UNIVERSITA' DEGLI STUDI DI FERRARA

Facoltà di Ingegneria

Corso di Laurea Specialistica in Ingegneria Civile

Corso di COSTRUZIONI IN C.A. E C.A.P.

STATI LIMITE ULTIMI PER TORSIONE E SOLLECITAZIONI COMPOSTE

Prof. Ing. Nerio Tullini

Anno Accademico 2008/2009

 $K_t = G_c J_t$ rigidezza torsionale

$$au_{\max} = \frac{T}{W_t}$$
 $\frac{\mathrm{d}\,\phi}{\mathrm{d}\,z} = \frac{T}{K_t}$

dove

 W_t modulo resistente torsionale $K_t = G_c J_t$ rigidezza torsionale

Sezione circolare:

$$W_t = \frac{\pi r^3}{2} \qquad J_t = \frac{\pi r^2}{2}$$

$$\tau_{\max} = \frac{T}{W_t} \qquad \frac{d \phi}{d z} = \frac{T}{K_t}$$

ove
$$W_t \qquad \text{modulo resistente torsionale}$$

$$K_t = G_c J_t \qquad \text{rigidezza torsionale}$$

Sezione rettangolare:

$$W_t = k_1 b h^2 \qquad J_t = k_2 b h^3 \quad \text{con } h \le b$$

dove

$$k_1 \cong \frac{1}{3+1.8h/b} \quad k_2 \cong \frac{1}{3+4.1(h/b)^{3/2}}$$

$$\tau_{\max} = \frac{T}{W_t} \qquad \frac{d \phi}{d z} = \frac{T}{K_t}$$
ove
$$W_t \qquad \text{modulo resistente torsionale}$$

$$K_t = G_c J_t \qquad \text{rigidezza torsionale}$$

1 /

<u>Sezione rettangolare sottile: (h/b = 0)</u>

$$W_t = \frac{bh^2}{3} \qquad J_t = \frac{bh^3}{3}$$

SEZIONI SOTTILI APERTE

Nelle sezioni monoconnesse che possono essere decomposte in parti rettangolari, come ad esempio le sezioni a forma di T, I e L, si può assumere che ogni rettangolo sia sollecitato da un quota parte del momento torcente totale proporzionale alla sua rigidezza. Pertanto in una sezione composta da n rettangoli il momento che sollecita la j-esima parte risulta:

$$T_{j} = T \frac{K_{tj}}{\sum_{i=1}^{n} K_{ti}}$$
 dove $K_{ti} = G_{c} k_{2} b_{i} h_{i}^{3}$

e la tensione massima nell'elemento diventa:

$$\tau_j = \frac{T_j}{W_{tj}} \qquad \text{dove} \qquad W_{tj} = k_1 b_j {h_j}^2$$

SEZIONI SOTTILI APERTE

Il modo di decomporre una figura non è univoco. Il criterio da adottare nella scomposizione consiste nel rendere massima la rigidezza totale della sezione.

SEZIONI SOTTILI CHIUSE FORMULA DI BREDT (1896)

<u>Ipotesi:</u> l'intensità τ è costante nello spessore *h*

Per equilibrio alla traslazione lungo l'asse z si ha:

 $\tau_1 h_1 = \tau_2 h_2 \implies$ il flusso $q = \tau t$ è costante lungo tutto il perimetro u

Pertanto l'equilibrio alla rotazione rispetto all'asse z fornisce:

 $T = \oint qrds = q \oint rds = 2qA \implies q = \frac{T}{2A} \quad \text{dove } A \notin 1\text{'area racchiusa}$ dalla linea media del tubo. Momento d'inerzia torsionale: $J_t = \frac{4A^2}{\oint ds/h}$

MODELLO DELLA FLESSIONE OBLIQUA (HSU 1968)

(a) Middle section of beam under torsion. Camera could see front face and top face directly. Back face was reflected in a mirror.

(b) 1/100 second after diagonal crack was picked up by camera. Crack extends across front face.

(c) 1/15 second after the crack was observed. Crack widens and spreads across the top face.

(d) 1/5 second after the crack was observed. Concrete crushes at the back face as shown in the mirror.

