## Reasoning with Probabilistic Logic Languages

Fabrizio Riguzzi



## Outline

#### Reasoning Tasks

- Inference for PLP under DS
- Explanation Based Inference Algorithm
- Approximate Inference
- Inference by Conversion to Bayesian Networks
- 6 Parameter Learning
  - Structure Learning

## **Reasoning Tasks**

- Inference: we want to compute the probability or an explanation of a query given the model and, possibly, some evidence
- Weight learning: we know the structural part of the model (the logic formulas) but not the numeric part (the weights) and we want to infer the weights from data
- Structure learning: we want to infer both the structure and the weights of the model from data



## **Inference Tasks**

- Computing the (conditional) probability of a ground query given the model and, possibly, some evidence
- Finding the most likely state of a set of query atoms given the evidence (Maximum A Posteriori/Most Probable Explanation inference)
  - In Hidden Markov Models, the most likely state of the state variables given the observations is the Viterbi path, its probability the Viterbi probability
- Finding the (k) most probable explanation(s)
- Finding the distribution of variable substitutions for a non-ground query.
- Finding the most probable variable substitution for a non-ground query.

# Weight Learning

#### Given

- model: a probabilistic logic model with unknown parameters
- data: a set of interpretations
- Find the values of the parameters that maximize the probability of the data given the model
- Discriminative learning: maximize the conditional probability of a set of outputs (e.g. ground instances for a predicate) given a set of inputs
- Alternatively, the data are queries for which we know the probability: minimize the error in the probability of the queries that is returned by the model



## Structure Learning

- Given
  - language bias: a specification of the search space
  - data: a set of interpretations
- Find the formulas and the parameters that maximize the likelihood of the data given the model
- Discriminative learning: again maximize the conditional likelihood of a set of outputs given a set of inputs



## Inference for PLP under DS

- Computing the probability of a query (no evidence)
- Explanation based:
  - find explanations for queries
  - make the explanations mutually exclusive
    - by means of an iterative splitting algorithm (Ailog2 [Poole, 2000])
    - by means of Binary Decision Diagrams (ProbLog [De Raedt et al., 2007], cplint [Riguzzi, 2007, Riguzzi, 2009], PITA [Riguzzi and Swift, 2010])
- Bayesian Network based:
  - Convert to BN
  - Use BN inference algorithms (CVE [Meert et al., 2009])
  - Lifted inference

## ProbLog

 $sneezing(X) \leftarrow flu(X), flu\_sneezing(X).$   $sneezing(X) \leftarrow hay\_fever(X), hay\_fever\_sneezing(X).$  flu(bob).  $hay\_fever(bob).$   $C_1 = 0.7 :: flu\_sneezing(X).$  $C_2 = 0.8 :: hay fever sneezing(X).$ 

Distributions over facts



## Definitions

- Composite choice κ: consistent set of atomic choices (C<sub>i</sub>, θ<sub>j</sub>, l) with l ∈ {1,2}
- Set of worlds compatible with  $\kappa$ :  $\omega_{\kappa} = \{ \mathbf{w}_{\sigma} | \kappa \subseteq \sigma \}$
- Explanation  $\kappa$  for a query Q: Q is true in every world of  $\omega_{\kappa}$
- A set of composite choices K is covering with respect to Q: every world w in which Q is true is such that w ∈ ω<sub>K</sub> where ω<sub>K</sub> = ⋃<sub>κ∈K</sub> ω<sub>κ</sub>
- Example:

$$K_1 = \{\{(C_1, \{X/bob\}, 1)\}, \{(C_2, \{X/bob\}, 1)\}\}$$
(1)

is covering for *sneezing(bob*).

