Summary

- Definition
- Joint Probability
- Conditional probability
- Random Variables
- Continuous Random Variables

Uncertainty

- Reasoning requires simplifications:
 - Birds fly
 - Smoke suggests fire
- Treatment of exceptions
- How to reason from uncertain knowledge?

How to Perform Inference?

- Use non-numerical techniques
 - Logicist: non monotonic logic
- Assign to each proposition a numerical measure of uncertainty
 - Neo-probabilist: use probability theory
 - Neo-calculist: use other theories:
 - fuzzy logic
 - certainty factors
 - Dempster-Shafer

Probability Theory

- A: Proposition,
 - Ex: A=The coin will land heads
- P(A): probability of A
- Frequentist approach: probability as relative frequency
 - Repeated random experiments (possible worlds)
 - P(A) is the fraction of experiments in which A is true
- Bayesian approach: probability as a degree of belief
- Example: B=burglary tonight

Frequentist Approach

- A=The coin will land heads
- 100 throws, for each throw we record whether A is true
- Results:

$$P(A) = \frac{61}{100} = 0.61 = 61\%$$
 $P(\neg A) = \frac{39}{100} = 0.39 = 39\%$

Frequentist Approach

- H="having a headache"
- 400 patients

$$P(A) = \frac{40}{400} = 0.1 = 10\%$$

Frequentist Approach

- F="having the flu"
- 400 patients

$$P(A) = \frac{10}{400} = 0.025 = 2.5\%$$

Visualizing the Frequentist Approach

• P(A)

Axioms of Probability Theory

$$0 \leq P(A) \leq 1$$

P(Sure Proposition) = 1

 $P(A \lor B) = P(A) + P(B)$ if A and B are mutually exclusive

Visualizing the Axioms

 0<=P(A)<=1: the area cannot get smaller than 0 and larger than 1

Visualizing the Axioms

- $P(A \vee B)=P(A)+P(B)$ if they are mutually exclusive
- Mutually exclusive=> no world in common=> non overlapping=> the area is the sum

Joint Probability

- Consider the events
 - H="having a headache"
 - F="having the flu"
- Joint event: $H \land F$ ="having a headache and the flu"
- Also written as H,F
- Joint probability: $P(H \land F) = P(H,F)$
- Frequentist interpretation:
 - P(H^F)=P(H,F) is the fraction of experiments (in this case patients) where both H and F holds

Joint Probability

• Example: 400 patients

$$P(H,F) = \frac{5}{400} = 0.0125 = 1.25\% \qquad P(H,\neg F) = \frac{35}{400} = 0.0875 = 8.75\%$$
$$P(\neg H,F) = \frac{5}{400} = 0.0125 = 1.25\% \qquad P(\neg H,\neg F) = \frac{355}{400} = 0.8875 = 88.75\%$$

Probability Rules

- Any event A can be written as the or of two disjoint events $(A \land B)$ and $(A \land \neg B)$ $P(A)=P(A,B)+P(A,\neg B)$ marginalization/ sum rule
- In general, if $B_i = 1, 2, ..., n$ is a set of exhaustive and mutually exclusive propositions $P(A) = \sum_i P(A, B_i)$
- Moreover, picking A=true:

 $P(B) + P(\neg B) = 1$

Conditional Probabilities

- P(A|B)= belief of A given that I know B
- Definition according to the frequentist approach:

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

- Interpretation: fraction of the worlds where B is true in which also A is true
- If P(B)=0 than p(A|B) is not defined

Example

- H="having a headache", F="having the flu"
- P(H|F)="having a headache given that I have the flu"

• P(H|F)=0.5: H and F are rare but if I have the flu, it is probable that I have a headache

Example

Product Rule

• From

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

• We can derive

$$P(A, B) = P(A|B)P(B)$$
 product rule

• In the Bayesian approach, the conditional probability is fundamental and the joint probability is derived with the product rule.

