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Reasoning Tasks

Reasoning Tasks

Inference: we want to compute the probability or an explanation of
a query given the model and, possibly, some evidence
Weight learning: we know the structural part of the model (the
logic formulas) but not the numeric part (the weights) and we want
to infer the weights from data
Structure learning: we want to infer both the structure and the
weights of the model from data
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Reasoning Tasks

Inference Tasks

Computing the (conditional) probability of a ground query given
the model and, possibly, some evidence
Finding the most likely state of a set of query atoms given the
evidence (Maximum A Posteriori/Most Probable Explanation
inference)

In Hidden Markov Models, the most likely state of the state
variables given the observations is the Viterbi path, its probability
the Viterbi probability

Finding the (k ) most probable explanation(s)
Finding the distribution of variable substitutions for a non-ground
query.
Finding the most probable variable substitution for a non-ground
query.
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Reasoning Tasks

Weight Learning

Given
model: a probabilistic logic model with unknown parameters
data: a set of interpretations

Find the values of the parameters that maximize the probability of
the data given the model
Discriminative learning: maximize the conditional probability of a
set of outputs (e.g. ground instances for a predicate) given a set
of inputs
Alternatively, the data are queries for which we know the
probability: minimize the error in the probability of the queries that
is returned by the model
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Reasoning Tasks

Structure Learning

Given
language bias: a specification of the search space
data: a set of interpretations

Find the formulas and the parameters that maximize the likelihood
of the data given the model
Discriminative learning: again maximize the conditional likelihood
of a set of outputs given a set of inputs
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Inference for PLP under DS

Inference for PLP under DS

Computing the probability of a query (no evidence)
Explanation based:

find explanations for queries
make the explanations mutually exclusive

by means of an iterative splitting algorithm (Ailog2 [Poole, 2000])
by means of Binary Decision Diagrams (ProbLog
[De Raedt et al., 2007], cplint [Riguzzi, 2007, Riguzzi, 2009], PITA
[Riguzzi and Swift, 2010])

Bayesian Network based:
Convert to BN
Use BN inference algorithms (CVE [Meert et al., 2009])
Lifted inference
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Inference for PLP under DS

ProbLog

sneezing(X )← flu(X ), flu_sneezing(X ).
sneezing(X )← hay_fever(X ),hay_fever_sneezing(X ).
flu(bob).
hay_fever(bob).
C1 = 0.7 :: flu_sneezing(X ).
C2 = 0.8 :: hay_fever_sneezing(X ).

Distributions over facts
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Inference for PLP under DS

Definitions

Composite choice κ: consistent set of atomic choices (Ci , θj , l)
with l ∈ {1,2}
Set of worlds compatible with κ: ωκ = {wσ|κ ⊆ σ}
Explanation κ for a query Q: Q is true in every world of ωκ
A set of composite choices K is covering with respect to Q: every
world w in which Q is true is such that w ∈ ωK where
ωK =

⋃
κ∈K ωκ

Example:

K1 = {{(C1, {X/bob},1)}, {(C2, {X/bob},1)}} (1)

is covering for sneezing(bob).
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Explanation Based Inference Algorithm

Finding Explanations

All explanations for the query are collected
ProbLog: source to source transformation for facts, use of
dynamic database
cplint: meta-interpretation
PITA: source to source transformation, addition of an argument to
predicates
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Explanation Based Inference Algorithm

Explanation Based Inference Algorithm

K = set of explanations found for Q, the probability of Q is given
by the probability of the formula

fK (X) =
∨
κ∈K

∧
(Ci ,θj ,l)∈κ

(XCiθj = l)

where XCiθj is a random variable whose domain is 1,2 and
P(XCiθj = l) = P0(Ci , l)
Binary domain: we use a Boolean variable Xij to represent
(XCiθj = 1)
¬Xij represents (XCiθj = 2)
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Explanation Based Inference Algorithm

Example

A set of covering explanations for sneezing(bob) is K = {κ1, κ2}
κ1 = {(C1, {X/bob},1)}
κ2 = {(C2, {X/bob},1)}
K = {κ1, κ2}
fK (X) = (XC1{X/bob} = 1) ∨ (XC2{X/bob} = 1).
X11 = (XC1{X/bob} = 1)
X21 = (XC2{X/bob} = 1)
fK (X) = X11 ∨ X21.
P(fK (X)) = P(X11 ∨ X21)
P(fK (X)) = P(X11) + P(X21)− P(X11)P(X21)

In order to compute the probability, we must make the
explanations mutually exclusive
[De Raedt et al., 2007]: Binary Decision Diagram (BDD)
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Explanation Based Inference Algorithm

Binary Decision Diagrams

A BDD for a function of Boolean variables is a rooted graph that
has one level for each Boolean variable
A node n in a BDD has two children: one corresponding to the 1
value of the variable associated with n and one corresponding the
0 value of the variable
The leaves store either 0 or 1.
A BDD can be used to compute the value of the formula by
traversing the graph starting from the root and returning the value
associated to the leaf that is reached.

