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Strut and tie

From the computed stress state we can
compute two principal stresses and their

direction

Trajectories are an instructive and insight-
providing aid to structural designers.
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Strut and tie: tirante-puntone

WALL



Some remarks

The discussed case of a high wall (d/I>>1) can be used to estimate
the stress distribution in practical structures. An example of this is
a silo wall on columns, loaded by a uniformly distributed load. This
may be its own weight, and wall friction forces due to the bulk
material in the silo. To estimate the horizontal stress oxx in the wall
halfway between the columns, we adopt the following approach.
The load can be split up into two parts
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Some remarks

Part one is a simple stress state in which only vertical stresses oyy are present
and no stresses oxx occur. We are not interested in this part.

The second part is the load case in which the solution for the high wall can be
applied. Structural engineers who must design reinforced concrete walls often
apply truss models for the determination of the reinforcement. For the silo wall
they may concentrate the total distributed load in two forces F as shown below.
Each support reaction R is equal to F. The green lines carry compressive forces
and the red line the tensile force. The structural engineer wants to know where
to place the horizontal compressive strut and the tensile tie, because the
distance between them influences the magnitude of the forces in the strut and
tie. Knowledge about the elastic solution will be a great help.
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Some remarks
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Figure 2.15 Strut-and-tie model for silo wall.




Strut and tie
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Figure 2.20 Foundation block. Stresses and strut-and-tie scheme.



Strut and tie
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Figure 2.21 Load spreading (for example the anchorage of a pre-stressed cable in
a beam).



Strut and tie
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Figure 2.22 Foundation foot. Stresses and strut-and-tie scheme.

10



Strut and tie
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Figure 2.24 Beam-column connection. Stresses and strut-and-tie scheme.
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Strut and tie

The membrane solution for a constant shear force, in
combination with a linearly varying bending moment,
deviates from classical beam theory. Plane sections
are no longer plane after loading. A linear distribution
of bending stresses over the depth of the beam is
accompanied by a distorted cross-section. The simple
formulas for deflection and rotation in classical beam
theory must be amended for shear deformation. This
amendment is negligible if the cantilever length is
over five times the beam depth.
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Strut and tie

The distribution of bending stresses in a shear wall is
dependent on the ratio of the wall depth and span.
Three aspect ratios are considered. For a high ratio
(tall wall) the bending stress distribution is highly
nonlinear, and the top part of the wall does not
contribute to the load transfer. For a ratio in the order
of unity (square wall) the distribution is still nonlinear,
but the full cross-section participates in the transfer.
For a low ratio (slender beam) the stress distribution
approaches to the linear distribution of bending stress
in classical beam theory.
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Plates with holes
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Plates with holes

e At around hole in a homogeneous
(hydrostatic) stress field the stress
concentration factor is 2

e At a round hole in a uniaxial stress field the
stress concentration factor is 3

 For a constant shear stress field the stress
concentration factor even gets the value 4
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FEM modelling of plates
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Figure 12.1 Mesh of a plate with node and element numbering.
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FEM modelling of plates

Maximum principle moment Maximum shear force
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FEM modelling of plates
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Lesson on singularities
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Figure 14.1 Rectangular slab on inward columns.
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Lesson on singularities
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Figure 14.3 Moment diagrams in section over columns.
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Lesson on singularities

Element size 0.25 m
Peak 156%,
Area 99,2%,

Element size 0.50 m
Peak 128%
Area 98.9%

Element size 1.00 m
Peak 100%
Area 97.6%

Figure 14.4 Moment distribution for different mesh fineness. The peak values differ
much, the areas do not.
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Lesson on singularities
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Figure 14.5 Smearing out of moment peak.