# **Finding Explanations**

- All explanations for the query are collected
- ProbLog: source to source transformation for facts, use of dynamic database
- cplint: meta-interpretation
- PITA: source to source transformation, addition of an argument to predicates

## **Explanation Based Inference Algorithm**

• *K* = set of explanations found for *Q*, the probability of *Q* is given by the probability of the formula

$$f_{\mathcal{K}}(\mathbf{X}) = \bigvee_{\kappa \in \mathcal{K}} \bigwedge_{(C_i, \theta_j, l) \in \kappa} (X_{C_i \theta_j} = l)$$

where  $X_{C_i\theta_j}$  is a random variable whose domain is 1, 2 and  $P(X_{C_i\theta_j} = I) = P_0(C_i, I)$ 

• Binary domain: we use a Boolean variable  $X_{ij}$  to represent  $(X_{C_i\theta_j} = 1)$ 

• 
$$\neg X_{ij}$$
 represents ( $X_{C_i\theta_j} = 2$ )

## Example

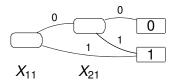
A set of covering explanations for *sneezing*(*bob*) is  $K = \{\kappa_1, \kappa_2\}$   $\kappa_1 = \{(C_1, \{X/bob\}, 1)\}$   $\kappa_2 = \{(C_2, \{X/bob\}, 1)\}$   $K = \{\kappa_1, \kappa_2\}$   $f_K(\mathbf{X}) = (X_{C_1\{X/bob\}} = 1) \lor (X_{C_2\{X/bob\}} = 1).$   $X_{11} = (X_{C_1\{X/bob\}} = 1)$   $X_{21} = (X_{C_2\{X/bob\}} = 1)$   $f_K(\mathbf{X}) = X_{11} \lor X_{21}.$   $P(f_K(\mathbf{X})) = P(X_{11} \lor X_{21})$  $P(f_K(\mathbf{X})) = P(X_{11}) + P(X_{21}) - P(X_{11})P(X_{21})$ 

- In order to compute the probability, we must make the explanations mutually exclusive
- [De Raedt et al., 2007]: Binary Decision Diagram (BDD)



## **Binary Decision Diagrams**

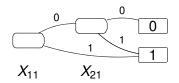
- A BDD for a function of Boolean variables is a rooted graph that has one level for each Boolean variable
- A node *n* in a BDD has two children: one corresponding to the 1 value of the variable associated with *n* and one corresponding the 0 value of the variable
- The leaves store either 0 or 1.
- A BDD can be used to compute the value of the formula by traversing the graph starting from the root and returning the value associated to the leaf that is reached.



# **Binary Decision Diagrams**

- BDDs can be built by combining simpler BDDs using Boolean operators
- While building BDDs, simplification operations can be applied that delete or merge nodes
- Merging is performed when the diagram contains two identical sub-diagrams
- Deletion is performed when both arcs from a node point to the same node
- A reduced BDD often has a much smaller number of nodes with respect to the original BDD

# **Binary Decision Diagrams**



$$f_{\mathcal{K}}(\mathbf{X}) = X_{11} \times f_{\mathcal{K}}^{X_{11}}(\mathbf{X}) + \neg X_{11} \times f_{\mathcal{K}}^{\neg X_{11}}(\mathbf{X})$$

 $P(f_{\mathcal{K}}(\mathbf{X})) = P(X_{11})P(f_{\mathcal{K}}^{X_{11}}(\mathbf{X})) + (1 - P(X_{11}))P(f_{\mathcal{K}}^{-X_{1}}(\mathbf{X}))$ 

$$P(f_{\mathcal{K}}(\mathbf{X})) = 0.7 \cdot P(f_{\mathcal{K}}^{\chi_{11}}(\mathbf{X})) + 0.3 \cdot P(f_{\mathcal{K}}^{-\chi_{11}}(\mathbf{X}))$$

# Probability from a BDD

- Dynamic programming algorithm [De Raedt et al., 2007]
- 1: function PROB(n)
- 2: **if** *n* is a terminal note **then**
- 3: return *value*(*n*)
- 4: **else**
- 5: return

 $\mathsf{PROB}(child_1(n)) \times p(v(n)) + \mathsf{PROB}(child_0(n)) \times (1 - p(v(n)))$ 

- 6: end if
- 7: end function

**(**#

# Logic Programs with Annotated Disjunctions

- $C_1 = strong\_sneezing(X) : 0.3 \lor moderate\_sneezing(X) : 0.5 \leftarrow flu(X).$
- $C_2 = strong\_sneezing(X) : 0.2 \lor moderate\_sneezing(X) : 0.6 \leftarrow hay\_fever(X).$
- $C_3 = flu(bob).$
- $C_4 = hay_fever(bob).$ 
  - Distributions over the head of rules
  - More than two head atoms