�� ���� ��ciao
0

1
a0a�� ���� ��ciao 1

0

a1a
X11 X21
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Explanation Based Inference Algorithm

Binary Decision Diagrams

BDDs can be built by combining simpler BDDs using Boolean
operators
While building BDDs, simplification operations can be applied that
delete or merge nodes
Merging is performed when the diagram contains two identical
sub-diagrams
Deletion is performed when both arcs from a node point to the
same node
A reduced BDD often has a much smaller number of nodes with
respect to the original BDD
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Explanation Based Inference Algorithm

Binary Decision Diagrams

�� ���� ��ciao
0

1
a0a�� ���� ��ciao 1

0

a1a
X11 X21

fK (X) = X11 × f X11
K (X) + ¬X11 × f¬X11

K (X)

P(fK (X)) = P(X11)P(f X11
K (X)) + (1− P(X11))P(f¬X1

K (X))

P(fK (X)) = 0.7 · P(f X11
K (X)) + 0.3 · P(f¬X11

K (X))
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Explanation Based Inference Algorithm

Probability from a BDD

Dynamic programming algorithm [De Raedt et al., 2007]

1: function PROB(n)
2: if n is a terminal note then
3: return value(n)
4: else
5: return

PROB(child1(n))×p(v(n))+PROB(child0(n))×(1− p(v(n)))
6: end if
7: end function
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Explanation Based Inference Algorithm

Logic Programs with Annotated Disjunctions

C1 = strong_sneezing(X ) : 0.3 ∨moderate_sneezing(X ) : 0.5 ← flu(X ).
C2 = strong_sneezing(X ) : 0.2 ∨moderate_sneezing(X ) : 0.6 ← hay_fever(X ).
C3 = flu(bob).
C4 = hay_fever(bob).

Distributions over the head of rules
More than two head atoms
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Explanation Based Inference Algorithm

Example

A set of covering explanations for strong_sneezing(bob) is
K = {κ1, κ2}
κ1 = {(C1, {X/bob},1)}
κ2 = {(C2, {X/bob},1)}
K = {κ1, κ2}
X11 = XC1{X/bob}
X21 = XC2{X/bob}
fK (X) = (X11 = 1) ∨ (X21 = 1).
P(fX ) = P(X11 = 1) + P(X21 = 1)− P(X11 = 1)P(X21 = 1)

To make the explanations mutually exclusive: Multivalued
Decision Diagram (MDD)
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Explanation Based Inference Algorithm

Multivalued Decision Diagrams
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fK (X) =
∨

l∈|X11|

(X11 = l) ∧ f X11=l
K (X)

P(fK (X)) =
∑

l∈|X11|

P(X11 = l)P(f X11=l
K (X))

fK (X) = (X11 = 1)∧f X11=1
K (X)+(X11 = 2)∧f X11=2

K (X)+(X11 = 3)∧f X11=3
K (X)

fK (X) = 0.3 · P(f X11=1
K (X)) + 0.5 · P(f X11=2

K (X)) + 0.2 · P(f X11=3
K (X))
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Explanation Based Inference Algorithm

Manipulating Multivalued Decision Diagrams

Use an MDD package
Convert to BDD, use a BDD package: BDD packages more
developed, more efficient
Conversion to BDD

Log encoding
Binary splits: more efficient
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Explanation Based Inference Algorithm

Transformation to a Binary Decision Diagram

For a variable Xij having n values, we use n − 1 Boolean variables
Xij1, . . . ,Xijn−1

Xij = l for l = 1, . . .n − 1: Xij1 ∧ Xij2 ∧ . . . ∧ Xijl−1 ∧ Xijl ,

Xij = n: Xij1 ∧ Xij2 ∧ . . . ∧ Xijn−1.

Parameters: P(Xij1) = P(Xij = 1) . . .P(Xijl) =
P(Xij=l)∏l−1

m=1(1−P(Xijm))
.
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Approximate Inference

Approximate Inference

Inference problem is #P hard
For large models inference is intractable
Approximate inference

Monte Carlo: draw samples of the truth value of the query
Iterative deepening: gives a lower and an upper bound
Compute only the best k explanations: branch and bound, gives a
lower bound
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Approximate Inference

Monte Carlo

The disjunctive clause
Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . ,Lm.
is transformed into the set of clauses MC(Cr )
MC(Cr , 1) = H1 ← L1, . . . , Lm, sample_head(n, r ,VC,NH),NH = 1.
. . .
MC(Cr , n) = H1 ← L1, . . . , Lm, sample_head(n, r ,VC,NH),NH = n.

