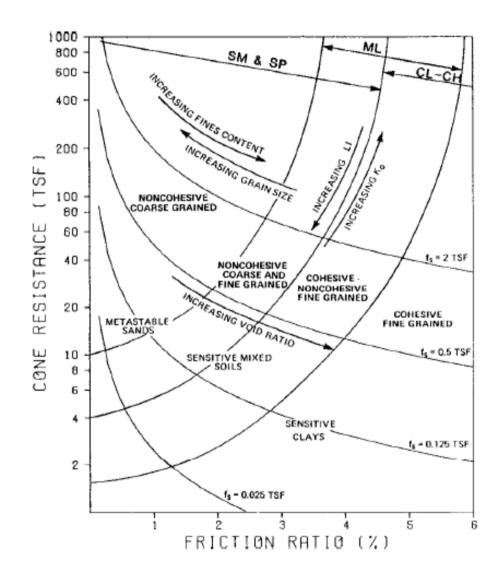
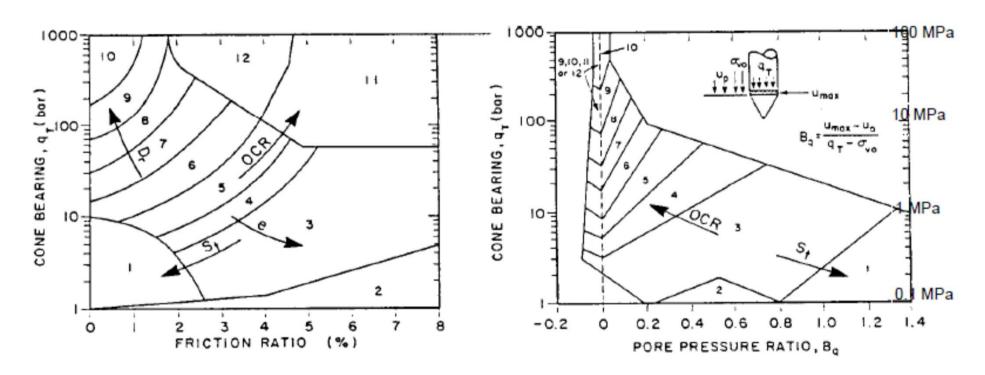

INTERPRETAZIONE DI PROVE PENETROMETRICHE STATICHE CON PUNTA MECCANICA (CPT) PUNTA ELETTRICA (CPTE) PUNTA CON PIEZOCONO (CPTU)


DEFINIZIONE STRATIGRAFIA

Prove CPT: diagramma di Shmertmann (1979)


DEFINIZIONE STRATIGRAFIA

Prove CPTE: diagramma di Douglas-Olsen (1981)

DEFINIZIONE STRATIGRAFIA

Prove CPTU: diagramma di Robertson (1986)

DEFINIZIONE COESIONE NON DRENATA (Cu)

Formulazione valida per prove penetrometriche statiche:

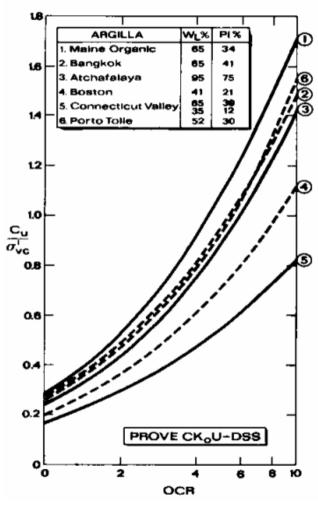
$$c_U = \frac{(q_c - \sigma_{v0})}{N_k}$$

$$c_u = \frac{(q_c - \sigma_{v0})}{N_k}$$

Con fattore empirico statiche:

$$N_k = 8 \div 20$$

DEFINIZIONE GRADO DI SOVRACONSOLIDAZIONE (OCR)