## Example

#### A set of covering explanations for *strong\_sneezing(bob)* is

$$K = \{\kappa_1, \kappa_2\}$$
  

$$\kappa_1 = \{(C_1, \{X/bob\}, 1)\}$$
  

$$\kappa_2 = \{(C_2, \{X/bob\}, 1)\}$$
  

$$K = \{\kappa_1, \kappa_2\}$$
  

$$X_{11} = X_{C_1\{X/bob\}}$$
  

$$X_{21} = X_{C_2\{X/bob\}}$$
  

$$f_K(\mathbf{X}) = (X_{11} = 1) \lor (X_{21} = 1).$$
  

$$P(f_X) = P(X_{11} = 1) + P(X_{21} = 1) - P(X_{11} = 1)P(X_{21} = 1)$$

• To make the explanations mutually exclusive: Multivalued Decision Diagram (MDD)

(#

# **Multivalued Decision Diagrams**

$$f_{K}(\mathbf{X}) = \bigvee_{l \in |X_{11}|} (X_{11} = l) \wedge f_{K}^{X_{11} = l}(\mathbf{X})$$

$$P(f_{K}(\mathbf{X})) = \sum_{l \in |X_{11}|} P(X_{11} = l)P(f_{K}^{X_{11} = l}(\mathbf{X}))$$

$$P(X_{11} = 1) + f_{K}^{X_{11} = 1}(\mathbf{X}) + f_{K}^{X_{11} = l}(\mathbf{X})$$

$$f_{\mathcal{K}}(\mathbf{X}) = (X_{11} = 1) \wedge f_{\mathcal{K}}^{X_{11}=1}(\mathbf{X}) + (X_{11} = 2) \wedge f_{\mathcal{K}}^{X_{11}=2}(\mathbf{X}) + (X_{11} = 3) \wedge f_{\mathcal{K}}^{X_{11}=3}(\mathbf{X})$$

 $f_{K}(\mathbf{X}) = 0.3 \cdot P(f_{K}^{X_{11}=1}(\mathbf{X})) + 0.5 \cdot P(f_{K}^{X_{11}=2}(\mathbf{X})) + 0.2 \cdot P(f_{K}^{X_{11}=3}(\mathbf{X})) \quad \textcircled{9}$ 

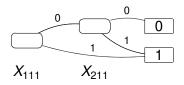
# Manipulating Multivalued Decision Diagrams

- Use an MDD package
- Convert to BDD, use a BDD package: BDD packages more developed, more efficient
- Conversion to BDD
  - Log encoding
  - Binary splits: more efficient



## Transformation to a Binary Decision Diagram

- For a variable  $X_{ij}$  having *n* values, we use n 1 Boolean variables  $X_{ij1}, \ldots, X_{ijn-1}$
- $X_{ij} = I$  for  $I = 1, \ldots, n-1$ :  $\overline{X_{ij1}} \wedge \overline{X_{ij2}} \wedge \ldots \wedge \overline{X_{ijl-1}} \wedge X_{ijl}$ ,
- $X_{ij} = n$ :  $\overline{X_{ij1}} \wedge \overline{X_{ij2}} \wedge \ldots \wedge \overline{X_{ijn-1}}$ .
- Parameters:  $P(X_{ij1}) = P(X_{ij} = 1) \dots P(X_{ijl}) = \frac{P(X_{ij}=l)}{\prod_{m=1}^{l-1}(1-P(X_{ijm}))}$ .



錢

## Approximate Inference

- Inference problem is #P hard
- For large models inference is intractable
- Approximate inference
  - Monte Carlo: draw samples of the truth value of the query
  - Iterative deepening: gives a lower and an upper bound
  - Compute only the best *k* explanations: branch and bound, gives a lower bound



## Monte Carlo

```
    The disjunctive clause

        C<sub>r</sub> = H<sub>1</sub> : α<sub>1</sub> ∨ ... ∨ H<sub>n</sub> : α<sub>n</sub> ← L<sub>1</sub>,..., L<sub>m</sub>.

        is transformed into the set of clauses MC(C<sub>r</sub>)

        MC(C<sub>r</sub>, 1) = H<sub>1</sub> ← L<sub>1</sub>,..., L<sub>m</sub>, sample_head(n, r, VC, NH), NH = 1.

        ...
        MC(C<sub>r</sub>, n) = H<sub>1</sub> ← L<sub>1</sub>,..., L<sub>m</sub>, sample_head(n, r, VC, NH), NH = n.

        Sample truth value of query Q:
```

```
(call(Q) -> NT1 is NT+1 ; NT1 =NT),
...
```