Sample truth value of query Q:

...
(call(Q)-> NT1 is NT+1 ; NT1 =NT),

...
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Approximate Inference

Monte Carlo

The proportion of successes in a Bernoulli trial process is in the
binomial proportion confidence interval

p̂ ± z1−α/2

√
p̂ (1− p̂)

n

Algorithm:
n := 0, nt := 0
Repeat

Test query n′ times, nt ′ successes
n := n + n′, nt := nt + nt ′, p̂ = nt/n
Compute interval size s

until s < δ

return p̂, s
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Approximate Inference

Approximate Inference

Iterative deepening: build the derivation tree only up to a certain
depth,
Completed derivations give a lower bound, completed plus
incomplete derivations an upper bound
Best-k explanations: each time an explanation is found, update
the set of explanations
Cut a derivation if its probability falls below that of the k -th best
explanation

F. Riguzzi (DMI) Reasoning with Probabilistic Logic Languages 25 / 45



Inference by Conversion to Bayesian Networks

Inference by Conversion to Bayesian Networks

Convert the program to a BN, perform inference on the BN with
belief propagation, variable elimination, etc.
Problem: grounding the program
With function symbols, infinite grounding
Even without function symbols, the grounding can be huge
(exponential size)
Most of the network is irrelevant to the query
Grounding:

Use a lifted inference algorithm
Build only the relevant network and apply an inference algorithm
Combination of the two approaches
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Inference by Conversion to Bayesian Networks

Lifted Belief Propagation

Belief propagation: nodes exchange messages, at convergence
the marginal probability of each node can be extracted
Correct for polytrees, approximate for general DAGs
Lifted Belief Propagation: exploit the symmetries in the network to
group nodes that exchange equal or similar messages into super
nodes
Perform belief propagation between super nodes taking into
account the cardinalities of the messages
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Inference by Conversion to Bayesian Networks

Building the Relevant Network

Bayes Ball [Shachter, 1998]: algorithm for identifying the portion of
a network that is relevant to query and evidence
First-Order Bayes Ball [Meert et al., 2010]: lifted version of Bayes
Ball
Then apply a (lifted) inference algorithm
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Parameter Learning

Parameter Learning

Problem: given a set of interpretations and a program, find the
parameters maximizing the likelihood of the interpretations (or of
instances of a target predicate)
Exploit the equivalence with BN to use BN learning algorithms
The interpretations record the truth value of ground atoms, not of
the choice variables
Unseen data: relative frequency can’t be used
An Expectation-Maximization algorithm must be used:

Expectation step: the distribution of the unseen variables in each
instance is computed given the observed data
Maximization step: new parameters are computed from the
distributions using relative frequency
End when likelihood does not improve anymore

F. Riguzzi (DMI) Reasoning with Probabilistic Logic Languages 29 / 45



Parameter Learning

Parameter Learning

[Thon et al., 2008] proposed an adaptation of EM for CPT-L, a
simplified version of LPADs
The algorithm computes the counts efficiently by repeatedly
traversing the BDDs representing the explanations
[Ishihata et al., 2008] independently proposed a similar algorithm
COPREM [Gutmann et al., 2010] is the adaptation of EM to
ProbLog
EMBLEM [Bellodi and Riguzzi, 2013] adapts [Ishihata et al., 2008]
to LPADs

F. Riguzzi (DMI) Reasoning with Probabilistic Logic Languages 30 / 45



Parameter Learning

EMBLEM

EM over Bdds for probabilistic Logic programs Efficient Mining
Input: an LPAD; logical interpretations (data); target predicate(s)
all ground atoms in the interpretations for the target predicate(s)
correspond to as many queries

BDDs encode the disjunction of explanations for each query Q
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Parameter Learning

EM Algorithm

Expectation step (synthesis)

1 Expectations E[cik0] and E[cik1] where cikx is the number of times a
Boolean variable Xijk takes value x for all Cis, k = 1, . . . ,ni − 1

E[cikx ] =
∑

Q

E[cikx |Q]

2 Expected counts per query E[cikx |Q], for all queries Q and
x ∈ {0,1}.

E[cikx |Q] =
∑

j∈g(i)