Bayes Theorem

- Relationship between P(A|B) and P(B|A):
- P(A,B)=P(A|B)P(B), P(A,B)=P(B|A)P(A) =>

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

- P(A): prior probability
- P(A|B): **posterior probability** (after learning B)

Example

- H="having a headache"
- F="having the flu"
- P(H)=0.1 P(F)=0.025
- P(H|F)=0.5

$$P(F|H) = \frac{P(H|F)P(F)}{P(H)} = \frac{0.5 * 0.025}{0.1} = 0.125$$

• Knowing that I have a headache, the probability of having the flu raises to 1/8

Chain Rule

- n events E_1, \dots, E_n
- Joint event (E_1, \dots, E_n)

$$P(E_{n},...,E_{1}) = P(E_{n}|E_{n-1}...,E_{1}) P(E_{n-1},...,E_{1})$$

$$P(E_{n-1},...,E_{1}) = P(E_{n-1}|E_{n-2}...,E_{1}) P(E_{n-2},...,E_{1})$$

...

• Chain rule:

$$P(E_{n},...,E_{1}) = P(E_{n}|E_{n-1}...,E_{1})...P(E_{2}|E_{1})P(E_{1}) = \prod_{i=1}^{n} P(E_{i}|E_{i-1},...E_{1})$$
²²

Multivalued Hypothesis

- Propositions can be seen as binary variables, i.e. variables taking values true or false
 - Burglary B: true or false
- Generalization: multivalued variables
 - Semaphore S, values: green, yellow, red
 - Propositions are a special case with two values

Discrete Random Variables

- Variable V, values v_i i=1,...,n
- V is also called a **discrete random variable**
- V=v_i is a proposition
- Propositions V= v_i i=1,...,n exhaustive and mutually exclusive
- $P(v_i)$ stands for $P(V=v_i)$
- V is described by the set {P(v_i)|i=1,...,n}, the
 probability distribution of V, indicated with P(V)

Notation

- We indicate with v a generic value of V
- Set or vector of variables V, values v

Marginalization

- Multivalued variables A and B
- $b_i = 1, ..., n$ values of B

$$P(a) = \sum_{i} P(a, b_i)$$

• Or

$$P(a) = \sum_{b} P(a, b)$$

• In general

$$P(\mathbf{x}) = \sum_{\mathbf{y}} P(\mathbf{x}, \mathbf{y})$$

sum rule or marginalization

Conjunctions

- A conjunction of two Boolean variables can be considered as a single random variable that takes 4 values
- Example:
 - H and F, values {true, false}
 - (H,F), values {(true,true),(true,false),(false,true), (false,false)}

Conditional Probabilities

- P(a|b)= belief of A=a given that I know B=b
- Relation to P(a,b)

$$P(a,b)=P(a|b)P(b)$$
 product rule

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

• Bayes theorem

$$P(a|b) = \frac{P(b|a) p(a)}{P(b)}$$

Continuous Random Variables

- A multivalued variable V that takes values from a real interval [a,b] is called a **continuous random variable**
- P(V=v)=0, we want to compute $P(c \le V \le d)$
- V is described by a **probability density function** $\rho: [a,b] \rightarrow [0,1]$
- $\rho(v)$ is such that

$$P(c \le V \le d) = \int_{c}^{d} \rho(v) dv$$

Properties of Continuous Random Variables

- The same as those of discrete random variables where summation is replaced by integration:
- Marginalization (sum rule) $\rho(\mathbf{x}) = \int \rho(\mathbf{x}, \mathbf{y}) d\mathbf{y}$
- Conditional probability (product rule)

 $\rho(\boldsymbol{x}, \boldsymbol{y}) = \rho(\boldsymbol{x}|\boldsymbol{y})\rho(\boldsymbol{y})$

Mixed Distribution

- We can have a conjunction of discrete and continuous variables
- Joint: if one of the variables is continuous, the joint is a density:
 - X discrete, Y continuous: $\rho(x,y)$
- Conditional joint:
 - X discrete, Y continuous: P(x|y)
 - X discrete, Y continuous, Z discrete: $\rho(x,y|z)$