
THEORETICAL STRESS-STRAIN MODEL 

FOR CONFINED CONCRETE 

By J. B. Mander,1 M. J. N. Priestley,2 and R. Park,3 Fellow, ASCE 

ABSTRACT: A stress-strain model is developed for concrete subjected to 
uniaxial compressive loading and confined by transverse reinforcement. 
The concrete section may contain any general type of confining steel: 
either spiral or circular hoops; or rectangular hoops with or without 
supplementary cross ties. These cross ties can have either equal or 
unequal confining stresses along each of the transverse axes. A single 
equation is used for the stress-strain equation. The model allows for 
cyclic loading and includes the effect of strain rate. The influence of 
various types of confinement is taken into account by defining an 
effective lateral confining stress, which is dependent on the configura
tion of the transverse and longitudinal reinforcement. An energy balance 
approach is used to predict the longitudinal compressive strain in the 
concrete corresponding to first fracture of the transverse reinforcement 
by equating the strain energy capacity of the transverse reinforcement to 
the strain energy stored in the concrete as a result of the confinement. 

INTRODUCTION 

In the seismic design of reinforced concrete columns of building and 
bridge substructures, the potential plastic hinge regions need to be 
carefully detailed for ductility in order to ensure that the shaking from large 
earthquakes will not cause collapse. Adequate ductility of members of 
reinforced concrete frames is also necessary to ensure that moment 
redistribution can occur. The most important design consideration for 
ductility in plastic hinge regions of reinforced concrete columns is the 
provision of sufficient transverse reinforcement in the form of spirals or 
circular hoops or of rectangular arrangements of steel, in order to confine 
the compressed concrete, to prevent buckling of the longitudinal bars, and 
to prevent shear failure. Anchorage failure of all reinforcement must also 
be prevented. 

Tests have shown that the confinement of concrete by suitable arrange
ments of transverse reinforcement results in a significant increase in both 
the strength and the ductility of compressed concrete. In particular, the 
strength enhancement from confinement and the slope of the descending 
branch of the concrete stress-strain curve have a considerable influence on 
the flexural strength and ductility of reinforced concrete columns. 

Theoretical moment-curvature analysis for reinforced concrete 
columns, indicating the available flexural strength and ductility, can be 
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conducted providing the stress-strain relation for the concrete and steel are-
known. The moments and curvatures associated with increasing flexural 
deformations of the column may be computed for various column axial 
loads by incrementing the curvature and satisfying the requirements of 
strain compatibility and equilibrium of forces. The cover concrete will be 
unconfined and will eventually become ineffective after the compressive 
strength is attained, but the core concrete will continue to carry stress at 
high strains. The compressive stress distributions for the core and cover 
concrete will be as given by the confined and unconfined concrete 
stress-strain relations. Good confinement of the core concrete is essential 
if the column is to have a reasonable plastic rotational capacity to maintain 
flexural strength as high curvatures. In general, the higher the axial 
compressive load on the column, the greater the amount of confining 
reinforcement necessary to achieve ductile performance. This is because a 
high axial load means a large neutral axis depth, which in turn means that 
the flexural capacity of the column is more dependent on the contribution 
of the concrete compressive stress distribution. 

Clearly it is important to have accurate information concerning the 
complete stress-strain curve of confined concrete in order to conduct 
reliable moment-curvature analysis to assess the ductility available from 
columns with various arrangements of transverse reinforcement. 

In this paper, a unified stress-strain model for confined concrete is 
developed for members with either circular or rectangular sections, under 
static or dynamic loading, either monotonically or cyclically applied. The 
concrete section may contain any general type of confinement with either 
spirals or circular hoops, or rectangular hoops with or without supplemen
tary cross ties, with either equal or unequal confining stresses along each 
of the transverse axes. The model includes the effects of cyclic loading and 
strain rate. Full details of the proposed model is discussed elsewhere 
(Mander et al. 1984). 

In a companion paper by Mander et al. (1988), the theoretical model 
presented herein is compared with the results of an experimental program 
of some 40 concentric axial compression tests. This program consisted of 
nearly full-size circular, square, and rectangular reinforced concrete 
columns tested at either slow or fast (dynamic) rates of strain, with or 
without cyclic loading. 

PAST INVESTIGATIONS OF THE BEHAVIOR AND MODELING OF CONFINED 

CONCRETE 

Early investigators showed that the strength and the corresponding 
longitudinal strain at the strength of concrete confined by an active 
hydrostatic fluid pressure can be represented by the following simple 
relationships: 

f'cc^f'co + hf, (1) 

ecc = ecof 1 + k2 -jr j (2) 

where f'cc and ecc = the maximum concrete stress and the corresponding 
strain, respectively, under the lateral fluid pressure / , ; f'co and ECO = 
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unconfined concrete strength and corresponding strain, respectively; and 
&] and k2 = coefficients that are functions of the concrete mix and the 
lateral pressure. 