P(Xijk = x |Q)

g(i) := {j |θj is a substitution grounding Ci}
Maximization step

Updates parameters πik representing P(Xijk = 1)
πik = E [cik1] / (E [cik0] + E [cik1])
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Parameter Learning

Expectation Computation

P(Xijk = x |Q) =
P(Xijk=x ,Q)

P(Q)

P(Xijk = x ,Q) =
∑

n∈N(Q),v(n)=Xijk
F (n)B(childx(n))πikx =

∑
n∈N(Q),v(n)=Xijk

ex(n)

πikx is πik if x = 1 and (1− πik ) if x = 0

F (n) is the forward probability, the probability mass of the paths
from the root to n

B(n) is the backward probability, the probability mass of paths from
n to the 1-leaf

F (n) and B(n) are computed by two traversal of the BDD of rQ
ex(n) is the probability mass of paths from the root to the 1 leaf
passing through the x branch of n
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Structure Learning

Structure Learning for LPADs

1 Given
model: a trivial LPAD or an empty one

data: a set of interpretations
2 Find the model and the parameters that maximize the probability

of the data (log-likelihood)
3 Two algorithms:

1 SLIPCASE: Structure LearnIng of ProbabilistiC logic progrAmS
with Em over bdds [Bellodi and Riguzzi, 2012]
Beam search in the space of probabilistic programs

2 SLIPCOVER: Structure LearnIng of Probabilistic logic program by
searching OVER the clause space
1. Beam search in the space of clauses to find the promising ones
2. Greedy search in the space of probabilistic programs guided by
the LL of the data.

4 Both perform parameter learning by means of EMBLEM
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Structure Learning

SLIPCASE

Compute optimum parameters and log-likelihood LL of the data for
Theory with EMBLEM

best theory=Theory, best likelihood=LL
Beam search

1 Beam: the N theories with the highest log-likelihood, initially Theory
2 Remove the 1st theory from beam→ refinements:

language bias with modeh/modeb declarations
+/- literal in a clause and +/- clause

3 Estimate LL for each refinement with Nmax iterations of EMBLEM
4 Update (best theory,best likelihood)
5 Insert the refinements in the beam, ordered by likelihood
6 Remove the refinements exceeding the size of the beam

Stop search after MaxSteps iterations or if empty Beam

EMBLEM over best theory
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Structure Learning

SLIPCOVER

Cycle on the set of predicates that can appear in the head of
clauses, either target or background,
For each predicate, beam search in the space of clauses
The initial set of beams IBs, one for each predicate appearing in a
head declaration, is generated by SLIPCOVER by building a set of
bottom clauses as in Progol [Muggleton, 1995]
To genereate a bottom clause for a mode declaration
m = modeh(r , s), an input interpretation is selected and an
answer h for the goal schema(s) is selected, where schema(s)
denotes the literal obtained from s by variabilization
The resulting ground clause h :− b1, . . . ,bm is then processed by
replacing each term in a + or - placemarker with a variable
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Structure Learning

SLIPCOVER

The initial beam associated with predicate P/Ar of h will contain
the clause with the empty body h : 0.5. for each bottom clause
h :− b1, . . . ,bm

This process is repeated for a number NInt of input
mega-examples and a number NA of answers, thus obtaining
NInt · NA bottom clauses.
In each iteration of the cycle over predicates, it performs a beam
search in the space of clauses for the predicate.
The beam contains couples (Cl ,LIterals) where
Literals = {b1, . . . ,bm}
For each clause Cl of the form Head :− Body , the refinements
are computed by adding a literal from Literals to the body.
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Structure Learning

SLIPCOVER

The tuple (Cl ′, Literals′) indicates a refined clause Cl ′ together
with the new set Literals′

EMBLEM is then executed for a theory composed of the single
refined clause.
LL is used as score of the updated clause (Cl ′′,Literals′).
(Cl ′′,Literals′) is then inserted into a list of promising clauses.
Two lists are used, TC for target predicates and BC for
background predicates.
The clause is inserted in TC if a target predicate appears in its
head, otherwise in BC. The insertion is in order of LL.
These lists have a maximum size
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Structure Learning

SLIPCOVER

After the clause search phase, SLIPCOVER performs a greedy
search in the space of theories:

it starts with an empty theory and adds a target clause at a time
from the list TC.
After each addition, it runs EMBLEM and computes the LL of the
data as the score of the resulting theory.
If the score is better than the current best, the clause is kept in the
theory, otherwise it is discarded.
This is done for each clause in TC.

Finally, SLIPCOVER adds all the clauses in BC to the theory and
performs parameter learning on the resulting theory.
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Structure Learning
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