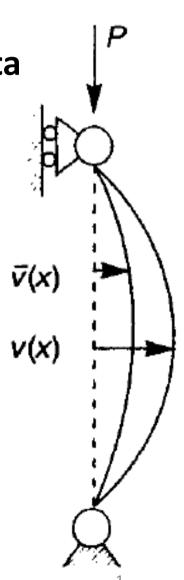
Influenza delle imperfezioni sulle curve di stabilità

LC III p 329

Consideriamo un'asta doppiamente incernierata


La sua linea d'asse presenti sin dall'inizio un'inflessione descritta dallo spostamento trasversale $\overline{v}(x)$

Se v(x) è lo spostamento trasversale la linea elastica deve essere

$$\mathbf{v}_{\mathbf{E}}(\mathbf{x}) = \mathbf{v}(\mathbf{x}) - \mathbf{v}(\mathbf{x})$$

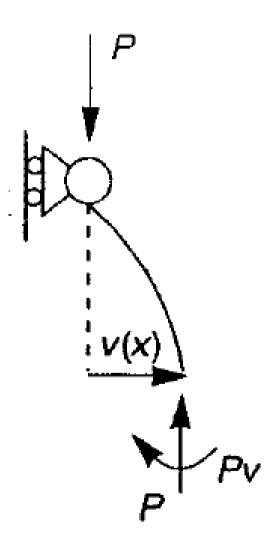
Cui corrisponde il momento flettente

$$\mathbf{M}(\mathbf{x}) = -\mathbf{E}\mathbf{I}(\mathbf{v''}(\mathbf{x}) - \overline{\mathbf{v''}}(\mathbf{x}))$$

Influenza delle imperfezioni sulle curve di stabilità

il momento flettente è

$$\mathbf{M}(\mathbf{x}) = \mathbf{P}\mathbf{v}(\mathbf{x})$$


Che sostituita nella

$$\mathbf{M}(\mathbf{x}) = -\mathbf{E}\mathbf{I}(\mathbf{v''}(\mathbf{x}) - \overline{\mathbf{v''}}(\mathbf{x}))$$

Fornisce

$$\mathbf{v''}(\mathbf{x}) + \alpha^2 \mathbf{v}(\mathbf{x}) - \overline{\mathbf{v''}}(\mathbf{x}) = 0$$

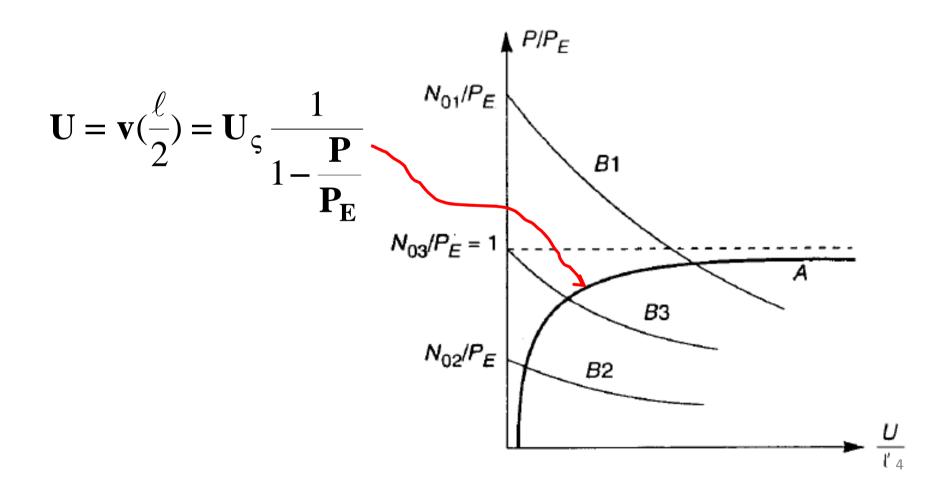
$$\alpha^2 = \frac{\mathbf{P}}{\mathbf{EI}}$$

