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ML DefinitionsML Definitions

• Definition 1:
– Learning is constructing or modifying 

representations of what is being experienced 
[Michalski 1986], pag. 10

• Definition 2:
– Learning denotes changes in the system that are 

adaptive in the sense that they enable the system 
to do the same task or tasks drawn from the same 
population more efficiently and more effectively 
the next time [Simon 1984], pag. 28
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ML ApplicationsML Applications

• A) Knowledge extraction
– To be employed in knowledge-based systems 

(e.g. in classification systems)
– To be presented to humans (e.g. for scientific 

purposes, i.e., discovery of new scientific theories)
• B) Improvement of the performances of a machine

– E.g. improvement of the motion and sensing 
capabilities of a robot

4

ML TechniquesML Techniques

• Symbolic techniques (applications A and B)
• Representation languages

– Propositional
– First order

• Statistical techniques (applications A and B)
• Representation language

– Propositional
– First order

• Neural networks (application B)
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Inductive LearningInductive Learning

• The system starts from observations provided by a 
teacher or from the environment 

• It generalizes them, i.e. it obtains knowledge 
hopefully valid also in cases not yet observed 
(induction).

• Two types of inductive learning:
– Learning from examples: the observations are 

grouped into a set of positive examples, instances 
of the concept to be learned, and into a set of 
negative examples, non-instances of the concept

– Descriptive learning: the aim is to find regularities 
in the data
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Inductive Learning from ExamplesInductive Learning from Examples

• Universe U: set U of all the objects (also called 
instances) of the domain

• Concept C: subset of U, C⊆U
• Also called class
• Object description language Lo

• Concept description language Lc

• A procedure for verifying whether a description DC of 
a concept C is satisfied by a description Dx of an 
object x, meaning that x∈C
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Inductive Learning from ExamplesInductive Learning from Examples

• Informally: 
– Learning a concept C means finding a description 

DC of C such that, for all objects x ∈ U, x ∈ C iff Dx

satisfies DC. 
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Inductive Learning from ExamplesInductive Learning from Examples

• Fact: description of an object
• Example for a concept C: labeled fact, 

– + label if the object belongs to the concept 
(positive example)

– - label if the object does not belong to the concept 
(negative example)

• Training set E: set of labeled facts, subsets:
– E+: set of positive examples
– E-: set of negative examples

• Two classes: + and -, in general we may have more 
than two classes
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Inductive Learning from ExamplesInductive Learning from Examples

• Hypothesis: description of the concept to be learned
• If a fact satisfies a hypothesis we say that the 

hypothesis covers the fact
• Coverage test function

covers(H,e)
– returns true if e is covered by H and false 

otherwise
• Extension to set of examples:

covers(H,E)={e ∈ E| covers(H,e)= true}
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Inductive Learning from ExamplesInductive Learning from Examples

• We want to find an hypothesis H such that
∀e ∈U: covers(H,e)¤e ∈C

• In practice, we know only instances from E
• So we require that

∀e ∈E: covers(H,e)¤e ∈C

• Thus
– covers(H,e)⇒ e ∈C
– ¬ covers(H,e)⇒ ¬ (e ∈C)
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Inductive Learning from ExamplesInductive Learning from Examples

• Given a set E of positive and negative examples of a 
concept C, expressed in object description language 
Lo

• Find an hypothesis H, expressed in a concept 
description language Lc, such that
– Every positive example e+ ∈ E+ is covered by H
– No negative example e- ∈ E- is covered by H
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Completeness and ConsistencyCompleteness and Consistency

• An hypothesis H is called complete if it covers all the 
positive examples, i.e.

covers(H,E+)=E+

• An hypothesis H is called consistent if it does not 
cover any negative examples, i.e.

covers(H,E-)= ∅
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Representation LanguagesRepresentation Languages

• Propositional or attribute-value languages
• Frame-based languages
• First order, logic or relational languages
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AttributeAttribute--value languagesvalue languages

• Every instance is described by the values taken by a 
set of attributes (fixed for all the instaces)