Richart et al. (1928) found the average values of the coefficients for the 
tests they conducted to be kx = 4.1 and k2 = 5 ^ . Also, Balmer (1949) 
found from his tests that /c, varied between 4.5 and 7.0 with an average 
value of 5.6, the higher values occurring at the lower lateral pressures. 
Richart et al. (1929) also found that the strength of concrete with active 
confinement from lateral (fluid) pressure was approximately the same as 
for concrete with passive confinement pressure from closely spaced 
circular steel spirals causing an equivalent lateral pressure. 

Different investigators, such as Mander et al. (1984), Scott et al. (1982), 
Sheikh and Uzumeri (1980), and Vellenas et al. (1977), have carried out 
numerous tests on nearly full-size specimens and have demonstrated that 
confinement is improved if (1) The transverse reinforcement is placed at 
relatively close spacing; (2) additional supplementary overlapping hoops or 
cross ties with several legs crossing the section are included; (3) the 
longitudinal bars are well distributed around the perimeter; (4) the volume 
of transverse reinforcement to the volume of the concrete core or the yield 
strength of the transverse reinforcement is increased; and (5) spirals or 
circular hoops are used instead of rectangular hoops and supplementary 
cross ties. Clearly it is important to be able to quantify these effects of 
confinement on the stress-strain behavior of concrete. 

The complex endochronic mathematical model developed by Bazant and 
Bhat (1976, 1977) appears to be the only constitutive model that describes 
the stress-strain response under monotonic, cyclic, and dynamic loadings 
of confined or unconfined concrete with any state of multiaxial stress. 
However, endochronic constitutive models were developed using data 
based primarily on biaxial and triaxial tests with active confinement 
provided by mechanical means. Therefore, at this state of development, no 
rational allowance can be made for the passive confinement from the many 
different configurations of transverse reinforcement that are possible using 
various hoop shapes and spacings. 

Early research on confined reinforced concrete behavior was generally 
carried out on small-scale concentrically loaded specimens at quasi-static 
rates of strain. The stress-strain model of Kent and Park (1971) for 
concrete confined by rectangular transverse reinforcement was based on 
the test results of Roy and Sozen (1964) and others available at that time. 
This early model neglected the increase in concrete strength but took into 
account the increase in ductility due to rectangular confining steel. More 
recently, Scott et al. (1982) and Park et al. (1982) have tested near full-size 
specimens based on real building columns and modified the Kent and Park 
(1971) stress-strain equations to take into account the enhancement of both 
the concrete strength and ductility due to confinement and the effect of 
strain rate. Monotonic stress-strain equations for concrete confined by 
rectangular-shaped transverse reinforcement include those proposed by 
Vellenas et al. (1977) and Sheikh and Uzumeri (1980). Stress-strain 
equations for concrete confined by spiral reinforcement have been pro
posed by Park and Leslie (1977), Desayi et al. (1978), Ahmad and Shah 
(1982, 1985), Dilger et al. (1984), and others. 

The flexural strength and ductility of confined reinforced concrete 
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sections computed using those stress-strain equations show differences. In 
particular, the equations are grouped into those applicable to rectangular-
shaped confining steel and those applicable to circular-shaped confining 
steel. It is evident that a unified approach applicable to all configurations of 
circular- and rectangular-shaped transverse reinforcement, and including 
the effects of cyclic loading and strain rate, is required. 

UNIFIED STRESS-STRAIN APPROACH FOR CONFINED CONCRETE WITH 
MONOTONIC LOADING AT SLOW STRAIN RATES 

The Basic Equation for Monotonic Compression Loading 
Mander et al. (1984) have proposed a unified stress-strain approach for 

confined concrete applicable to both circular and rectangular shaped 
transverse reinforcement. The stress-strain model is illustrated in Fig. 1 
and is based on an equation suggested by Popovics (1973). For a slow 
(quasi-static) strain rate and monotonic loading, the longitudinal compres
sive concrete stress fc is given by 

fc = 
f'ccxr 

r-l+xr 

where f'cc = compressive strength of confined concrete (defined later). 

(3) 

where ec, = longitudinal compressive concrete strain. 

J cc 
&CC ^ C 1 +5 

J CO 
1 

(4) 

(5) 

10 
if 
is 
to 

55 

Q. 

(3 

First 
hoop 
fracture. 