Influenza delle imperfezioni sulle curve di stabilità

Assumendo per l'imperfezione l'espressione sinusoidale

$$\overline{\mathbf{v}}(\mathbf{x}) = \mathbf{U}_{\varsigma} \sin \frac{\pi \mathbf{x}}{\ell}$$

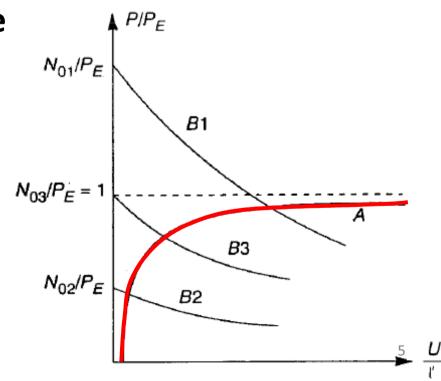
La soluzione dell'equazione differenziale di equilibrio si scrive

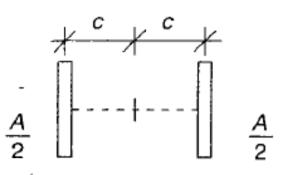

$$\mathbf{v}(\mathbf{x}) = \mathbf{U}_{\varsigma} \frac{1}{1 - \frac{\mathbf{P}\ell^2}{\mathbf{\pi}^2 \mathbf{EI}}} \sin \frac{\pi \mathbf{x}}{\ell} = \mathbf{U}_{\varsigma} \frac{1}{1 - \frac{\mathbf{P}}{\mathbf{P}_{\mathbf{E}}}} \sin \frac{\pi \mathbf{x}}{\ell}$$

In particolare lo spostamento massimo in

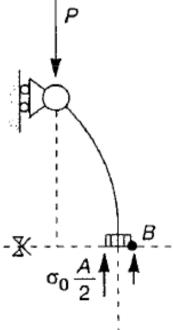
mezzeria diviene
$$\mathbf{U} = \mathbf{v}(\frac{\ell}{2}) = \mathbf{U}_{\varsigma} \frac{1}{1 - \frac{\mathbf{P}}{\mathbf{P}_{\mathbf{E}}}}$$

Influenza delle imperfezioni sulle curve di stabilità

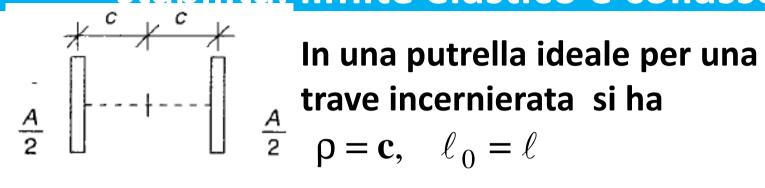

Curva A in Figura



Per effetto del braccio di inflessione il carico P induce un momento flettente che aumenta progressivamente


la curva elastica A è percorribile solo finché la prima fibra non raggiunge il limite elastico σο

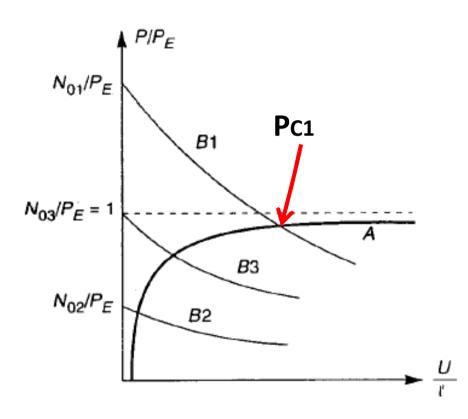
Oltre σ_0 si verifica una redistribuzione delle tensioni di cui occorre tenere conto


Supponiamo che l'asta abbia la sezione di una putrella ideale (solo ali niente anima)