The integral over this section part determines the reinforcement which is
needed in this section part. The structural engineer may spread this total
amount equally over the width of the section part or choose to spread part of it
and concentrate the remaining part above the column
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Lesson on singularities

 Convergence is obtained for stresses of finite
value, but not at locations where the
membrane plate theory predicts a singularity.
Then no convergence will occur

* mesh refinement does not make sense.
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Discontinuities in thickness

Figure 4.14 Twisting moment at discontinuity in thickness.
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Discontinuities in thickness

At a boundary between plates of different
thickness the bending moment normal to the
boundary is continuous, and the bending
moment parallel to the boundary and the twisting
moment are discontinuous

The Kirchhoff shear force must be continuous. This
implies that the shear forces normal to the

boundary and parallel to the boundary will be
discontinuous.
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Kirchhoff vs Mindlin theories
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Figure 15.1 Three plates. Mesh fineness and thickness varied.
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Kirchhoff vs Mindlin theories
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Figure 15.1 Three plates. Mesh fineness and thickness varied.
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Kirchhoff vs Mindlin theories
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Figure 15.2 Big scatter in submitted results for twisting moment and shear force.
Units in N and m.
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Kirchhoff vs Mindlin theories

* In a thin plate analysis we must use Kirchhoff

 The Mindlin analysis requires a senseless
fine mesh to produce practically the same
results

* Choosing Kirchhoff, we need never use
element sizes smaller than the plate
thickness
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Kirchhoff vs Mindlin theories
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Figure 15.7 Close look at stress state near free edge.
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Kirchhoff vs Mindlin theories
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Figure 15.8 Mesh for thin plate analyses.

The thickness t is 200 mm for the thin plate, and 2250 mm for the

thick plate.
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Thin plates

Kirchhoff Mindlin-Reissner

Bending moment s (-10.1 versus -10.3 kNm/m) Thickness is 200 mm

Figure 15.9 Deflection and bending moment in thin plate.
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Shear force v, (8.77 versus 11.53 kN/m). Thickness 200 mm
Figure 15.10 Twisting moment and shear force in thin plate.



Thick plates

Kirchhoff Mindlin-Reissner
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Bending moment m,, (10.2 versus 11.9 kNm/m). Thickness is 2,250 mm

Figure 15.12 Mesh, deflection and bending moment for thick plate.
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Thick plates

Kirchhoff Mindlin-Reissner
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Figure 15.13 Twisting moment and shear force in thick plate.
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Thin plates

 Thin plates should preferably be calculated
with Kirchhoff theory.

 Mindlin theory is used for thin plates, this
must be done at the cost of a very fine mesh,
with results hardly different from Kirchhoff
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Thin plates

¢ Application of Kirchhoff theory requires an element size not
smaller than about plate thickness

e If Kirchhoff theory is chosen and the FE-program offers the option
of a graph for the shear force diagram across a section, also the
concentrated edge shear force should be shown.

e |f Kirchhoff theory is chosen and the FE-program is able to
determine the resultant of shear forces and twisting moments
(total force, total torque) over a section, also concentrated edge
shear forces must be accounted for. Otherwise equilibrium is
violated. This also holds at plate boundaries with edge beams

e |f Kirchhoff theory is chosen and edge beams are applied, the
bending moment in the beam is correct, but the shear force must
be obtained as the sum of the concentrated edge shear force Vedse
and the beam shear force Veeam
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Thick plates

e A thick homogeneous isotropic plate must be
analyzed by Mindlin theory

e An edge zone must be chosen of a width
equal to about plate thickness, in which a
sufficiently fine mesh is applied

e Sufficiently fine is five or more elements over
the edge zone.
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Main differences between Mindlin theory

and Kirchhoff theory

 Mindlin is able to describe the discussed distribution of
the shear force and twisting moment and Kirchhoff is not

e In Mindlin theory we can handle the boundary condition
Mns = 0, whereas we cannot in Kirchhoff theory

e Kirchhoff determines the integral of all the local vertical
stress components and concentrates them into one shear
force Vs located at the very edge

e Kirchhoff is not able to have the twisting moment
diminish to zero, and instead keeps it constant up to the
edge
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Strengthened Strip Floor