Compressive Strain, Ec 

FIG. 1. Stress-Strain Model Proposed for Monotonic Loading of Confined and 
Unconfined Concrete 
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as suggested by Richart et al. (1928), where f'co and eco = the unconfined 
concrete strength and corresponding strain, respectively (generally zco = 
0.002 can be assumed), and 

r = W^W~ (6) 

where 

Ec = 5,000^//^ MPa (7) 

is the tangent modulus of elasticity of the concrete (1 MPa = 145 psi), and 

£sec = 7 ^ (8) 

To define the stress-strain behavior of the cover concrete (outside the 
confined core concrete) the part of the falling branch in the region where ec. 
> 2eco is assumed to be a straight line which reaches zero stress at the 
spalling strain, esp. 

Effective Lateral Confining Pressure and the Confinement 
Effectiveness Coefficient 

An approach similar to the one used by Sheikh and Uzumeri (1980) is 
adopted to determine the effective lateral confining pressure on the 
concrete section. The maximum transverse pressure from the confining 
steel can only be exerted effectively on that part of the concrete core where 
the confining stress has fully developed due to arching action. Figs. 2 and 
3 show the arching action that is assumed to occur between the levels of 
transverse circular and rectangular hoop reinforcement. Midway between 
the levels of the transverse reinforcement, the area of ineffectively 
confined concrete will be largest and the area of effectively confined 
concrete core Ae will be smallest. 

When using the stress-strain relation, Eq. 3, for computing the strength 
and ductility of columns it is assumed for convenience that the area of the 
confined concrete is the area of the concrete within the center lines of the 
perimeter spiral or hoop, Acc . In order to allow for the fact that Ae < Acc , 
it is considered that the effective lateral confining pressure is 

fi = fike (9) 

where/, = lateral pressure from the transverse reinforcement, assumed to 
be uniformly distributed over the surface of the concrete core; 

ke = -rL (10) 
Acc 

= confinement effectiveness coefficient; Ae = area of effectively confined 
concrete core; 

Acc = Ac{\ - pcc) -..- (11) 

prc = ratio of area of longitudinal reinforcement to area of core of section; 
and Ac = area of core of section enclosed by the center lines of the 
perimeter spiral or hoop. 
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Cover 
concrete 

Effectively 
confined 
core • 

SECTION B-B 
Cover concrete 
(spalls off) •— q̂-ra 

Ineffectively 
confined 
core 

s \s 

SECTION A-A 

FIG. 2. Effectively Confined Core for Circular Hoop Reinforcement 

Confinement Effectiveness for Sections Confined by Spirals or 
Circular Hoops 

If in Fig. 2 the arching action is assumed to occur in the form of a 
second-degree parabola with an initial tangent slope of 45°, the area of an 
effectively confined concrete core at midway between the levels of 
transverse reinforcement is 

A, = - -l^-u (12) 

where s' = clear vertical spacing between spiral or hoop bars; and ds = 
diameter of spiral between bar centers. Also the area of concrete core is 

Ace = 4 d2
s(l - p c (13) 

Therefore, from Eq. 10, the confinement effectiveness coefficient is for 
circular hoops 
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Effectively 
confined 
core —-^ 

Ineffectively 
confined 

w 

l?"_" 

1/ 
* 

fy 

core 

fz 
Cover 
concrete 
(spalls oft) 

i fU Jm 

mlzzzzm 

pf 
k-tftr î 

SECTION Z-Z 

4 

Hr-
br-s'/2 

be 

SECTION Y-Y 

FIG. 3. Effectively Confined Core for Rectangular Hoop Reinforcement 

K = 

s 
2d, 

1 (14) 

Similarly it can be shown that for circular spirals 

s' 
1 -

k„ = 
2d, 

1 (15) 

The lateral confining pressure may be found by considering the half body 
confined by a spiral or circular hoop. If the uniform hoop tension 
developed by the transverse steel at yield exerts a uniform lateral stress on 
the concrete core, then equilibrium of forces requires that 

2fyi,Asp =fisds (16) 

where fyh = yield strength of the transverse reinforcement; Asp = area of 
transverse reinforcement bar; / , = lateral confining pressure on concrete 
and s = center to center spacing or pitch of spiral or circular hoop. 

Now if ps = ratio of the volume of transverse confining steel to the 
volume of confined concrete core, then 

ASpTtds 

-rdls 

AA 
d„s (17) 
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Substituting Eq. 17 into Eq. 16 and rearranging gives 

// = j Psfyh (18) 

Therefore from Eq. 9, the effective lateral confining stress on the concrete 
is 

1 
/ / = j kePsfyh • (19) 

where ke is given by Eqs. 14 or 15. 