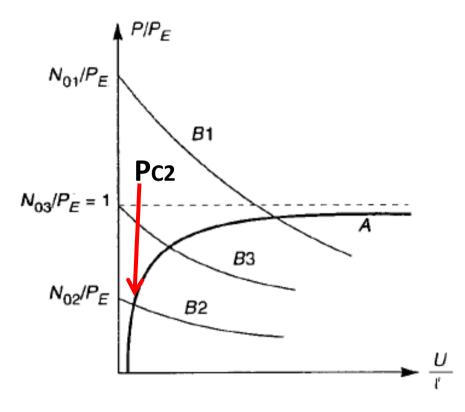
La flangia di sinistra risulta compressa in misura maggiore dell'altra e la situazione ultima viene raggiunta quando in essa $\sigma = \sigma_0$; L'equilibrio alla rotazione attorno a B:

$$\mathbf{P}(\mathbf{U} + \mathbf{c}) = \frac{\mathbf{A}}{2} \sigma_0 2\mathbf{c} = \mathbf{N}_0 \mathbf{c} \Rightarrow \mathbf{P} = \mathbf{N}_0 \frac{1}{1 + \frac{\mathbf{U}}{\mathbf{c}}}$$

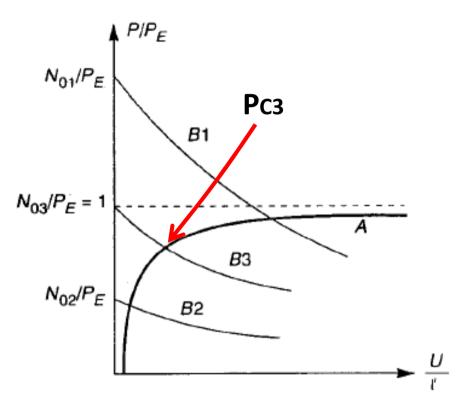
 $\mathbf{N}_0 = \mathbf{A} \mathbf{\sigma}_0$ è il carico di schiacciamento



$$\rho = \mathbf{c}, \quad \ell_0 = \ell$$


Essendo
$$\lambda = \frac{\ell_0}{\rho} \Rightarrow \rho = \frac{\ell_0}{\lambda}$$

$$\mathbf{P} = \mathbf{N}_0 \frac{1}{1 + \frac{\mathbf{U}}{\mathbf{c}}} = \mathbf{N}_0 \frac{1}{1 + \frac{\mathbf{U}\lambda}{\ell}}$$



La relazione esprime la dipendenza del carico limite dallo spostamento massimo e si traduce nelle curve B in figura. Per esempio: B₁ curva relativa a snellezza di transizione $\lambda_1 > \lambda_0$, asta snella con carico critico di schiacciamento No1 > PE **Euleriano. Il suo carico critico** Pc1 è di poco < PE in quanto la risposta elastica ha avuto modo di avvicinare l'asintoto

B2 curva relativa a snellezza di transizione $\lambda_2 < \lambda_0$ asta tozza il cui carico critico di schiacciamento N_{02} molto minore del PE Euleriano

Il carico critico Pc2 è quasi pari al carico di schiacciamento

B₃ curva relativa alla snellezza di transizione

$$\lambda 3 = \lambda_0$$

 $N_{03}=P_E$

Interseca la curva elastica A proprio quando il deterioramento della rigidezza inizia ad amplificare l'effetto dell'imperfezione ed il carico critico Pc3 è molto < sia al carico critico teorico PE che al carico di schiacciamento No3

Introduciamo le grandezze adimensionali

$$\mathbf{s} = \frac{\mathbf{P}}{\mathbf{N}_0} = \frac{\mathbf{\sigma}}{\mathbf{\sigma}_0}, \quad \Lambda = \frac{\lambda}{\lambda_0}, \quad \Psi = \frac{\mathbf{U}}{\ell} \lambda_0, \quad \varsigma = \frac{\mathbf{U}_{\varsigma}}{\ell} \lambda_0$$