## Monte Carlo

 The proportion of successes in a Bernoulli trial process is in the binomial proportion confidence interval

$$\hat{p} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- Algorithm:
- *n* := 0, *nt* := 0
- Repeat
  - Test query *n*' times, *nt*' successes
  - $n := n + n', nt := nt + nt', \hat{p} = nt/n$
  - Compute interval size s
- until  $s < \delta$
- return  $\hat{p}, s$

## Approximate Inference

- Iterative deepening: build the derivation tree only up to a certain depth,
- Completed derivations give a lower bound, completed plus incomplete derivations an upper bound
- Best-k explanations: each time an explanation is found, update the set of explanations
- Cut a derivation if its probability falls below that of the *k*-th best explanation



## Inference by Conversion to Bayesian Networks

- Convert the program to a BN, perform inference on the BN with belief propagation, variable elimination, etc.
- Problem: grounding the program
- With function symbols, infinite grounding
- Even without function symbols, the grounding can be huge (exponential size)
- Most of the network is irrelevant to the query
- Grounding:
  - Use a lifted inference algorithm
  - Build only the relevant network and apply an inference algorithm
  - Combination of the two approaches

## Lifted Belief Propagation

- Belief propagation: nodes exchange messages, at convergence the marginal probability of each node can be extracted
- Correct for polytrees, approximate for general DAGs
- Lifted Belief Propagation: exploit the symmetries in the network to group nodes that exchange equal or similar messages into super nodes
- Perform belief propagation between super nodes taking into account the cardinalities of the messages

# **Building the Relevant Network**

- Bayes Ball [Shachter, 1998]: algorithm for identifying the portion of a network that is relevant to query and evidence
- First-Order Bayes Ball [Meert et al., 2010]: lifted version of Bayes Ball
- Then apply a (lifted) inference algorithm

## Parameter Learning

- Problem: given a set of interpretations and a program, find the parameters maximizing the likelihood of the interpretations (or of instances of a target predicate)
- Exploit the equivalence with BN to use BN learning algorithms
- The interpretations record the truth value of ground atoms, not of the choice variables
- Unseen data: relative frequency can't be used
- An Expectation-Maximization algorithm must be used:
  - Expectation step: the distribution of the unseen variables in each instance is computed given the observed data
  - Maximization step: new parameters are computed from the distributions using relative frequency
  - End when likelihood does not improve anymore

## Parameter Learning

- [Thon et al., 2008] proposed an adaptation of EM for CPT-L, a simplified version of LPADs
- The algorithm computes the counts efficiently by repeatedly traversing the BDDs representing the explanations
- [Ishihata et al., 2008] independently proposed a similar algorithm
- COPREM [Gutmann et al., 2010] is the adaptation of EM to ProbLog
- EMBLEM [Bellodi and Riguzzi, 2013] adapts [Ishihata et al., 2008] to LPADs



#### **EMBLEM**

- EM over Bdds for probabilistic Logic programs Efficient Mining
- Input: an LPAD; logical interpretations (data); target predicate(s)
- all ground atoms in the interpretations for the target predicate(s) correspond to as many queries
- BDDs encode the disjunction of explanations for each query Q

## **EM Algorithm**

#### • Expectation step (synthesis)

• Expectations  $E[c_{ik0}]$  and  $E[c_{ik1}]$  where  $c_{ikx}$  is the number of times a Boolean variable  $X_{ijk}$  takes value x for all  $C_i$ s,  $k = 1, ..., n_i - 1$ 

$$\mathsf{E}[c_{ikx}] = \sum_Q \mathsf{E}[c_{ikx}|Q]$$

2 Expected counts per query  $E[c_{ikx}|Q]$ , for all queries Q and  $x \in \{0, 1\}$ .

$$\mathsf{E}[c_{ikx}|Q] = \sum_{j \in g(i)} P(X_{ijk} = x|Q)$$

 $g(i) := \{j | \theta_j \text{ is a substitution grounding } C_i\}$ 

- Maximization step
  - Updates parameters  $\pi_{ik}$  representing  $P(X_{ijk} = 1)$