• The training set can be represented as a table
• Attributes can be

– Boolean or binary (2 values)
– Discrete or nominal (more than 2 values)
– Ordinal (ordered discrete values)
– Continuous or numeric (interval or ratio scale, 

integer or real)
• If there are k attributes, each instances can be 

described by a point in a k-dimensional space
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ExampleExample

• Universe: set of athletes
• Instances described by

– height=continuous (real)
– weight=continuous (integer),
– preferred_music=discrete, values={rock,pop,rap}

• Example of instance
height=1.85m, weight=90kg, preferred_music=rock

• Class=sport played, values={football, baseball, 
basketball, boxing}
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AttributeAttribute--Value Concept Description Value Concept Description 
LanguagesLanguages

• Single production rule, conjunction in the body, class in the head
• Example: football player

– If weight<100 and preferred_music=rock → football
• They can also be represented as a tuple with a constraint for 

every attribute (class is left implicit):

– attribute=?, all the values satisfy the constraint
– attribute=value

– attribute<value
– attribute=∅, no value is acceptable (the hypothesis covers 0 

examples)
• Example: football player

– <height=?,weight<100, preferred_music=rock>
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AttributeAttribute--Value Concept Description Value Concept Description 
LanguagesLanguages

• Set of production rules, any Boolean formula in the 
body, class in the head

• Often only conjunctions in the body
• Often decision lists: 

– The rules are tried in order
– The first that fires gives the class

• Example: baseball player
weight<100 and preferred_music=pop → baseball
weight<100 and preferred_music=rap → basketball
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AttributeAttribute--Value Concept Description Value Concept Description 
LanguagesLanguages

• Decision trees:
– Every node corresponds to a test on an attribute
– Every child corresponds to a result of the test
– Every leaf is associated to a class
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ExampleExample

Weight<100

preferred_music=?

no

yes

boxingfootball baseball

rock
pop

basketball

rap
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AttributeAttribute--Value LanguagesValue Languages

• Equivalent to propositional logic:
– Each equality or disequality can be seen as a 

proposition (zero arity predicate) that is either true 
or false for an instance

– There are no variables, quantifiers and predicates 
with arity > 0
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AttributeAttribute--Value Concept Description Value Concept Description 
LanguagesLanguages

• Bayesian networks
– Represent probabilistic dependencies among 

attributes
– Qualitative component: the parents of a node are 

the attributes that directly influence the node
– Quantitative component: strength of the 

dependency
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Example: Printer Troubleshooting  
(Windows 95)

Print Output
OK

Correct
Driver

Uncorrupted
Driver

Correct
Printer Path

Net Cable
Connected

Net/Local
Printing

Printer On 
and Online

Correct
Local Port

Correct 
Printer

Selected

Local Cable
Connected

Application
Output OK

Print
Spooling On

Correct 
Driver

Settings

Printer Memory
Adequate

Network
Up

Spooled
Data OK

GDI Data
Input OK

GDI Data 
Output OK

Print
Data OK

PC to Printer
Transport OK

Printer
Data OK

Spool
Process OK

Net
Path OK

Local
Path OK

Paper
Loaded

Local Disk
Space Adequate
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Problems of Propositional LanguagesProblems of Propositional Languages

• Instances with parts, subparts, attributes of subparts
and relation among subparts

• Example: jones family, components
name: dave, son: mike, father: ron, age: 70, hair: white
name: mike, son: junior, father: dave, age: 35
name: junior, father: mike, age: 3
• In general, families may have a variable number of

components and each component may have a
variable number of attributes
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FirstFirst--OrderOrder LanguagesLanguages

• Instances described by logic theories
• They allow to represents easily parts of objects, 

attributes of parts and relations among parts
• Example: 

– Parts: “object”(object_id, part_id)
– Attributes of parts: “attribute”(part_id,value)
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ExampleExample

• Instance: jones family, first-order representation:
family(jones,dave).
family(jones,mike).
family(jones,junior).
age(dave,70).
hair(dave,white).
age(mike,35).
age(junior,3).
father(dave,mike).
father(mike,junior).
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Example: Blocks WorldExample: Blocks World

a

b

• Instance e: first-order representation

object(e,a). object(e,b), 

square(a). triangle(b). 

large(a). small(b).

on-table(a). on(b,a).

