SINGLE-DEGREE-OF-FREEDOM-SYSTEMS

Frequency domain analysis

Elementary harmonic force

A harmonic force f(t) is defined as elementary when it has a unit amplitude. This condition is
satisfied by the real expression f(t)= sinwt and by the complex expression f(t)= elot:

f(t)=e™" =cosot +isinot =

‘ e iot

=./(sinot+icosmt) (Sinot—icosmt) =+/sin“ ®t+cos” ot =1
J ) ( ) = fsin’ ot +cos’

Observation: the elementary harmonic function sin ot may be regarded as the projection on the axis

y of the ordinates of a vector Z with unit modulus, rotating around the origin of a Cartesian
reference system (x, y) with uniform angular velocity  and nil initial phase.

Interpreting (X, y) as an Argand-Gauss plane, the vector Z is associated with a complex number z
whose real and imaginary parts are respectively the projections on x andy of Z:z=x + 1y, X =

Re(z) = cos wt, y = Im(z) = sin ot; thus, z = cos ot + isinet. Using Euler’s formula z =e'*.
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Let us consider the equation of motion:

q(t)+2§m0q(t)+m§q(t)=%f(t)=%ei”‘=% (cosot+isinot) o

Q(O):qo ; q( ):qo

Since f(t) is a complex quantity, thus also q(t) is complex and may be written as:

q(0) =x(® +iy(0) ()

where the real functions x(t) = Re[q(t)] and y(t) = Im[q(t)] are, respectively, the solutions of the two
problems:



5 v 2 =icosw

X(t)+ 280X (1) + myx(t) - t 3)
x(0) =%, =Re(q,) : X(0) =%, =Re(d,)

0+ o )iy () Lama 2
y(O):yoz Im(qo); S/(O):yo: Im(qo)

The response y(t) to the real elementary harmonic force f(t) = sin ot is the imaginary part of the
response q(t) to the complex elementary harmonic force f(t)=e'":

q(t)+2&m0q(t)+m02q(t):%f(t):iei‘”t -1 (cosot +isinot)

m m (5)
q(0)=d, ; 4(0)=4q,

The solution of Eq. (5) is the sum of the integral q'(t) of the homogeneous associated equation and
of any particular integral q"(t) of the complete equation:

a(t)=q'(t)+q"(t) (6)

From Eq. (2) it results:

q'(t)=x'(t)+iy(t) x(t)=x(t)+x"(t)
q"(t)=x"(t)+iy"(t) y(t)=y'(t)+y"(t)

where x'(t) and y’(t) are the integrals of the homogeneous equations associated with Eqs. (3) and
(4), respectively:

x'(t)=e = (axl COS Mo/l —E2 t+ay, SiNwgy/1— & t)
y'(t)=e = (ayl COSmoy/1— &% t+ay, Sinmgy/1- & t)

The integration constants depend on the initial conditions.
It is easy to demonstrate that an expression of q"(t) is given by:

q'(t)=H(w)e™ (7)

Substituting Eq. (7) into Eq. (5):

—O)ZH(O)),EA +2§®0-imH(m)ﬁ)&+mﬁH(m),e’ﬁ 2%)9”&:



1 1
H(o)= me:, o o)
0 1——2+2ié—
(,00 0\)0

H(m) is the complex frequency response function and may be rewritten as:

H(co) = R(oa)+ i |((1))

H(o)=|H(w)e™)

where:
1 1-0?/w?
R(w)= Re[H(0)]= ——————2——
m ey (1—0) /m0)+4§w o
() = Im[H(w)] = — 260/

T2 2
M ®g (1—0)2/0)5) +48% 0% | wf

[H(0)| =R (@) +17(0) =— -
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Re(z) = R(w)

cos ot

Neglecting the initial transient stage of the motion, i.e. q'(t)=0=q(t)=q"(t)=

q(t) = H(w)e™

(8)

©9)

(10)
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(12)
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(14)

(15)



Eqg. (15) provides the steady-state response of a S.D.O.F. subjected to the complex elementary
harmonic force f(t)=e'"; H(w) is the ratio between the time-dependent response and force. Thus
it has the meaning of the inverse of a dynamic stiffness.

Substituting Eq. (10) into Eq. (15):

a(t)=|H(w)|e'lotv(@) (16)

Thus, |H(w)| is the amplitude of the dynamic response, y(w) is the phase delay of the response q(t)

with respect to the force f(t)=e™*.