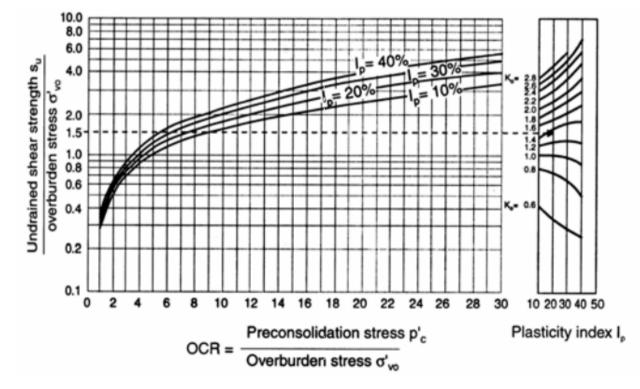

$$OCR = \frac{\sigma_P'}{\sigma_{V0}'}$$

Correlazione attraverso resistenza non drenata:

$$\frac{c_u(OC)}{\sigma_V'} = \frac{c_u(NC)}{\sigma_V'} \cdot (OCR)^m$$

Cu (OC) = resistenza non drenata del materiale sovraconsolidato
Cu (NC) = resistenza non drenata del materiale normalconsolidato
m = parametro sperimentale, mediamente pari a 0,8

diagramma di Ladd (1972)


DEFINIZIONE GRADO DI SOVRACONSOLIDAZIONE (OCR)

$$OCR = \frac{\sigma_P'}{\sigma_{V0}'}$$

$$\frac{c_u(OC)}{\sigma_V'} = \frac{c_u(NC)}{\sigma_V'} \cdot (OCR)^m$$

Correlazione attraverso resistenza non drenata in funzione dell' Indice Plastico:

diagramma di Andresen et al. (1979)

DEFINIZIONE MODULO EDOMETRICO (Ed)

Trattazione per terreni grana grossa:

Formulazione empirica (Robertson & Campanella) da diagramma di Schmertmann (Ed espresso in kg/cmq)

$$E_d = 0.03 \cdot q_c + 11.7 \cdot \sigma'_{v0} + 0.79 \cdot D_r(\%)$$

Trattazone Lunne-Christoffersen (1983)			
Sabbie	$E_d = \alpha \cdot q_c$	Limite	
Non cementate	Ed (MPa) = 4 qc	qc > 10 Mpa	
	Ed (MPa) = 2 qc + 20	per 10 Mpa < qc < 50 Mpa	
	Ed (MPa) = 120	qc > 50 Mpa	
Sovra cementate	Ed (MPa) = 5 qc	qc < 50 Mpa	
	Ed (MPa) = 250	per qc > 50 Mpa	

DEFINIZIONE MODULO EDOMETRICO (Ed)

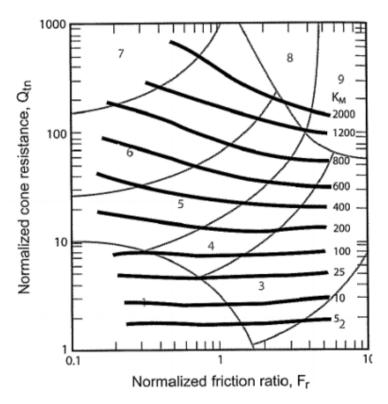
Formulazione empirica (Mitchell & Gardner 1975)

$$E_d = \alpha \cdot q_c$$

$M = \frac{1}{m_v} = \frac{2.3 \cdot (1+e) \cdot \sigma_v'}{C_c} = \alpha \cdot q_c$		
Argille di bassa plasticità (CL)	$q_c < 0.7 \text{ MPa}$	3 < α < 8
Argine di bassa piasticità (CL)	$0.7 < q_c < 2.0 \text{ MPa}$ $q_c > 2.0 \text{ MPa}$	$2 < \alpha < 5$ $1 < \alpha < 2,5$
The Heavy had to Off	$q_c < 2.0 \text{ MPa}$	3 < α < 6
Limi di bassa plasticità (ML)	$q_c > 2.0 \text{ MPa}$	$1 < \alpha < 3$
Argille e limi di elevata plasticità (CH, MH)	$q_c < 2.0 \text{ MPa}$	2 < α < 6
Limi organici (OL)	$q_c < 1,2 \text{ MPa}$	$2 < \alpha < 8$
Torbe e argille organiche (Pt, OH)	$q_c < 0.7 \text{ MPa}$ $50 < w^* < 100$ 100 < w < 200 w > 200	$1,5 < \alpha < 4$ $1 < \alpha < 1,5$ $0,4 < \alpha < 1$