MODELLO DELLA FLESSIONE OBLIQUA (HSU 1968)

$$T_{b} = T_{np} \cos \phi \qquad T_{b} = f_{ct,fl} \left(\frac{b}{\sin \phi}\right) \frac{h^{2}}{6} \quad \Rightarrow \ T_{np} = f_{ct,fl} \left(\frac{bh^{2}}{3}\right) / \sin 2\phi$$

Il minimo momento T_{np} ($np = nominal \ torsion \ strength \ of \ plain \ concrete$) si ottiene in corrispondenza di $\phi = 45^{\circ}$ da cui discende:

$$T_{np} = f_{ct,fl} \frac{\left(bh^2/3\right)}{\sin 2\phi}$$

MOMENTO TORCENTE DI FESSURAZIONE

Le tensioni principali σ_I , σ_{II} hanno intensità pari a τ e si orientano secondo linee isostatiche ad elica con inclinazione di 45° rispetto all'asse della trave.

St. Venant:
$$T_{np} = f_{ct}(k_1bh^2)$$
 con $1/3 \le k_1 \le 1/4.8$

HSU:
$$T_{np} = f_{ct,fl} (bh^2/3) \operatorname{con} f_{ct,fl} = (1.6 - a/100) f_{ct} > f_{ct} a \text{ in mm}$$

MOMENTO TORCENTE DI FESSURAZIONE

La teoria elastica di St Venant sottostima il momento dedotto sperimentalmente di circa il 50%, mentre la teoria di Hsu fornisce valori in buon accordo con i risultati sperimentali. Inoltre il momento di fessurazione T_{cr} dipende dalla percentuale geometrica totale di armatura ρ_{r}

• Il tratto iniziale $(0 \le T \le T_{cr})$ presenta andamento lineare e si può descrivere mediante l'equazione: $T = (GJ_t)_{St.Venant} d\phi/dz.$

• Il momento di fessurazione T_{cr} conicide con quello ultimo se $\rho_t \leq (\rho_t)_{min}$; il tipo di rottura è duttile se $\rho_t \cong (\rho_t)_{min}$; viceversa si ha rottura fragile;

• Nelle travi provviste di un'adeguata gabbia d'armatura la trave si fessura attivando un diverso meccanismo resistente rispetto al modello di St. Venant;

• La diminuzione di rigidezza torsionale che si ha nel passaggio dalla fase non fessurata (*fase I*) a quella fessurata (*faseII*) risulta più sensibile dell'analoga diminuzione di un elemento inflesso;

• Si può raggiungere il momento torcente ultimo T_R per snervamento delle armature (rottura duttile) o rottura del cls (rottura fragile)

Rigidezza torsionale alla Saint Venant: $K_{StVenant} = 0.42E_cJ_t$ poiché $G_c = \frac{E_c}{(2(1+\nu))} = \frac{E_c}{(2(1+0.2))} \cong 0.42E_c$ Rigidezza torsionale in fase nonfessurata: $K_I = 0.3E_cJ_t = 0.72K_{StVenant}$

La riduzione da 0.42 a 0.3 tiene conto del comportamento non lineare del cls in fase non fessurata.

TORSIONE PRIMARIA E SECONDARIA

a) Torsione primaria o di equilibrio: si ha qualora l'equilibrio di una struttura dipende dalla resistenza torsionale degli elementi che la compongono. La torsione primaria richiede verifiche agli SLU e SLE.

TORSIONE PRIMARIA E SECONDARIA

b) Torsione secondaria o di congruenza:si ha qualora, in strutture iperstatiche, la torsione insorge solo per esigenze di compatibilità e la stabilità della struttura non dipende dalla resistenza torsionale. In tali casi non è richiesta la verifica allo SLU, ma occorre disporre comunque un'armatura minima per il controllo della fessurazione e per garantire un'adeguata duttilità.

Allo SLU il solaio può essere considerato appoggiato sulle travi di bordo, che quindi non sono sollecitate da momento torcente.