•Instance:
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FirstFirst--OrderOrder LanguagesLanguages Concept Concept 
Description LanguagesDescription Languages

• They allow to use variables and quantifiers
• Example: family with a grandfather
gf(X):-family(X,Y),father(Y,Z),father(Z,W).
gf(X):-family(X,Y),father(Y,Z),mother(Z,W).

• They allow to represent recursive concepts
• Example: ancestor
ancestor(X,Y):-father(X,Z),ancestor(Z,Y).

FirstFirst--OrderOrder LanguagesLanguages

• Advantages:
– Uniform representation of instances and 

hypothesis
– The semantics of these languages is well defined 

and amply studied
– Availability of well-engineered interpreters
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Example: Targeted MailingExample: Targeted Mailing

Name Age Sex Address Resp

john 35 m ca no

mary 25 f ca yes

ann 29 f wa no

steve 31 m va no

customer

If Age<30 and Address=ca then Resp=yes
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Example: Targeted MailingExample: Targeted Mailing

Name Category Size Price

bike_1 sport l 1000

jacket_2 clothing l 150

tent_2 outdoor m 250

Name Article Quantity

john bike_1 2

ann jacket_2 1

steve bike_1 1

john tent_2 1

ann bike_1 3

Name Age Sex Address Resp

john 35 m ca no

mary 25 f ca no

ann 29 f wa yes

steve 31 m va no

customer article

transaction

The customer will respond if she/he has bought an item of category clothing
32

PropositionalizationPropositionalization

Name Age Sex Address Article Quantity Category Size Price Resp

john 35 m ca bike_1 2 sport l 1000 no

john 35 m ca tent_2 1 outdoor m 250 no

mary 25 f ca no

ann 29 f wa jacket_2 1 clothing l 150 yes

ann 29 f wa bike_1 3 sport l 1000 yes

steve 31 m va bike_1 2 sport l 1000 no

customer ��transaction �� article
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PropositionalizationPropositionalization

Name Age Sex Address Article1 Quantity
1

Category
1

Size1 Price1

john 35 m ca bike_1 2 sport l 1000

mary 25 f ca

ann 29 f wa jacket_2 1 clothing l 150

steve 31 m va bike_1 2 sport l 1000

Replicate attributes

Article2 Quantity2 Cateogory
2

Size2 Price2 Resp

tent_2 1 outdoor m 250 no

no

bike_1 3 sport l 1000 yes

no
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LogicLogic

respond(Customer):-
transaction(Customer,Article,_Quantity),
article(Article,clothing,_Size,_Price).

Name Category Size Price

bike_1 sport l 1000

jacket_2 clothing l 150

tent_2 outdoor m 250

Name Article Quantity

john bike_1 2

ann jacket_2 1

steve bike_1 1

john tent_2 1

ann bike_1 3

Name Age Sex Address Resp

john 35 m ca no

mary 25 f ca no

ann 29 f wa yes

steve 31 m va no

customer article

transaction
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Machine Learning TechniquesMachine Learning Techniques

• Attribute-value languages:
– Version spaces
– Decision trees
– Production rules
– Instance based methods
– Bayesian networks

• First-order languages:
– Inductive Logic Programming
– Statistical Relational Learning
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Machine LearningMachine Learning

• Usually Machine Learning algorithms perform a 
search in the space of the concept description 
language

• The aim is to find the hypothesis that best matches 
the training set

• Often the search space is a subset of all the 
hypotheses in the language (language bias)
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Evaluation MeasuresEvaluation Measures

• Confusion matrix: predictions of a hypothesis on a set of 
examples

• TP=true positive, FN=false negative, FP=false positive, TN=true 
negative, P=TP+FN=positive, N=FP+TN=negative

• Accuracy=(TP+TN)/(TP+TN+FN+FP)
• Error rate=(FP+FN)/(TP+TN+FN+FP)=1-Accuracy
• TP Rate=TP/(TP+FN)=TP/P
• FP Rate=FP/(FP+TN)=FP/N
• Precision=TP/(TP+FP) 
• Recall=TP/(TP+FN)=TP Rate
• F-meaure=2*Precision*Recall/(Precision+Recall)

pos neg <-Predicted class

TP FN pos

FP TN neg
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