^{*}w = contenuto in acqua (%)

Formulazione empirica (Buisman - Sanglerat) – valido per sabbie argillose: $\, E_d = lpha \cdot q_c \,$

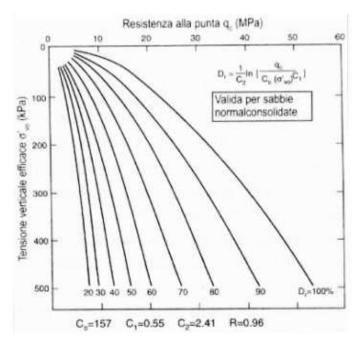

Dove $\alpha = 1.5 \div 7$ aumentando al diminuire della granulometria e della Rp

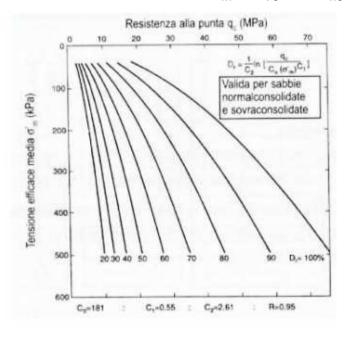
DEFINIZIONE MODULO EDOMETRICO (Ed)

Trattazione di Mayne (2007):

 $E_d = k_M \cdot p_a \cdot (\sigma'_{v0} / p_a)$ per tensioni superiori a quella di preconsolidamento

 $E_d = k_M \cdot p_a$ per tensioni inferiori a quelle di preconsolidamento




DEFINIZIONE DENSITA' RELATIVA (Dr)

Formulazione empirica Baldi ed altri (1978-1983)

$$D_r = \frac{1}{C_2} \cdot \ln \left[\frac{q_c}{C_0 \cdot (\sigma'_{v0})^{C_1}} \right]$$

Sabbie sabbie moderatamente compressibili non cementate: la tensione efficace di riferimento è quella verticale: $\sigma' = \sigma'_{v0}$ Per sabbie sovraconsolidate la tensione efficace di riferimento è quella media: $\sigma'_m = \sigma'_{v0} + 2 \cdot \sigma'_{h0} / 3$

DEFINIZIONE ANGOLO DI RESISTENZA A TAGLIO (Φ)

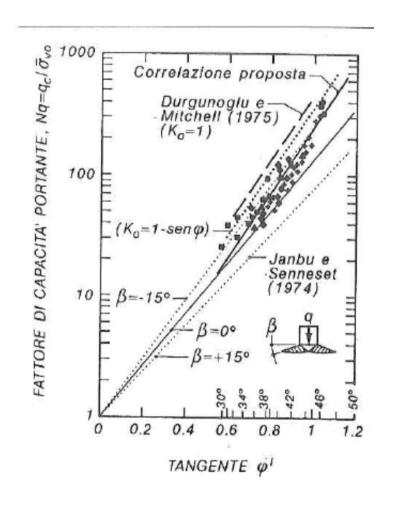
Formulazione di Durgunoglu – Mitchell (1983)

$$\phi' = 14.4 + 4.8 \cdot \ln(q_c) - 4.5 \cdot \ln(\sigma)$$

Formulazione di Meyerhof (1951)

$$\phi' = 17 + 4.49 \cdot q_c$$

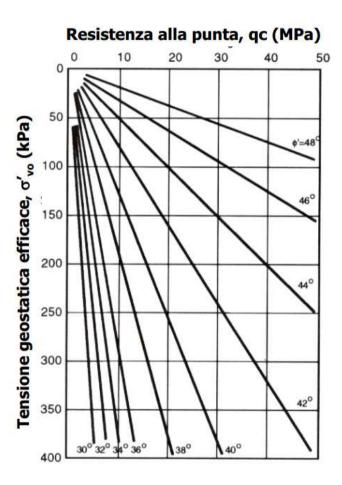
Formulazione di Caquot


$$\phi' = 9.8 + 4.96 \cdot \ln \left(\frac{q_c}{\sigma'_{v0}} \right)$$

Formulazione di Koppejan

$$\phi' = 5.8 + 5.21 \cdot \ln \left(\frac{q_c}{\sigma'_{v0}} \right)$$

Formulazione di De Beer (1965 - 1967)


$$\phi' = 5.9 + 4.76 \cdot \ln \left(\frac{q_c}{\sigma'_{v0}} \right)$$

DEFINIZIONE ANGOLO DI RESISTENZA A TAGLIO (Φ)