A strengthened strip floor is a special case of a wide-slab floor. The floor is
supported by a grid of columns. In one direction prefabricated strengthened
strips are placed from one column to the other. In Figure 17.9 they are placed
in the y-direction. The width of these strips is bo. The strips are supports for
wide-slab floor units in the other direction (x-direction). After the concrete
has been poured, the thickness of the slab is h: at the strengthened strip, and
ho at the wide-slab

If the strengthened strip and wide-slab floor units are pre-tensioned, we

are justified in assuming that the wide-slab floor carries load in one direction.
In that case no FE analysis is needed. If just mild steel reinforcement is
applied, a FE-based analysis makes sense. Then more than one way is open
for the analysis
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Strengthened Strip Floor
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Figure 17.9 Strengthened strips over columns.
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Strengthened Strip Floor

1 We may model the slab with just plate bending elements
neglecting that the middle planes of the slab part with
thickness ho and the slab part with thickness h1l do not
coincide. The output consists of moments and transverse
shear forces

2. We may model the slab with membrane-bending elements
(in FE codes named shell elements). Now we automatically
account for the different positions of middle planes. The
output will consist of moments, transverse shear forces and
membrane forces

3. We may apply three-dimensional volume elements. Now we
are able to describe the geometry most truthfully, however
receive the output in terms of stresses at nodes or Gaussian
points—> not feasible
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Strengthened Strip Floor

 To some extent we can account for the different positions of
the middle planes in the first way of analysis, where we just
use flexural plate elements

 This may be done by assigning the strengthened strip a
larger thickness than h: or an adapted modulus of elasticity,
here called he and Ee respectively

 Because of the different positions of the middle planes, part
of the slab with thickness ho will act as a flange for the
strengthened strip with thickness h1

e Let us call the width of the flange b+
* This extension occurs at both sides of the strengthened strip
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Strengthened Strip Floor

-

Figure 17.10 Effective width of strengthened strip.
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Strengthened Strip Floor

A cross-section is obtained of width be = bo+2bs .
National codes of practice provide rules for calculation
of the effective width be

We call the second moment of area of the extended
cross- section le, and if the flanges are not included, lo

The ratio le/lo determines the multiplication factor for

either the thickness of the strengthened strip or its
elasticity modulus
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Strengthened Strip Floor

We must take care not to duplicate the
contribution of the slab parts of width b

If calculating le for the strengthened strip we must
leave out the part 2b: (ho)3/12

Otherwise it occurs twice, both in the flexural
rigidity of the elements in the strengthened strips
and in the elements in the slab adjacent

to the strengthened strip
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Strengthened Strip Floor

We consider a floor and strengthened strip for which the following data hold:
[, =10m, [;=10m, E = 30,000 N/mm?
b, =2,400mm, h,=300mm, Ah;=450mm.
The assumed value b, from the code of practice is 1,000 mm. Therefore
be = by +2by = 2,400 + 2 x 1,000 = 4,400 mm.
The position z of the neutral line is calculated from the formula

o Zorhoh — ho) + bohy(3hy)
B 2bthy + boh

(6.0 x 10°)(300) + (10.8 x 10°)(225)
“= 6.0 x 10° + 10.8 x 10°

(17.11)
= 251.8 mm
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Strengthened Strip Floor

Calculation of 7,

2

1 £ | |
I, =2bsho | Ry — =hy ) — 2 bohy | =h, — —bhd (1712

I, = (6.00 x 10°) (300 — 251.8)°
1
+ (10.8 x 10°) (225 — 251.8)* + e 2,400 x 450°
I, = 1.39 x 10° +0.78 x 10” + 18.23 x 10° = 20.40 x 10’ mm*

The last of the three terms is the second moment of area for the strengthened
strip without the flanges

I, = 18.23 x 10 mm*
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Strengthened Strip Floor

The ratio 1s of /, and I, 18

le 2040 o
1, 1823

Therefore, we either work with
h, = N, 1.119h; = 1.038h; = 1.038 x 450 = 467 mm
or with equal depths and

E.=1.119E = 1.119 x 30,000 = 33,570 N/mm*
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