• 
$$\pi_{ik} = E[c_{ik1}] / (E[c_{ik0}] + E[c_{ik1}])$$



## **Expectation Computation**

• 
$$P(X_{ijk} = x | Q) = \frac{P(X_{ijk} = x, Q)}{P(Q)}$$
  
•  $P(X_{ijk} = x, Q) = \sum_{n \in N(Q), v(n) = X_{ijk}} F(n)B(child_x(n))\pi_{ikx} = \sum_{n \in N(Q), v(n) = X_{ijk}} e^x(n)$ 

- $\pi_{ikx}$  is  $\pi_{ik}$  if x = 1 and  $(1 \pi_{ik})$  if x = 0
- *F*(*n*) is the forward probability, the probability mass of the paths from the root to *n*
- *B*(*n*) is the backward probability, the probability mass of paths from *n* to the 1-leaf
- *F*(*n*) and *B*(*n*) are computed by two traversal of the BDD of r*Q*
- $e^{x}(n)$  is the probability mass of paths from the root to the 1 leaf passing through the *x* branch of *n*

## Structure Learning for LPADs



model: a trivial LPAD or an empty one data: a set of interpretations

- Find the model and the parameters that maximize the probability of the data (log-likelihood)
- Two algorithms:
  - SLIPCASE: Structure LearnIng of ProbabilistiC logic progrAmS with Em over bdds [Bellodi and Riguzzi, 2012] Beam search in the space of probabilistic programs
  - SLIPCOVER: Structure LearnIng of Probabilistic logic program by searching OVER the clause space
    - 1. Beam search in the space of clauses to find the promising ones
    - 2. Greedy search in the space of probabilistic programs guided by the LL of the data.

Both perform *parameter learning* by means of EMBLEM



## SLIPCASE

- Compute optimum parameters and log-likelihood *LL* of the data for *Theory* with EMBLEM
- best theory=Theory, best likelihood=LL
- Beam search
  - Beam: the *N* theories with the highest log-likelihood, initially *Theory*
  - **2** Remove the 1st theory from beam  $\rightarrow$  refinements:
    - language bias with modeh/modeb declarations
    - +/- literal in a clause and +/- clause
    - Estimate LL for each refinement with Nmax iterations of EMBLEM
    - Update (best theory,best likelihood)
    - Insert the refinements in the beam, ordered by likelihood
    - Remove the refinements exceeding the size of the beam
- Stop search after MaxSteps iterations or if empty Beam
- EMBLEM over best theory

- Cycle on the set of predicates that can appear in the head of clauses, either target or background,
- For each predicate, beam search in the space of clauses
- The initial set of beams *IBs*, one for each predicate appearing in a head declaration, is generated by SLIPCOVER by building a set of *bottom clauses* as in Progol [Muggleton, 1995]
- To genereate a bottom clause for a mode declaration
   m = modeh(r, s), an input interpretation is selected and an answer h for the goal schema(s) is selected, where schema(s) denotes the literal obtained from s by variabilization
- The resulting ground clause  $h := b_1, \ldots, b_m$  is then processed by replacing each term in a + or placemarker with a variable

- The initial beam associated with predicate P/Ar of h will contain the clause with the empty body h : 0.5. for each bottom clause  $h := -b_1, \ldots, b_m$
- This process is repeated for a number *NInt* of input mega-examples and a number *NA* of answers, thus obtaining *NInt* · *NA* bottom clauses.
- In each iteration of the cycle over predicates, it performs a beam search in the space of clauses for the predicate.
- The beam contains couples (*Cl*, *Llterals*) where *Literals* = {*b*<sub>1</sub>,..., *b<sub>m</sub>*}
- For each clause *Cl* of the form *Head* : *Body*, the refinements are computed by adding a literal from *Literals* to the body.