Formulazione di Robertson – Campanella (1983)

$$\phi' = \arctan\left[0.1 + 0.38 \cdot \ln\left(\frac{q_c}{\sigma'_{v0}}\right)\right]$$

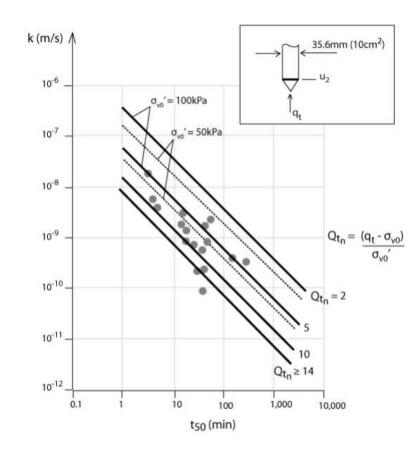
DEFINIZIONE PERMEABILTA' (K)

Formulazione Piacentini e Righi: $k = 10^{-\left(\frac{165}{fr} + \frac{160 \cdot q_c}{fr^{3.5}}\right)}$ (risultati da CPT)

Formulazione Robertson (1992) : (risultati da CPTU con test di dissipazione)

$$k_h = \frac{\left(c_h \cdot \gamma_w\right)}{M}$$

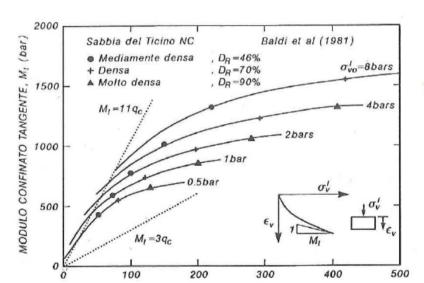
Dove:


ch: coefficiente di consolidazione orizzontale

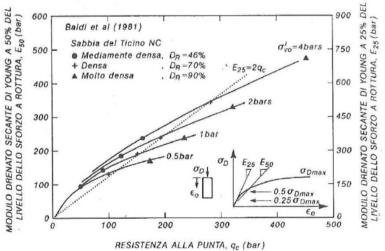
$$c_h = (1.67 \cdot 10^{-6}) \cdot 10^{-(1-\log t_{50})}$$

M: modulo di compressibilità

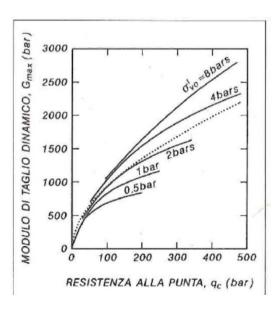
 γ w: peso unità di volume acqua


T50: tempo corrispondente alla dissipazione del 50% della dissipazione della pressione nei pori

DEFINIZIONE MODULI DI DEFORMAZIONE


Trattazione di Robertson – Campanella (1983)

Modulo confinato tangente (Mt)



RESISTENZA ALLA PUNTA, qc (bar)

Modulo di Young (E50;E25)

Modulo di taglio dinamico (G)

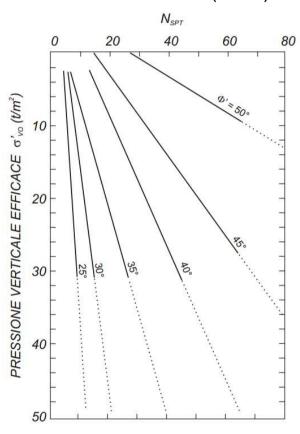
DEFINIZIONE VELOCITA' ONDE DI TAGLIO (Vs30)