Torsione secondaria

Fessurazione dovuta alla torsione in una trave di bordo di un parcheggio (South Florida, 1964)

Torsione secondaria

Rotture indotte dalla torsione di una trave di bordo

MODELLO TUBOLARE

Con riferimento allo SLU una generica sezione compatta soggetta a solo momento torcente può essere considerata come una sezione cava avente spessore opportuno. Infatti, le tensioni all'interno della sezione sono molto più piccole di quelle presenti sul perimetro.

MODELLO TUBOLARE

SPESSORE EQUIVALENTE

TRALICCIO PERIFERICO RESISTENTE

Il meccanismo resistente a torsione viene schematizzato con un traliccio tubolare tridimensionale costituito dai seguenti elementi:

- Elementi longitudinali tesi (armature longitudinali)
- Elementi di parete trasversali tesi (staffe chiuse)
- Elementi di parete diagonali compressi (puntoni di cls) separati dalle fessure

AZIONI NEL TRALICCIO RESISTENTE

Le azioni nelle singole aste possono essere determinate sia con il metodo dell'equilibrio di nodo sia con le *sezioni di Ritter*.

AZIONI NEL TRALICCIO RESISTENTE

Risultante delle compressioni nei puntoni di cls nella parete *i-esima*:

$$F_{ci} = \boldsymbol{\sigma}_{cw} t \cdot z_i \cos \theta$$

Componente verticale ed orizzontale di F_{ci} :

$$F_{ti} = F_{ci} \sin \theta = \sigma_{cw} t \cdot z_i \cos \theta \sin \theta$$
$$F_{li} = F_{ci} \cos \theta = \sigma_{cw} t \cdot z_i \cos^2 \theta$$

AZIONI NEL TRALICCIO RESISTENTE

L'equilibrio alla rotazione rispetto all'asse longitudinale della trave:

$$T = \sum_{i=1}^{n} F_{ti} y_{i} = \sigma_{cw} t \cos \theta \sin \theta \sum_{i=1}^{n} z_{i} y_{i} = \sigma_{cw} t \cos \theta \sin \theta (2A_{k})$$

$$\Rightarrow \sigma_{cw} t \cos \theta \sin \theta = \frac{T}{2A_{k}} = q \qquad \text{(flusso di tensioni} alla Bredt)}$$

$$\Rightarrow F_{ti} = \frac{Tz_{i}}{2A_{k}} \qquad F_{li} = \frac{Tz_{i}}{2A_{k}} \cot \theta$$

VERIFICHE ALLO STATO LIMITE ULTIMO

<u>L'armatura trasversale</u> A_{sw} necessaria per equilibrare F_{ti} risulta:

$$A_{sw}f_{yw}\frac{z_i\cot\theta}{s} \ge F_{ti} = \frac{Tz_i}{2A_k} \implies T_{Rsd} = 2A_k\frac{A_{sw}}{s}f_{yw}\cot\theta$$

dove A_{sw} è l'area della sezione di un braccio di una staffa per le sezioni compatte o l'area della sezioni di due braccia per le sezioni cave, il termine $z_i \cot\theta/s$ è il numero di staffe contenuto in $z_i \cot\theta$.

VERIFICHE ALLO STATO LIMITE ULTIMO

<u>L'armatura longitudinale</u> A_{sli} necessaria per equilibrare F_{li} risulta:

$$A_{sli}f_{yl} \ge F_{li} = \frac{Tz_i}{2A_k} \cot \theta \Longrightarrow \quad \frac{f_{yl}\sum_{i=1}^n A_{sli}}{u_k} \ge \frac{T}{2A_k} \cot \theta$$

dove $u_k = \sum_{i=1}^n z_i$ è il perimetro dell'area $A_{k.}$

$$\Rightarrow T_{Rld} = 2A_k \frac{\sum_{i=1}^n A_{sli}}{u_k} f_{yl} / \cot \theta$$