Confinement Effectiveness for Rectangular Concrete Sections 
Confined by Rectangular Hoops with or without Cross Ties 

In Fig. 3, the arching action is again assumed to act in the form of 
second-degree parabolas with an initial tangent slope of 45°. Arching 
occurs vertically between layers of transverse hoop bars and horizontally 
between longitudinal bars. The effectively confined area of concrete at 
hoop level is found by subtracting the area of the parabolas containing the 
ineffectively confined concrete. For one parabola, the ineffectual area is 
(w/)2/6, where w/is the /th clear distance between adjacent longitudinal 
bars (see Fig. 3). Thus the total plan area of ineffectually confined core 
concrete at the level of the hoops when there are n longitudinal bars is 

" (w/)2 

, = i 6 

Incorporating the influence of the ineffective areas in the elevation (Fig. 3), 
the area of effectively confined concrete core at midway between the levels 
of transverse hoop reinforcement is 

^-(^-i^)^-^)^-^) w 
where bc and dc = core dimensions to centerlines of perimeter hoop in x 
and y directions, respectively, where bc> dc. Also, the area of concrete 
core enclosed by the perimeter hoops is given by Eq. 11. Hence from Eq. 
10 the confinement effectiveness coefficient is for rectangular hoops 

(22) 

It is possible for rectangular reinforced concrete members to have 
different quantities of transverse confining steel in the x and y directions. 
These may be expressed as 

*=ii (23) 

and 
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» = t ™ 
where Asx and Asy = the total area of transverse bars running in the x and 
y directions, respectively (see Fig. 3). 

The lateral confining stress on the concrete (total transverse bar force 
divided by vertical area of confined concrete) is given in the x direction as 

fix = Jjfyh = Pxfyh (25) 

and in the y direction as 

fly = Jffyh = Pyfyh (26) 

From Eq. 9 the effective lateral confining stresses in the x and y directions 
are 

fix = KVxfyh (27) 

and fly = kePyfyh (28) 

where ke is given in Eq. 22. 

Compressive Strength of Confined Concrete, f'cc 
To determine the confined concrete compressive strength f'cc, a consti

tutive model involving a specified ultimate strength surface for multiaxial 
compressive stresses is used in this model. The "five-parameter" multi-
axial failure surface described by William and Warnke (1975) is adopted, 
since it provides excellent agreement with triaxial test data. The calculated 
ultimate strength surface based on the triaxial tests of Schickert and 
Winkler (1977) is adopted here. Details of the calculations have been given 
by Elwi and Murray (1979). 

The general solution of the multiaxial failure criterion in terms of the two 
lateral confining stresses is presented in Fig. 4. When the confined 
concrete core is placed in triaxial compression with equal effective lateral 
confining stresses//from spirals or circular hoops, it can be shown that the 
confined compressive strength given is: 

flc=flo[ - 1-254 + 2.254 A / l + ^ ^ ' - 2 - £ - ) (29) 
J CO J CO J 

where f'co = unconfined concrete compressive strength; and / / i s given by 
Eq. 19. 

As a numerical example, consider a column with an unconfined strength 
°ff co = 3 0 M P a (4,350 psi) and confining stresses given by Eqs. 28 and 29 
of/,;, = 2.7 MPa (390 psi) and//v = 5.1 MPa (740 psi). Then, by following 
the dotted line in Fig. 4, the compressive strength of the confined concrete 
is found to b e / ; c = 1.65 x 30 = 49.5 MPa (7,170 psi). 

Monotonic Tensile Loading 
A linear stress-strain relation is assumed in tension up to the tensile 

strength, provided the tensile strength has not been exceeded. The 
longitudinal stress fc is given by 

1812 
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Confined Strength Ratio f^/f^ 

Smallest Confining Stress Ratio, 
0.2 0.3 
f</Uo 

FIG. 4. Confined Strength Determination from Lateral Confining Stresses for 
Rectangular Sections 

fc = Ecec when fc < / , ' 

otherwise 

(30a) 

(30b) fc = 0 

where Ec = tangent modulus of elasticity of concrete given by Eq. 8; ec = 
longitudinal tensile concrete strain; and/,' = tensile strength of concrete. 

STRESS-STRAIN RELATION FOR CYCLIC LOADING AT SLOW STRAIN RATES 

The monotonic loading stress-strain curve is assumed to form an 
envelope to the cyclic loading stress-strain response. That is, the mono-
tonic curve is assumed to be the skeleton curve. This was found to be the 
case in two studies by Sinha et al. (1964) and Karsan and Jirsa (1969) for 
tests on unconfined (plain) concrete specimens. The test results for 
confined concrete by Mander et al. (1984) shows that this assumption is 
also reasonable for reinforced concrete specimens. 