Formulazione Barrow & Stokoe (1983): $V_s = \alpha + \beta \cdot q_c$

(valida per tutti i terreni) lpha=506

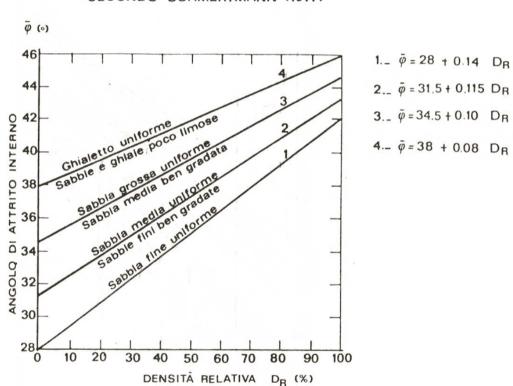
 $\beta = 2.1$

Formulazione Mayne & Rix (1995): $V_s = \alpha \cdot q_c^{\beta}$


(valida per terreni a grana fine) $\alpha = 1.75$

 $\beta = 0.627$

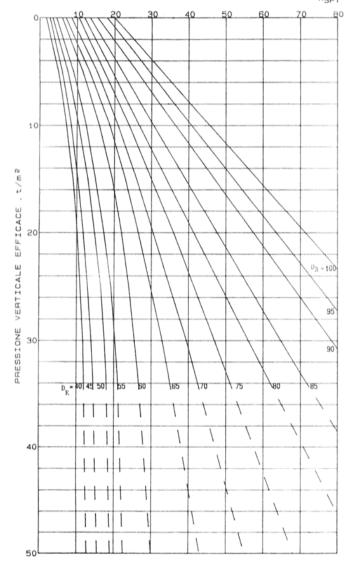
INTERPRETAZIONE DI PROVE PENETROMETRICHE DINAMICHE (SPT)


DEFINIZIONE ANGOLO DI RESISTENZA A TAGLIO (Φ)

Trattazione De Mello (1971):

Trattazione Schmertmann (1978):

CORRELAZIONE $\bar{\phi} = f (D_R, GR)$ SECONDO SCHMERTMANN (1977)

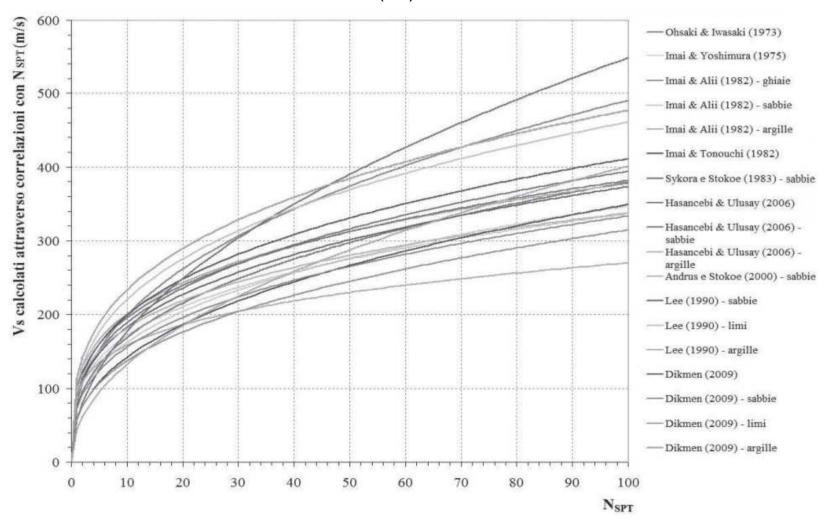

DEFINIZIONE DENSITA' RELATIVA (Dr)

Trattazione Gibbs Holtz (1951):

NSPT	Density	Relative density (%)	
0 – 4	Very loose	0 - 15	
4 – 10	Loose	15 – 35	
10 - 30	Medium dense	35 – 65	
30 – 50	Dense	65 – 85	
>50	Very dense	85 – 100	

CORRELAZIONE TRA DENSITA' RELATIVA ED NSpt GIBBS E HOLTZ (1957), da USBR EARTH MANUAL, 1960

NSPT


DEFINIZIONE VELOCITA' ONDE DI TAGLIO (Vs)

Formulazioni empiriche

(da Brandenberg 2010)