VERIFICHE ALLO STATO LIMITE ULTIMO

La <u>tensione di compressione</u> σ_{cw} nei puntoni di cls deve soddisfare la seguente condizione:

$$\sigma_{cw} = \frac{T}{2A_k} \frac{1}{t\cos\theta\sin\theta} \le f_{c2} \Longrightarrow \qquad T_{Rcd} = 2A_k \cdot t \cdot f_{c2}\cos\theta\sin\theta$$

$$\Rightarrow T_{Rcd} = 2A_k \cdot t \cdot f_{c2} \sin^2 \theta \cot \theta = 2A_k \cdot t \cdot f_{c2} \frac{\sin^2 \theta \cot \theta}{\sin^2 \theta + \cos^2 \theta} =$$
$$= 2A_k \cdot t \cdot f_{c2} \frac{\frac{\sin^2 \theta \cot \theta}{\sin^2 \theta}}{\frac{\sin^2 \theta + \cos^2 \theta}{\sin^2 \theta}} = 2A_k \cdot t \cdot f_{c2} \frac{\cot \theta}{1 + \cot^2 \theta}$$

dove f_{c2} indica la *resistenza ridotta* dei puntoni di cls, che tiene conto delle sollecitazioni di natura flessionale presenti nei puntoni e delle sollecitazioni di trazione trasferite dalle staffe al cls.

RESISTENZA RIDOTTA NEI PUNTONI DI CLS

RESISTENZA RIDOTTA NEI PUNTONI DI CLS

Trazioni trasversali trasferite dalle staffe al cls 1.0 0.7 tth 0.8 0 range of test results F_{ti} MC 90 Z_i F_{li} S -0.6 -<mark>0</mark>.4 -1.0 -0.8 -0.2 . 0 $z_i \cot \theta$ rel. compressive stress, σ_3/f_{cm} f_{ctk,0.05} f_{ctk,0.05} f_{cd} f_{ctd} f_{cd} f_{cd1} f/3

TRALICCIO DI RAUSCH (1929)

Il traliccio di Rausch è l'estensione spaziale di quello di Mörsch.

<u>Ipotesi</u>: si assume un'inclinazione di 45° dei puntoni di cls Sostituendo $\theta = 45^{\circ}$ nelle relazioni precedenti si ottiene, in accordo con il DM96:

$$T_{Rsd} \le 2A \frac{A_s}{s} f_{yd} \quad \text{staffe}$$

$$T_{Rld} \le 2A \frac{\sum A_l}{u_m} f_{yd} \quad \text{barre longitudinali}$$

$$T_{Rcd} \le \frac{1}{2} A \cdot t \cdot f_{cd} \quad \text{calcestruzzo } (\text{con } f_{c2} = 0.5f_{cd})$$

ARMATURA BILANCIATA A TORSIONE

L'inclinazione θ dei puntoni di cls non deve necessariamente coincidere con l'inclinazione delle fessure; infatti l'inclinazione θ è rappresentativa del campo di tensione effettivo all'interno dei puntoni di cls, la cui direzione viene alterata dall'ingranamento degli inerti lungo le fessure.

Nel caso in cui le staffe e le armature longitudinali raggiungano contemporaneamente la condizione di snervamento, ed escludendo una rottura lato cls, si ottiene:

$$F_{ti} = \frac{T_u z_i}{2A_k} = A_{sw} f_{yw} \frac{z_i \cot \theta}{s} \Longrightarrow T_u = \frac{A_{sw} f_{yw}}{s} 2A_k \cot \theta$$
$$F_{li} = \frac{T_u z_i}{2A_k} \cot \theta = A_{sli} f_{yl} \Longrightarrow T_u = \frac{A_{sl} f_{yl}}{u_k} 2A_k \tan \theta$$

da cui si ottiene:

$$\tan^2 \theta = \frac{A_{sw} f_{yw}}{s} / \frac{A_{sl} f_{yl}}{u_k} \qquad T_u = 2A_k \sqrt{\frac{A_{sl} f_{yl}}{u_k} \frac{A_{sw} f_{yw}}{s}}$$

ARMATURA BILANCIATA A TORSIONE

Per acciai con $f_{yw} = f_{yl}$, il quantitativo teorico minimo di armatura totale per resistere ad un assegnato momento torcente di ottiene per $\theta = 45^{\circ}$. In tale caso si ha:

$$A_{sw} = \frac{T_u s}{2A_k f_{yw}} \qquad A_{sl} = \frac{A_{sw} u_k}{s}$$

Pertanto si ottiene un'inclinazione di 45° dei puntoni di cls solo per determinate proporzioni tra le armature trasversali e longitudinali.