- The tuple (*Cl'*, *Literals'*) indicates a refined clause *Cl'* together with the new set *Literals'*
- EMBLEM is then executed for a theory composed of the single refined clause.
- LL is used as score of the updated clause (*Cl*<sup>"</sup>, *Literals*').
- (*Cl*", *Literals*") is then inserted into a list of promising clauses.
- Two lists are used, *TC* for target predicates and *BC* for background predicates.
- The clause is inserted in *TC* if a target predicate appears in its head, otherwise in *BC*. The insertion is in order of LL.
- These lists have a maximum size

- After the clause search phase, SLIPCOVER performs a greedy search in the space of theories:
  - it starts with an empty theory and adds a target clause at a time from the list *TC*.
  - After each addition, it runs EMBLEM and computes the LL of the data as the score of the resulting theory.
  - If the score is better than the current best, the clause is kept in the theory, otherwise it is discarded.
  - This is done for each clause in TC.
- Finally, SLIPCOVER adds all the clauses in *BC* to the theory and performs parameter learning on the resulting theory.

#### **References** I



```
Bellodi, E. and Riguzzi, F. (2012).
```

Learning the structure of probabilistic logic programs. In Inductive Logic Programming 21st International Conference, ILP 2011, London, UK, July 31 - August 3, 2011. Revised Papers, volume 7207 of LNCS, pages 61–75, Heidelberg, Germany. Springer. The original publication is available at

http://www.springerlink.com.

```
Bellodi, E. and Riguzzi, F. (2013).
Expectation Maximization over binary decision diagrams for
probabilistic logic programs.
Intelligent Data Analysis, 17(2).
```

#### **References II**

- De Raedt, L., Kimmig, A., and Toivonen, H. (2007). Problog: A probabilistic prolog and its application in link discovery. In *International Joint Conference on Artificial Intelligence*, pages 2462–2467.
- Gutmann, B., Kimmig, A., Kersting, K., and De Raedt, L. (2010). Parameter estimation in ProbLog from annotated queries. Technical Report CW 583, Department of Computer Science, Katholieke Universiteit Leuven, Belgium.
  - Ishihata, M., Kameya, Y., Sato, T., and Minato, S. (2008).
     Propositionalizing the em algorithm by bdds.
     In Late Breaking Papers of the 18th International Conf. on Inductive Logic Programming, pages 44–49.

#### References III

Meert, W., Struyf, J., and Blockeel, H. (2009). CP-Logic theory inference with contextual variable elimination and comparison to bdd based inference methods. In *ILP 2009*.

Meert, W., Taghipour, N., and Blockeel, H. (2010). First-order bayes-ball.

In Balcázar, J. L., Bonchi, F., Gionis, A., and Sebag, M., editors, Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010, Proceedings, Part II, volume 6322 of Lecture Notes in Computer Science, pages 369–384. Springer.

## Muggleton, S. (1995).

Inverse entailment and progol.

New Generation Comput., 13(3&4):245–286.



#### **References IV**



#### Poole, D. (2000).

Abducing through negation as failure: stable models within the independent choice logic.

J. Log. Program., 44(1-3):5-35.

#### Riguzzi, F. (2007).

A top down interpreter for LPAD and CP-logic. In *Congress of the Italian Association for Artificial Intelligence*, number 4733 in LNAI, pages 109–120. Springer.

## Riguzzi, F. (2009).

Extended semantics and inference for the Independent Choice Logic.

*Logic Journal of the IGPL.* to appear.

#### References V

#### Riguzzi, F. and Swift, T. (2010).

Tabling and Answer Subsumption for Reasoning on Logic Programs with Annotated Disjunctions.

In Hermenegildo, M. and Schaub, T., editors, *Technical Communications of the 26th Int'l. Conference on Logic Programming (ICLP'10)*, volume 7 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 162–171, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

#### Shachter, R. D. (1998).

Bayes-ball: The rational pastime (for determining irrelevance and requisite information in belief networks and influence diagrams. In *In Uncertainty in Artificial Intelligence*, pages 480–487. Morgan Kaufmann.



## **References VI**

Thon, I., Landwehr, N., and Raedt, L. D. (2008).
A simple model for sequences of relational state descriptions.
In Daelemans, W., Goethals, B., and Morik, K., editors, Machine Learning and Knowledge Discovery in Databases, European Conference, ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part II, volume 5212 of Lecture Notes in Computer Science, pages 506–521. Springer.