Author(s)	LD.	All soils	Sand	Silt	Clay
Shibata (1970)	A		$V_s = 31.7 \text{ N}^{0.54}$	-	
Ohba and Toriuma (1970)	В	$V_s = 84 \text{ N}^{0.31}$	-	-	
Imai and Yoshimura (1975)	C	$V_s = 76 N^{0.33}$	-	-	
Ohta et al (1972)	D		$V_s = 87.2 N^{0.36}$	-	-
Fujiwara (1972)	E	$V_s = 92.1 \text{ N}^{0.337}$	-	\$ 1	41
Ohsaki and Iwasaki (1973)	F	$V_s = 81.4 \text{ N}^{0.39}$	-	-	-
Imai et al (1975)	G	$V_s = 89.9 \text{ N}^{0.341}$	-	-	
Imai(1977)	Н	$V_s = 91 \text{ N}^{0.337}$	$V_s = 80.6 \text{ N}^{0.331}$	*	$V_s = 80.2 \text{ N}^{0.292}$
Ohta and Goto (1978)	I	$V_s = 85.35 \text{ N}^{0.348}$	-	-	
Seed and Idriss (1981)	J	$V_s = 61.4 \text{ N}^{0.5}$	-		-
Imai and Tonouchi (1982)	K	$V_s = 96.9 \text{ N}^{0.314}$	-		
Sykora and Stokoe (1983)	L		$V_s = 100.5 \text{ N}^{0.29}$		
Jinan (1987)	M	$V_s = 116.1 (N+0.3185)^{0.202}$	-	9.	2
Okamoto et al (1989)	N		$V_s = 125 \text{ N}^{0.3}$	-	*
Lee (1990)	0		$V_s = 57.4 \text{ N}^{0.49}$	$V_s = 105.64 \text{ N}^{0.32}$	$V_s = 114.43 \text{ N}^{0.31}$
Athanasopoulos (1995)	P	$V_s = 107.6 \text{ N}^{0.36}$	-		$V_s = 76.55 \text{ N}^{0.445}$
Sisman (1995)	Q	$V_s = 32.8 \text{ N}^{0.51}$	-	*	
Iyisan (1996)	R	$V_s = 51.5 \text{ N}^{0.516}$			
Kanai (1966)	S	$V_s = 19 N^{0.6}$			*
Jafari et al (1997)	T	$V_s = 22 N^{0.85}$		-	-
Kiku et al (2001)	U	$V_s = 68.3 \text{ N}^{0.292}$	-	2	ş
Jafari et al (2002)	V	₽		$V_s = 22 N^{0.77}$	$V_s = 27 N^{0.73}$
Hasancebi and Ulusay (2006)	w	$V_s = 90 \text{ N}^{0.309}$	$V_s = 90.82 \text{ N}^{0.319}$	-	$V_s = 97.89 \text{ N}^{0.269}$
Ulugergerli and Uyanık (2007)	X	^a V _{SU} = 23.291 Ln(N)+405.61	-	-	*
Ulugergerli and Uyanık (2007)	Y	$^{b}V_{SL} = 52.9 e^{-0.011N}$		-	
Dikmen (2009)	Z	$V_s = 58 N^{0.39}$	$V_s = 73 N^{0.33}$	$V_s = 60 \text{ N}^{0.36}$	$V_s = 44 N^{0.48}$
Pitilakis et al. (1999)	AA	-	$V_s = 145(N_{60})^{0.178}$	-	$Vs = 132(N_{60})^{0.271}$
Hasancebi and Ulusay (2006)	AB	$V_s = 104.79(N_{60})^{0.26}$	$V_s = 131 (N_{60})^{0.205}$		$V_s = 107.63 (N_{60})^{0.237}$

DEFINIZIONE VELOCITA' ONDE DI TAGLIO (Vs)

DEFINIZIONE VELOCITA' ONDE DI TAGLIO (Vs)

Trattazione Yoshida Monotori (1988)

valori stimati sulla base di confronto fra prove in laboratorio e risultati in situ da SPT

Sabbia fine:

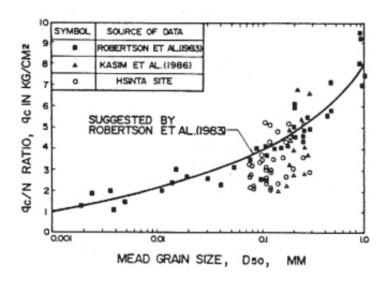
$$V_{\rm s} = 49 \cdot N_{\rm SPT}^{0.25} \cdot \sigma_{v0}^{\prime 0.14}$$

