3

Size of the tree : 5

Time taken to build model: 0.08 seconds
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OutputOutput

=== Evaluation on test split ===

=== Summary ===

Correctly Classified Instances          17               85      %

Incorrectly Classified Instances         3               15      %

Kappa statistic                          0.6875

Mean absolute error                      0.2806

Root mean squared error                  0.3729

Relative absolute error                 58.3712 %

Root relative squared error             72.0645 %

Total Number of Instances               20
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OutputOutput

=== Detailed Accuracy By Class ===

TP Rate   FP Rate   Precision  Recall  F-Measure   Class

0.667     0              1     0.667  0.8                bad

1            0.333       0.786            1          0.88             good

=== Confusion Matrix ===

a   b  <-- classified as

6   3 |  a = bad

0 11 |  b = good
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Output ExplanationOutput Explanation

• Confusion matrix:
pos neg <-- classification
TP FN P  pos
FP TN N neg
• TP=true positive, FN=false negative, FP=false positive, TN=true 

negative, P=TP+FN=positive, N=FP+TN=negative
• Accuracy=(TP+TN)/(TP+TN+FN+FP)
• Error rate=(FP+FN)/(TP+TN+FN+FP)=1-Accuratezza
• TP Rate(TPR)=Sensitivity=Recall=TP/(TP+FN)=TP/P
• FP Rate(FPR)=FP/(FP+TN)=FP/N
• FN Rate(FNR)=FP/(TP + FN) =FP/P=1-TPR
• TN Rate(TNR)=Specificity=TN/(FP+TN)=TN/N=1–FPR
• Precision=TP/(TP+FP) 
• Couples: TPR-FPR, Sensitivity-Specificity, Recall-Precision
• F-meaure=2*Precision*Recall/(Precision+Recall)
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Useful LinksUseful Links

• C4.5
http://www.rulequest.com/Personal/
C source code 

• Weka: open source suite of machine learning 
algorithms written in Java

http://www.cs.waikato.ac.nz/ml/weka/
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