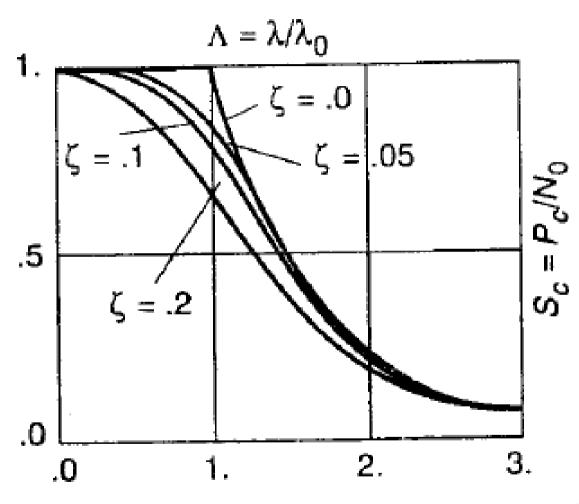
Vogliamo trovare una relazione adimensionale tra carico critico e spostamento

$$\mu = \frac{\mathbf{P}}{\mathbf{P_E}} = \frac{\mathbf{P}}{\mathbf{N_0}} \frac{\mathbf{N_0}}{\mathbf{P_E}} = \mathbf{s} \frac{\sigma_0}{\sigma_E} = \mathbf{s} \frac{\sigma_0 \lambda^2}{\pi^2 \mathbf{E}} = \mathbf{s} \frac{\lambda^2}{\lambda_0^2} = \mathbf{s} \Lambda^2$$

Date
$$s = \frac{\mathbf{P}}{\mathbf{N}_0} = \frac{\sigma}{\sigma_0}$$
, $\Lambda = \frac{\lambda}{\lambda_0}$, $\psi = \frac{\mathbf{U}}{\ell} \lambda_0$, $\varsigma = \frac{\mathbf{U}_{\varsigma}}{\ell} \lambda_0$

La linea elastica nella situazione limite $\mathbf{U} = \mathbf{v}(\frac{\ell}{2}) = \mathbf{U}_{\varsigma} \frac{1}{1 - \mathbf{P}}$ diviene

$$\psi = \zeta \frac{1}{1 - \mathbf{s} \Lambda^2}$$

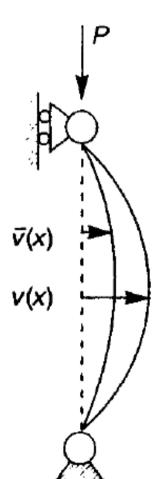

Mentre la relazione
$$P = N_0 \frac{1}{1 + \frac{U}{c}} = N_0 \frac{1}{1 + \frac{U\lambda}{\ell}}$$
 diviene

$$\mathbf{s} = \frac{1}{1 + \psi \Lambda}$$

Sostituendo
$$\psi = \zeta \frac{1}{1 - s\Lambda^2}$$
 nella $s = \frac{1}{1 + \psi\Lambda}$

Si ottiene un'equazione del II grado in s la cui radice minima definisce la capacità portante s_c dell'asta imperfetta

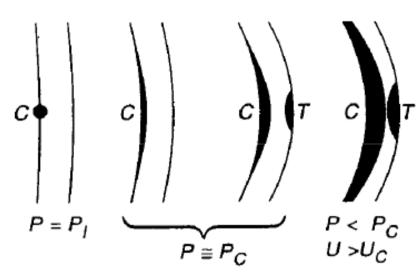
$$\mathbf{s_c} = \frac{1}{2\Lambda^2} [1 + \Lambda^2 + \zeta\Lambda - \sqrt{(1 + \Lambda^2 + \zeta\Lambda)^2 - 4\Lambda^2}]$$


La figura rappresenta s_c per alcuni valori del parametro relativo all'imperfezione ζ confrontandola con la curva teorica ottenuta per $\zeta=0$

Ad esempio se λ =100, la curva per ζ =0.1 corrisponde a U ς = ℓ /1000; Per Λ =1 allora $\sigma_c \sim 73\%$ di σ_E = σ_0

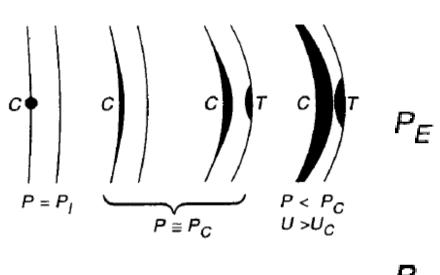
Influenza della ridistribuzione degli sforzi sulla sezione