Ya q (t) = | H(w)| eilotv©)
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0

q(t): ! > = static response to a unit static force
Mo,

The magnification factor N(w) is defined as the ratio between the amplitude |H(w)| of the dynamic
response and the amplitude H(0) of the static response:
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Real elementary harmonic force f(t) = sinwt

4(1)+260,0(1)+ofa(t)=—F(1): 6(0) =, . 4(0) =4,

iot

= cos ot +isin ot f(t)=sin ot

(t)+a'(t)

q
'()+Iy() f
(t)=e" (axlcosa)o 1-¢&? t+asz|n(Doﬂ)
y'(t)=e g(”ot(aylcosa)o 1-¢2 t+ayzslnw0\/§)
(0)e ot q”(t):lm[H(co imt] =
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In steady-state conditions: q'(t)=0=q(t)=q"(t)=
q(t)=H(w)e"" q(t)=|H(w)[sin[ot + y(o)]

q(t): F|H(oo)| Sin[wt+\|1( )]
()= ) = ] =
a(t) = N(o)sin[ot+y()]=

q(t) = gst N(w)sin[ot + y(o)]

The following figure shows how the steady-state regime is approached after a transient vibration.
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Example: Arc lamp

‘ k =21063 N/m
m = 10671 kg

®o=1.405 rad/s

no=0.223 Hz
Vibrodyne <O~ f(t)=Fsinot F=100N
q(t)= q4N() Sin[mt+\|/((o):|
F

o~0= N(0)=1=>Q=0.00475m = 4.75mm
o=0o=N(0)=1/26= &=001=N=50=Q=0237m
£=.005= N =100= Q=0.475m

£=.002= N=250=0Q=1.187m
£=.001=N=500=Q=237m

w=10rad/s = N(0)~0.142 = Q = 6.74x10 *m = 0.674 mm

Example: Single-storey R.C. building

k =0.8333 x 108 N/m
| m = 88087.5 kg

®o=30.76 rad/s
no=49Hz

<> f(t)=Fsinot F=1000 N

o~0=N(0)=1=Q=12x10"m
o=m,=> £=005=>N=10=>Q=12x10"*m
£=002=>N=25=Q=3.0x10"m



Rotating mass with an eccentricity

m —M = non-rotating part of the mass
M = rotating mass

q + esin ot = rotating mass displacement

2

(m—M)q(t)+ M;jt—z[q(t)+ esin ot] = —Kq(t)—cq(t)
mgj(t) - M) + Mi(t) — Mew?sin ot +
Kq(t)+cg(t)=0=

mg(t)+¢q(t)+ Ka(t) = Mew? sin ot
F

q(t)= Meo* N (e)sin [t + \V(w)]% =

a(9="° 2 Nlolsinfot +y(o)

N'(o)= & N o) = ["’]
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Example: Rotating mass over a beam (with negligible mass)

y4 L=4m
- E = .21 x 10" N/m?
- J=5%x10°m*
| ~ M =8.000 kg
/7> g; W =80.000 N
| L q
K= 48,_? =7875000N/m =qs =W/K =0.01m
®o =+ K/Im=31.375rad/s=n, =4.99Hz
£=0.02

a) M =20kg; e=0.25m; o = 25 rad/s = w/wo = 0.80
2

o
g
N’ = =1.7325=
2
2 2
(1— 0)2] 14822
®o ®o

Me \,_ 20x0.25
m 8.000

Q= x1.7325=1.0828 x10 3m

Amplitude of oscillation around the equilibrium condition =
Maximum displacement 0.01 m + 0.001 m =0.011 m

b) o =31.375rad/s = w/oy =1
N'=25=0Q=0.0156m = S,.,x =05 + Q=0.0256m

c) How to obtain & by measuring Q ?



Periodic force

A function f(t) is defined as periodic with period T when f(t) = f(t + T) for Vte R, with T > 0. The
minimum period, or simply the period, is the minimum value of T for which above condition is
satisfied.

Under very general conditions, a periodic function f(t) can be expanded according to the following
Fourier series:

f(t)zaz—o+i::k (a cosw,t+b,sinw,t) (18)

where:

2 ¢TI2
ak:?j_mf(t)comktdt k=0,1,2, ..

2 ¢TI2 .
bk=?jmf(t)smmkt dt k=1,2, .. (19)

(ok:kz?n k=012, ..

The mean value of f(t) is a,/2:

The Fourier series:

f(t):%+Zk(akc03mkt+bksinmkt)
1

may be rewritten as:

a 0
f(t):?°+zkAksin( o t+9,) (20)
1
where:
A, =.ai+b:
a
®, = arctg[—"] (21)
k
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®,=0; Ty=00
A, =ay2
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fl
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®, = 4n/T; T, =T/2
/\ iAz
BV AV

+

f(t):z‘;kckei

-T/2

oyt

Cy = %J' " (t)e ™dt

cok=k2_|_—Tc

Demonstration: Starting from Eq. (23) =
Co=ao/2; ¢, =(a,—1ib,)/2, c, =(a,+ib,)/2 (k>1);

a9 =2Cq; 8 =C +C, b =i (c,—c,) (k>1)

Moreover, the Fourier series may be rewritten using the following exponential complex notation:

(22)

(23)
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= a,cosot+b,sinot=(c, +C ) (eimkt +e_iwkt)/2+
(6002 (e 6121 g0 o e = (78),
Rewriting Eq. (22) as:

f(t)zco+zk(ckeiwkt+C_ke‘i‘”kt)