DEFORMAZIONE DELLE PARETI DEL TRALICCIO

La deformazione tagliante totale risulta:

$$\gamma = \gamma_l + \gamma_w + \gamma_c = (\varepsilon_l - \varepsilon_c) \cot \theta + (\varepsilon_w - \varepsilon_c) \tan \theta$$

ed è minima se:

$$\tan^2 \theta = (\varepsilon_l - \varepsilon_c) / (\varepsilon_w - \varepsilon_c)$$
 in tal caso si ha:

 $\gamma_{\min} = 2(\varepsilon_l - \varepsilon_c) \cot \theta = 2(\varepsilon_w - \varepsilon_c) \tan \theta$ da cui si ottengono:

DEFORMAZIONE DELLE PARETI DEL TRALICCIO

le seguenti deformazioni principali:

aventi direzione rispettivamente ortogonale e parallela all'inclinazione θ delle bielle di compressione

INCLINAZIONE DEI PUNTONI DI CLS

Trascurando la deformazione ε_c del cls si ottiene:

$$\varepsilon = \varepsilon_l + \varepsilon_w - \varepsilon_c \cong \varepsilon_l + \varepsilon_w \qquad \tan^2 \theta \cong \varepsilon_l / \varepsilon_w$$

e nella direzione dei puntoni di cls non si hanno scorrimenti se è attivo l'ingranamento degli inerti lungo le fessure. Tale circostanza risulta verificata se ε_1 non è molto più grande della deformazione di snervamento dell'armatura, ossia se si soddisfa la seguente condizione:

$$\varepsilon_1 \cong \varepsilon_l + \varepsilon_w = \varepsilon_w (1 + \tan^2 \theta) = \varepsilon_l (1 + \cot^2 \theta) \le C\varepsilon_v = Cf_v / E_s$$

dove *C* dipende dall'ampiezza massima di apertura delle fessure che si intende avere allo SLU.

INCLINAZIONE DEI PUNTONI DI CLS

Nella condizione limite si può avere snervamento delle staffe:

$$\varepsilon_w = \varepsilon_y \Longrightarrow \varepsilon_w / \varepsilon_y = (1 + \tan^2 \theta) \le C$$

oppure snervamento delle barre:

$$\varepsilon_l = \varepsilon_y \Longrightarrow \varepsilon_l / \varepsilon_y = (1 + \cot^2 \theta) \le C$$

Per $\theta = 45^{\circ}$ si ha lo snervamento simultaneo delle staffe e delle barre.

Per $\theta < 45^{\circ}$ le staffe si snervano per prime, provocando una rapida crescita delle fessure finché non si snervano le barre.

Per $\theta > 45^{\circ}$ si snervano prima le barre longitudinali.

INCLINAZIONE DEI PUNTONI DI CLS

Allo scopo di limitare la fessurazione e di prevenire allo snervamento sia delle staffe sia delle barre, l'inclinazione θ dei puntoni di cls può assumere i seguenti valori:

<u>EC2</u>

 $1.0 \le \cot \theta \le 2.5 \qquad (21.8^{\circ} \le \theta \le 45^{\circ})$ $\underline{DM \ 08}$ $0.4 \le \cot \theta \le 2.5 \qquad (21.8^{\circ} \le \theta \le 68.2^{\circ})$

ESEMPIO 1

Calcestruzzo C25/30 $f_{ck} = 25$ MPaAcciaio B450C $f_{yk} = 450$ MPaLarghezzab = 400 mmAltezzah = 600 mmCopriferroc = 20 mmStaffe $\Phi 8/100$ $A_{sw} = 50$ mm²Barre $6\Phi 16$ $A_{sl} = 924$ mm²

<u>DM08</u>

Tensione di calcolo cls $f_{cd} = f_{ck} \cdot \alpha_{cc} / \gamma_c = 25 \cdot 0.85 / 1.5 = 14.17$ MPa Tensione di calcolo acciaio $f_{yd} = f_{yk} / \gamma_s = 450 / 1.15 = 391.30$ MPa Spessore della sezione cava $2c' \le t \le A_c / u \rightarrow 56$ mm $\le t \le 120$ mm