Unloading Branches 
Unloading of the concrete may occur from either the compressive or 

tensile portion of the skeleton stress-strain curve as follows: 

Compression Unloading 
Fig. 5 shows a stress-strain curve including an unloading branch. To 

establish a reversal stress-strain curve from the compressive loading curve 
given by Eq. 3, a plastic strain epl based on the coordinate at the reversal 
point (e„„, /„„) on unloading needs to be determined. The procedure 

1813 
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FIG. 5. Stress-Strain Curves for Unloading Branch and Determination of Plastic 
Strain EP, from Common Strain E„ 

adopted here is similar to the approach used by Takiguchi et al. (1976) but 
modified so that it is suitable for both unconfined and confined concrete. 
The plastic strain epI lies on the unloading secant slope as shown in Fig. 5, 
which in turn is dependent on the strain ea at the intersection of the initial 
tangent and the plastic unloading secant slopes. The strain eu is given by 

ea = a\/e,me~ (31) 

Takiguchi et al. (1976) used a = 0.1175 in Eq. 31 for plain concrete. In this 
investigation, this value for the coefficient a was found to be unsuitable for 
both unconfined and confined concrete and was replaced by the greater of 

« = B + ' (32) 

or 

0.09s,,,, 
a = (33) 

The plastic strain on the secant line between ea and e„„ is given by 

— _ '" ^aJJun ClA\ 
ep'~e"" (fun+E^J W 
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The unloading curve shown in Fig. 5 is then assumed to be denned as a 
modified form of Eq. 3, namely 

r p J [in* I /ir\ 

Jc - /««- yzj^rjr (35) 
in which 

>=E -E ( 3 6 ) 

£seo = ̂ V W 

x = Bc ~ E"" (38) 

and where Eu = initial modulus of elasticity at the onset of unloading and 
is given by 

E„ = bcEc (39) 

where 

* 4 ^ 1 (40) 
J CO 

E X ° - 5 

c=\^) s l - (41) 

The coefficients a, b, and c in Eqs. 32, 40, and 41 were evaluated by trial 
and error to give the "best fit" of the assumed stress-strain relation (Eq. 
35) to selected experimental unloading curves. The experimental curves 
used were taken from Karson and Jirsa (1969) and Sinha et al. (1964) for 
unconfined concrete, and from Mander et al. (1984) for confined reinforced 
concrete. 

If strain reversal occurs from a reloading branch rather than the skeleton 
curves as assumed, then the current level of plastic strain spl is still used. 

Tensile Unloading 
The effect of preloading in compression on the tension strength of 

concrete has been investigated by Moria and Kaku (1975). Based on their 
test results the assumed deterioration in tensile strength due to previous 
compressive strain histories was idealized as shown in Fig. 6. 

On unloading from the compressive branch, the tension strength be
comes: 

f,=f'U-er] (42) 
\ Ecc/ 

If ep, < ECC. then/ , = 0. Thus the stress-strain relation becomes 

/, = Et(sc -epl) (43) 
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" J = 0 •. 

•CC 

FIG. 6. Assumed Deterioration in Tensile Strength of Concrete due to Prior 
Compression Loading 

where 

E,= 
f, (44) 

and 

/ / (45) 

When the tensile strain at the tensile strength is exceeded, i.e., sc > (e, 
- Epi), cracks open and the tensile strength of concrete for all subsequent 
loadings is assumed to be zero. 

Reloading Branches 
Fig. 7 shows the stress-strain curves including unloading and reloading 

branches. The coordinates of the point of reloading (sro ,fro) may be from 
either the unloading curve, or from the cracked state in which ero = (epl — 
e,) and/TO = 0, as shown in Fig. 7. A linear stress-strain relation is assumed 
between ero and E„„ to a revised stress magnitude to account for cyclic 
degradation. The new stress point (fneH) is assumed to be given by the 
equation 

fnew = 0.92fun + 0.08/„ (46) 

The same experimental data used to calibrate Eq. 46 was used for Eqs. 
32-41. 

A parabolic transition curve is used between the linear relation 

fc=fro + Er(ec- ero) (47) 
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FIG. 7. Stress-Strain Curves for Reloading Branch 

ie. 

where 

fro Jut 
Er = 

Ero 8,J 
(48) 

and the monotonic stress-strain curve (Eq. 3) return coordinate (ere ,fre). 
The common return strain (e,.c) is assumed to be given by the following 
equation 

= E + 
E,.\ 2 + 

Jun J new 

J a 

Tec 

where E,. is given by Eq. 48. 
The parabolic transition curve is then described by 

fc = / « + Erex + Ax2 

where 

X v^c ^re) 

(49) 

A = -
4L(j/ieii' J re) Er\Zu e)l 

(50) 

(51) 

(52) 

Ere and/,.e = the common return point tangent modulus and the stress 
determined from the return strain, ere, using the monotonic stress-strain 
relation (Eq. 3), respectively. 