1

(24)

the correspondence with Eg. (20) is apparent. Each real harmonic term in Eq. (20) corresponds to a

couple of complex harmonic terms in Eq. (24). In particular:

Co=ag/2; |ck|:‘c7k‘:A¥/2:1/af+bk2/2;

¢, e'' is the complex conjugate of c_.e "',

f(t) =a°+ikAkS|n(wkt+(pk :co+ik( e +c e
1 1

2
e f(1) fo=T f (1)

o

i

—h
—|

Ya
Zk = Cke okt
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I >
fk . 7a) X
4 g AA
T/2 T/2 g \/0
® =
Ak k =c e okt

Re(z ) =
Re(zt
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Dynamic response to a periodic force

(1) + 280, () + 079 (1) = F (1)

The steady-state response q(t) to a periodic force f(t)=> f(t) may be expressed as the
superposition of the responses qk(t) to the component elementary harmonic responses

fi(t):a(t)= 2, ak(t):

fo(t)=e"*" = G (t)=H(a,) e

f (t)=ce'™ = o (t)=cH (o) e™

(D)= F ()= ce™ = (25)
Q(t):ika(t):ikckH(mk)eimkt (26)

The structural system operates a filtering effect related to its complex frequency response function.
F = 2|ck| is the amplitude of the k-th component harmonic force fk(t). The amplitude of the k-th

component harmonic response gy (t) to f,(t) is given by:

Qk = 2|c|[H(wi | = Fe|H(wy | = FcH(0) N(ey ) =
Fo/mod - N(og) = Qi = Qu N(y)

where Qg = F /ma? is the amplitude of the static response to a static force F.

14
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Generic force

A generic force f(t) may be dealt with as a periodic force with period T — o .

f

Let us consider the complex exponential Fourier series:

f(t)= ikcke ot

1 eT/2 i
Cy :?J:mf(t)e dt
0Oy = k . 21'C/T

Assuming Aw =y, — o0 =27/ T=1/T =Ao/2r=

S iy 1pT2 —ioy
f(t):;ke t?j_mf(n)e o =

T/2

_ l c iyt —iom
_E,Zw:ke Ao J.imf(n)e dn
For T > o, Ao — 0, o tends to become a continuos variable =

f(t)=i C et [[_";f(n)eimdn]dm

2m ™

and the exponential Fourier series tends to become the Fourier integral:

F(t)= [ Flo)e™ do (27)
2m*
Flo)=[" f(t)e™ dt (28)

F(w) is a complex function called Fourier transform; f(t) is consequently called inverse Fourier
transform. The uniqueness of a Fourier couple, f(t) and F(w), is demonstrated under wide
conditions. F(w) exists provided that:

[7]# (v)fat is finite

16



It can be shown that:

F(o)=fime,; f(t)=f, = F() =f5(0)
lel = le.d IF(o)| = | F(-0)|
T IA"IZ = e component semi-amplitudes
I W, ®
2lc,| 2|F(@)| = S{(w) =
A, T [ Fourier spectum
f periodic f not periodic
‘ componet amplitudes
|
| O ® I

(1) + 260 (1) + 059 (1) = F (1)

The steady-state response q(t) to a generic force f(t) can be expressed as the integral of the
elementary component responses to the elementary component harmonic forces:

(o)e'

Flo)H

ot

(w)e'™

00

Flo)“'do =

:21t —®

1

q(t)

" F(o)H(o)e™'do
2m ="

(29)

(30)

Moreover, using the definition of Fourier transform and inverse Fourier response of the response:

a(t)=- ], Qlo)e'do

Qlo)=[ " alt)e e

(31)

(32)
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Comparing Egs. (30) and (32):

Q(0) = H(o) F(v) (33)

Eq. (33) is the basic relationship between f(t) and g(t) in the frequency domain.

Summarising, the frequency domain analysis consists of 4 steps:

(1) Starting from f(t) its Fourier transform is calculated F(w)=[" f(t)e ™" dt;

(2) The structural system is characterised by its complex frequency response function:
1 1
H(o)=—= 27 2), o ’
m o, (l—co /mo) + 2iEw/ o,
(3) The Fouriem of g(t) is determined: Q(®)=H(w)F(w);

(4) The inverse Fourier transform of Q(w) is calculated: q(t =—j Q(w)e™'do.

It is easy to demonstrate that:

|Q(0) =|H(w) |F(o) (34)

Stt(w)=2|F(w)] = Fourier spectrum of the force =
= amplitude of the harmonic components of f(t)
Stq(®)=2|Q(w)| = Fourier spectrum of the response =
= amplitude of the harmonic components of q(t)
| co)| N /m(oo = Ratio between the amplitudes of the harmonic components of the
response and of the force

Thus: Sy(©)=|H(o)|-Sk (o)

Sf—f |H((D)| qu
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