ESEMPIO 1

Spessore della sezione cava $t = A_c/u = 400 \times 600/(2 \times (400 + 600)) = 120 \text{ mm}$ Area racchiusa $A = (400 - 120) \cdot (600 - 120) = 134400 \text{ mm2}$ dalla fibra media Perimetro medio $u_m = 2 \cdot (400 - 120 + 600 - 120) = 1520 \text{ mm}^2$ $\cot \theta = (a_1/a_s)^{1/2} = 1.10 \rightarrow \theta = 42.20^\circ$ 1) Inclinatione θ con: $a_1 = \Sigma A_1 / u_m = 924 / 1520 = 0.608$ $a_{\rm s} = A_{\rm s}/s = 50/100 = 0.5$ Staffe $T_{Rsd} = 2 \cdot A \cdot A_s / s \cdot f_{vd} \cdot ctg\theta = 2 \cdot 134400 \cdot 50 / 100 \cdot 391.30 \cdot 1.10 = 57.98 \text{ kNm}$ Barre $T_{Rld} = 2 \cdot A \cdot \Sigma A_l / u_m \cdot f_{vd} / ctg\theta = 2 \cdot 134400 \cdot 924 / 1520 \cdot 391.30 / 1.10 = 57.98 \text{ kNm}$ Cls $T_{Rcd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg \theta / (1 + ctg \theta) = 2 \cdot 134400 \cdot 120 \cdot 0.5 \cdot 14.1 \cdot 1.10 / (1 + 1.10^2)$ =113.24 kNm

ESEMPIO 1

2) Inclinatione θ $\cot \theta = 1$ $\rightarrow \theta = 45^{\circ}$

Staffe $T_{Rsd} = 2 \cdot A \cdot A_s / s \cdot f_{yd} \cdot ctg\theta = 2 \cdot 134400 \cdot 50 / 100 \cdot 391.30 \cdot 1 = 52.59 \text{ kNm}$

Barre

 $T_{Rld} = 2 \cdot A \cdot \Sigma A_l / u_m \cdot f_{yd} / ctg\theta = 2 \cdot 134400 \cdot 924 / 1520 \cdot 391.30 / 1 = 63.94 \text{ kNm}$

Cls

 $T_{Rcd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot \operatorname{ctg} \theta / (1 + \operatorname{ctg} \theta) = 2 \cdot 134400 \cdot 120 \cdot 0.5 \cdot 14.1 \cdot 1 / (1 + 1)$ = 113.78 kNm

STATI LIMITE ULTIMI PER SOLLECITAZIONI COMPOSTE

STATI LIMITE ULTIMI PER SOLLECITAZIONI COMPOSTE

Verifiche

$$N_{sdi} \le A_{sli} f_{yld} \qquad V_{sdi} \le A_{sw} f_{ywd} \frac{z_i \cot \theta}{s} \qquad V_{sdi} \le v \cdot f_{cd} \cdot t \cdot \cos \theta \cdot \sin \theta$$

Tali formule sono valide anche per la parete superiore se fessurata. Viceversa si ha:

$$\sigma = \frac{N_{sdi}}{tb} \qquad \tau = \frac{V_{sdi}}{t(b-t)} \Longrightarrow \qquad \sigma_I = \sqrt{\frac{\sigma^2}{4} + \tau^2} - \frac{\sigma}{2} < f_{ctd}$$

Le armature di torsione si sommano a quelle di flessione, nelle zone compresse possono essere diminuite proporzionalmente alla risultante delle compressioni.

STATI LIMITE ULTIMI PER TORSIONE – TAGLIO

Verifica delle bielle compresse:

$$\underline{\text{EC2}} \quad \left(\frac{T_{sd}}{T_{Rd1}}\right)^2 + \left(\frac{V_{sd}}{V_{Rd2}}\right)^2 \le 1$$

dove

$$T_{Rd1} = \mathbf{v} \cdot f_{cd} \cdot 2A_k \cdot t \cdot \cos \theta \cdot \sin \theta$$

$$V_{Rd2} = \mathbf{v} \cdot f_{cd} \cdot b_{w} \cdot z \cdot \cos \theta \cdot \sin \theta$$

STATI LIMITE ULTIMI PER TORSIONE – TAGLIO