EFFECT OF RATE OF STRAIN ON STRESS-STRAIN RELATION 

Concrete exhibits a significant increase in both the strength and stiffness 
when loaded at an increased strain rate. Experimental data on the 
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Df 

2.0 o % = 17.2MPa 
m f£ = U.8MPa 

• Theory 

Average Rate of Strain per second \£c\ 

FIG. 8. Dynamic Magnification Factors Df to Allow for Strain Rate Effects on 
Strength 

properties of concrete subjected to high strain rates has been reported by 
Watstein (1953), Bresler and Bertero (1975), Scott et al. (1982), Ahmad and 
Shah (1985), Dilger et al. (1984), and others. 

The stress-strain relations given by Eqs. 3-52 have been written for slow 
(quasi-static) strain rates. However these equations will also apply to 
concrete loaded at high strain rates providing that the control parameters 
fco , Ec, and Eco of the unconfined concrete are modified so as to apply to 
the relevant strain rate ec. 

Relationships for the strain-rate dependence of these parameters, estab
lished by Mander et al. (1984) from the experimental results, are as 
follows. 

Dynamic Strength 

(fco)dyn=Dff'co (53) 

where f'co = the quasi-static compressive strength of concrete and 

Df = 

1 + 

1 + 

ec 

0.035(/^o)
2 

0.00001 

L0.035(/^)2J 

1/6 

1/6 (54) 

where ec = rate of strain in s~' ; and/^.0 is in MPa (1 MPa = 145 psi). The 
dynamic magnification factor Df was found by regression analysis of the 
experimental results of Watstein (1953) on plain concrete specimens of 
different strengths. Fig. 8 shows a plot of Eq. 54 compared with those 
experimental results for two concrete strengths. Good agreement was 

1818 

 J. Struct. Eng., 1988, 114(8): 1804-1826 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ita
 S

tu
di

 F
er

ra
ra

 o
n 

10
/3

1/
18

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



1.6 

U 

1.2 
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— Theory 

w6 10'5 icr4 /<rJ /o* w ' / w 
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FIG. 9. Dynamic Magnification Factors DE to Allow for Strain Rate Effects on 
Stiffness 

provided by the limited data on large concrete specimens tested by the 
writers. 

Dynamic Stiffness 

(Ec)dyn - ' DEEC 

where Ec = the quasi-static modulus of elasticity; and 

DF = 

1 + 

1 + 

ec 

0.035(/;o)3j 

0.00001 

0 .035( /J 3 

1/6 

.1/6 

(55) 

(56) 

where et, = rate of strain in s^1; and/^o = the quasi-static compressive 
strength of concrete in MPa (1 MPa = 145 psi). The dynamic magnification 
factor DE was found by regression analysis of the experimental results of 
Watstein (1953). Fig. 9 shows a plot of Eq. 56 compared with those results 
for two concrete strengths. 

Dynamic Strain at Peak Stress 

\^co)dyn "E^C 

where eco = quasi-static strain at peak stress; and 

D = 
1 

3D 1+ \ 1 + 
3D 
Dp 

(57) 

(58) 

The results of experiments by various investigators appear to show no 
consensus on the value of the strain at peak stress for high rates of strain. 
Eq. 58 was derived assuming that the work done on concrete to achieve its 
strength is constant, irrespective of the rate of strain. Generally good 
agreement is obtained with most observed results. 
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FIG. 10. Effect of Strain Rate on Monotonia Stress-Strain Relation for Concrete 

Fig. 10 shows the typical results obtained from the application of Eqs. 
53-58 to predict the stress-strain curve of concrete at high and low strain 
rates. It will be seen that an increase in the strain rate results in an increase 
in the strength/^ and the initial stiffness Ec, and a decrease in the strain 
at peak stress ec c . There is also an increase in the steepness of the falling 
branch curve, such that the dynamic curve approaches the quasi-static 
curve at high strains. 

As an example of the influence of Eqs. 53-58, consider concrete of 
unconfined strength f'co = 30 MPa (4,350 psi) tested at a strain rate of 
1%/sec. Eqs. 53 and 54 predict a strength increase of 27%, Eqs. 55 and 56 
predict an initial stiffness increase also of 27%, and Eqs. 57 and 58 predict 
a reduction in strain at peak stress of 13%. 

ULTIMATE CONCRETE COMPRESSION STRAIN 

In order to calculate the available ultimate rotation capacity at a plastic 
hinge in a reinforced concrete flexural member, it is necessary to be able 
to predict the ultimate concrete compressive strain e„,. Early experimen
tal work on the deformability of compressed concrete in reinforced 
concrete members by a number of investigators resulted in the develop
ment of several empirical equations for ec„ . A summary of some of those 
early equations for ec„ is given in Park and Paulay (1975). 