Ghiaia

$$V_s = 56 \cdot N_{SPT}^{0.25} \cdot \sigma'_{v0}^{0.14}$$

Ghiaia grossa

$$V_s = 60 \cdot N_{SPT}^{0.25} \cdot \sigma'_{v0}^{0.14}$$


Valore valido per i suoli in generale

$$V_{\rm s} = 55 \cdot N_{\rm SPT}^{0.25} \cdot \sigma_{v0}^{\prime 0.14}$$

CORRELAZIONE RISULTATI DA PROVE PENETROMETRICHE CPT E SPT

Correlazione in funzione della dimensione dei grani per terreni granulari

Trattazione Robertson (1983)

$$q_c = 0.45 \cdot N_{SPT}$$

 $f_s = 0.0068 \cdot N_{SPT}$

$$q_c = 0.13 \cdot N_{SPT}$$

 $f_{s} = 0.0048 \cdot N_{SPT}$

Valori validi per sabbia

Valori validi per limo argilloso

Soil type	d ^C ∖N	Nr of comp. tests	Author
A	8-10		Schmertmann (1970)
Α	18		Meigh-Nixon (1961)
В	5-6		Schmertmann (1970)
C	8		Meigh-Nixon (1961) and
C			Y. Lacroix (1971)
C	10	122	De Alencar Velloso (1959)
C	4		Meyerhof (1956)
D	3-4		Schmertmann (1970)
D	6	104	De Alencar Velloso (1959)
E	3-5	131	De Alencar Velloso (1959)
F	2	120	De Alencar Velloso (1959)
F	2		Schmertmann (1970)
F	4-5		Franki
G	3-5	202	De Alencar Velloso (1959
G	2-3		Franki

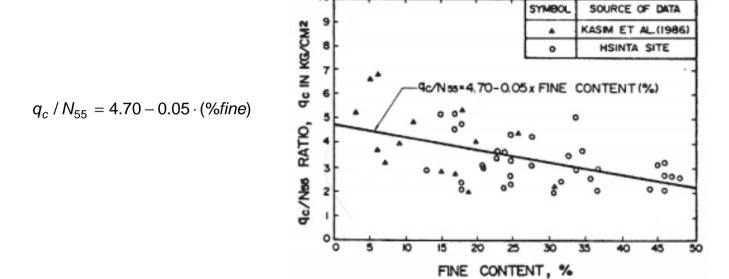
 q_c in $kgf/_{cm^2}$

N in blows/300 mm

A = sandy gravels and gravels

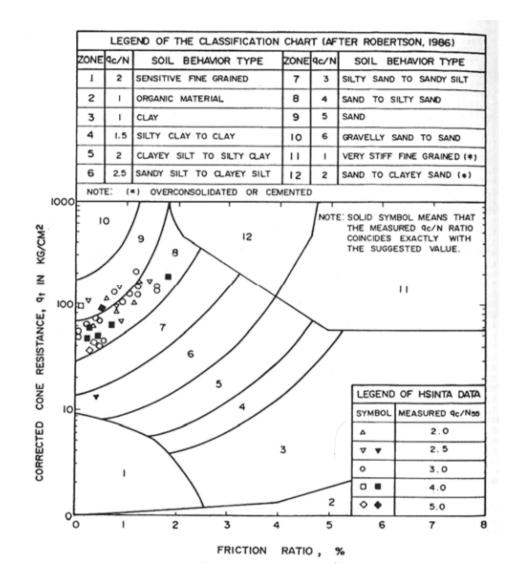
B = coarse sands and sands with little

C = sane


D = clean, fine to medium sands and slightly silty sands

E = sandy silt

F = sandy clay, silty sand, cohesive silt-sand mixtures


G = clay, silty clay, clayey silt

Correlazione in funzione del contenuto in percentuale di fine

Quadro di riferimento per classificazione dei suoli mediante prove meccaniche statiche e dinamiche

Robertson (1986)