Recently Scott et al. (1982) have proposed that the ultimate concrete 
compressive strain be defined as the longitudinal strain at which the first 
hoop fracture occurs, since that strain can be regarded as the end of the 
useful region of the stress-strain curve for the confined concrete core. 
After first hoop fracture there is a sudden drop in the compression load 
capacity of the core concrete due to reduction in confinement, and there is 
also a loss of buckling restraint for the compressed longitudinal bars. 

Subsequently, Mander et al. (1984) proposed a rational method for 
predicting the longitudinal concrete compressive strain at first hoop 
fracture based on an energy balance approach. In this approach, the 
additional ductility available when concrete members are confined is 
considered to be due to the energy stored in the transverse reinforcement. 
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Consider the stress-strain curves for unconfined and confined concrete 
shown in Fig. 1. The area under each curve represents the total strain 
energy per unit volume required to "fail" the concrete. The increase in 
strain energy at failure resulting from confinement (shown shaded in Fig. 1) 
can only be provided by the strain energy capacity of the confining 
reinforcement as it yields in tension. By equating the ultimate strain energy 
capacity of the confining reinforcement per unit volume of concrete core 
(Ush) to the difference in area between the confined {Ucc) and the 
unconfined (Uco) concrete stress-strain curves, plus additional energy 
required to maintain yield in the longitudinal steel in compression (Usc), 
the longitudinal concrete compressive strain corresponding to hoop frac
ture can be calculated. Thus 

U,„=Ucc+Ulc-Uco (59) 

Substituting in Eq. 59 gives 

(60) 
fesf feci p c . f*tp 

PsAcc • I fsdes = Aa. • I fcdec + pccAcc • j fs,dec - Acc • I fcdec 

J o J o Jo J o 

where pv = ratio of volume of transverse reinforcement to volume of 
concrete core; Acc. = area of concrete core , / , and es = stress and strain in 
transverse reinforcement; e^ = fracture strain of transverse reinforce
ment;/,, and ec = longitudinal compressive stress and strain in concrete; 
6C„ = ultimate longitudinal concrete compressive strain; pcc = ratio of 
volume of longitudinal reinforcement to volume of concrete core, fsl = 
stress in longitudinal reinforcement; and esp = spalling strain of unconfined 
concrete. 

In the first term on the left-hand side of Eq. 60, the expression 

fESffsdes=Usf (61) 
Jo 

is the total area under the stress-strain curve for the transverse reinforce
ment up to the fracture strain e^. Results from tests carried out by Mander 
et al. (1984) in New Zealand on grade 275 (fy > 40 ksi) and grade 380 (fy 

& 55 ksi) reinforcement of various bar diameters indicates that Usf is 
effectively independent of bar size or yield strength, and may be taken 
(within ±10%) as 

Usf= 110 MJIm" (62) 

For this steel arranged between 0.24 and 0.29. 
For the last term on the right-hand side of Eq. 60, the area under the 

stress-strain curve for unconfined concrete is required. It was found from 
analyses of measured data from a range of plain concrete specimens that 
the area under the stress-strain curve for unconfined concrete may be 
approximated as 

Jo 
fvdzc = 0.017\ff[0 MJ/m3 (63) 
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where f'co = quasi-static compressive strength of concrete in MPa (1 MPa 
= 145 psi). 

Thus Eq. 61 simplifies to 

110Pi = fcdec + fsldec - 0.017^/f^o MJ/m3 (64) 
Jo Jo 

With a knowledge of fc from Eq. 3 and/ s / as a function of longitudinal 
strain, the longitudinal concrete compressive strain ee„ at the stage of first 
fracture of the transverse reinforcement can be solved for numerically 
using Eq. 64. 

CONCLUSIONS 

The development of the analytical stress-strain model for confined 
concrete leads to the following conclusions: 

1. Reinforced concrete members with axial compression forces may be 
confined by using transverse steel to enhance the member strength and 
ductility. For a particular transverse reinforcement configuration the 
effective confining stresses f'lx and f'ly in the x and y directions can be 
calculated from the transverse reinforcement and a confinement effective
ness coefficient ke which defines the effectively confined concrete core area 
by taking into account the arching action that occurs between the trans
verse hoops and between longitudinal bars. 

2. A "five-Parameter" maximum strength criterion uses the effective 
confining stresses to determine the confined concrete strength fcc on the 
ultimate strength surface. The increase in the strain at ultimate strength ECC 
is assumed to be about five times the strength increase. 

3. The form of the stress-strain curve for confined concrete can be 
expressed in terms of a simple uniaxial relation suggested by Popovics and 
only requires three control parameters (f'cc , ecc , and Ec). Unloading and 
reloading curves can be developed for cyclic loading response. 

4. An allowance for the dynamic response in stress-strain modelling 
may be incorporated by modifying the quasi-static concrete parameters 
{fee> ecc > a n a Ec) by dynamic magnification factors which are sub
sequently used in the stress-strain model. 

5. The ultimate concrete compressive strain of a section, defined as that 
strain at which first hoop fracture occurs, may be determined by tracing 
the work done on the confined concrete and longitudinal steel when 
deformed in compression. In this energy balance approach, when the work 
done exceeds the available strain energy of the transverse steel, then hoop 
fracture occurs and the section can be considered to have reached its 
ultimate deformation. 

6. The usefulness of the model presented herein will become apparent 
when compared with the observed behavior of confined reinforcement 
concrete members under dynamic cyclic loading. Such studies are re
ported in a companion paper (Mander et al. 1988). 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

Ac = area of core of section within center lines of perimeter 
spiral; 

Acc = area of core within center lines of perimeter spiral or hoops 
excluding area of longitudinal steel; 

Ae = area of effectively confined core concrete; 
Aj = total area of ineffectively confined core concrete at the level 

of hoops; 
Asp = area of spiral bar; 
Asx = total area of transverse reinforcement parallel to x-axis; 
Asy = total area of transverse reinforcement parallel to y-axis; 

bc = concrete core dimension to center line of perimeter hoop in 
x-direction; 

DE — dynamic magnification factor for initial modulus of elasticity 
for concrete due to dynamic loading; 

Df = dynamic magnification factor for concrete strength due to 
dynamic loading; 

De = dynamic magnification factor for strain at peak stress due to 
dynamic loading; 

dc = concrete core dimension to center line of perimeter hoop in 
y direction; 

ds = diameter of spiral; 
Ec = modulus of elasticity of concrete; 
Ere = return point modulus of elasticity on monotonic stress-strain 

curve for concrete; 
Esec = secant modulus of confined concrete at peak stress; 

E„ = initial concrete modulus of elasticity at onset of unloading; 
fc = longitudinal concrete stress; 

f'cc = compressive strength (peak stress) of confined concrete; 
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fco = compressive strength of unconfined concrete; 
(fcJdyn = dynamic compressive strength of unconfined concrete; 

// = lateral confining stress on concrete from transverse re
inforcement; 

/ / = effective lateral confining stress; 
fix = lateral confining stress on concrete in x direction; 
fix = effective lateral confining stress in x direction; 
fiy = lateral confining stress on concrete in y direction; 
fly = effective lateral confining stress in y direction; 
fix = smaller confining stress; 
fa = larger confining stress; 

fnew = n e w concrete stress on reloading at strain of e„„ ; 
f.e = return point stress on monotonic stress-strain curve; 
fro = concrete stress at reloading reversal; 
fs = steel stress; 

fsi = stress in longitudinal steel reinforcement; 
/ , = modified tensile strength of concrete due to cyclic loading; 
/,' = tensile strength of concrete; 

fun = reversal (unloading) stress in concrete model; 
fy = yield stress of steel; 

fyh = yield strength of transverse reinforcement; 
h = member overall depth; 

ke = confinement effectiveness coefficient; 
/cj, k2 = concrete strength and strain enhancement coefficients; 

s = spiral spacing or pitch; 
s' = clear spacing between spiral or hoop bars; 

Ucc = strain energy stored by confined concrete per unit volume; 
Uco = strain energy stored by unconfined concrete per unit vol

ume; 
Usc = strain energy stored by longitudinal reinforcing steel in 

compression per unit volume of concrete core; 
Usf = area beneath stress-strain curve for steel from zero load to 

fracture; 
Ush = strain energy capacity of transverse confining steel per unit 

volume of concrete core; 
w = spacing of longitudinal bars in rectangular section; 
w'j = rth clear transverse spacing between adjacent longitudinal 

bars; 
ea = common strain at intersection of initial tangent and plastic 

unloading slopes; 
ec = longitudinal concrete strain; 

ecc = strain at maximum concrete stress f'cc; 
eco = strain at maximum s t r e s s /^ of unconfined concrete; 
ec„ = ultimate concrete compressive strain, defined as strain at 

first hoop fracture; 
EPI = plastic strain in concrete model; 
ere = return point strain on monotonic stress-strain curve; 
ero = concrete strain at reloading reversal; 
Ej = steel strain; 
esf = tensile fracture strain of steel; 
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ec„ = strain at which cover concrete is considered to have com-
pletely spalled and ceases to carry any stress; 

e, = tensile rupture strain on concrete = f'JEc; 
e„„ = reversal (unloading) strain in concrete model; 
ec = strain rate (per second); 

pcc = ratio of area of longitudinal steel to area of core of section; 
p̂  = ratio of volume to transverse confining steel to volume of 

confined concrete core; and 
p, = ratio of area of longitudinal reinforcement to gross area of 

column. 
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