Una putrella ideale non ha altre risorse oltre quelle elastiche: una trave isostatica, esaurite le risorse elastiche collassa

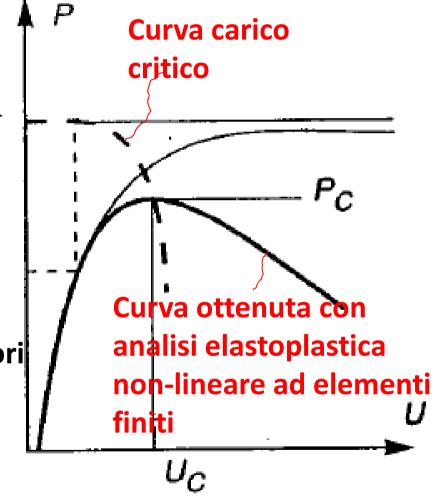

In generale, altre sezioni possono ridistribuire gli sforzi conferendo alla struttura ulteriore resistenza Per esempio, con riferimento alla sezione di mezzeria della trave incernierata avremo che per un certo valore del carico PI si raggiunge lo snervamento nella fibra più sollecitata e la curva elastica $U = v(\frac{\ell}{2}) = U_{\varsigma} \frac{1}{1 - \frac{P}{P_E}}$ viene abbandonata

Influenza della ridistribuzione degli sforzi sulla sezione

Per un certo valore del carico Pı si raggiunge lo snervamento

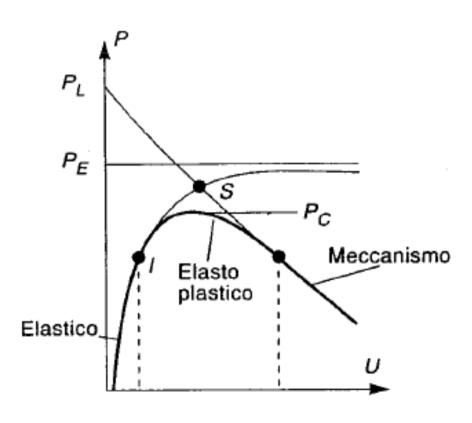

nella fibra più sollecitata

Inizialmente avremo un solo punto C della sezione plasticizzato; al crescere del carico aumenta l'area plasticizzata e la rigidezza diminuisce. La freccia aumenta rispetto a quella elastica


I momenti flettenti possono plasticizzare a trazione anche fibre sul lato opposto finché le zone plasticizzate a compressione e quelle plasticizzate a trazione si uniscono Si genera un meccanismo in mezzeria e le azioni N ed M si collocano sulla curva limite in mezzeria

Influenza della ridistribuzione degli sforzi sulla sezione

L'interazione tra plasticità e stabilità implica che il carico massimo < ai valori previsti considerando separatamente I due fenomeni


Pc è infatti < sia di P_E che di N₀ Il calcolo del carico massimo può essere svolto solo numericamente

Delimitazione superiore al carico di collasso

Oss: Pi rappresenta una delimitazione inferiore

esiste una delimitazione superiore Ps?

1) Inizialmente la risposta è elastica e la freccia è data da

$$\mathbf{U} = \mathbf{v}(\frac{\ell}{2}) = \mathbf{U}_{\varsigma} \frac{1}{1 - \frac{\mathbf{P}}{\mathbf{P}_{\mathbf{E}}}}$$

- 2) Poi la risposta risente della plasticizzazione fino a PC
- 3) Tratto discendente curva: si forma un cinematismo 18

Delimitazione superiore al carico di collasso

 P_E

Ps

Nella pratica nel tratto elastoplastico in cui avviene il collasso la curva strutturale reale si troverà al di sotto della curva ottenuta dal calcolo elastico in grandi spostamenti e della curva del meccanismo (cinematismo) che si ottiene considerando l'equilibrio in configurazione deformata caratterizzata dalla cerniera plastica.

Elastico Meccanismo
plastico U

Meccanismo

Analisi elastica

Curva strutturale reale

Il punto S individua la delimitazione superiore al carico critico

Curve di stabilità in caso di aste elastoplastiche

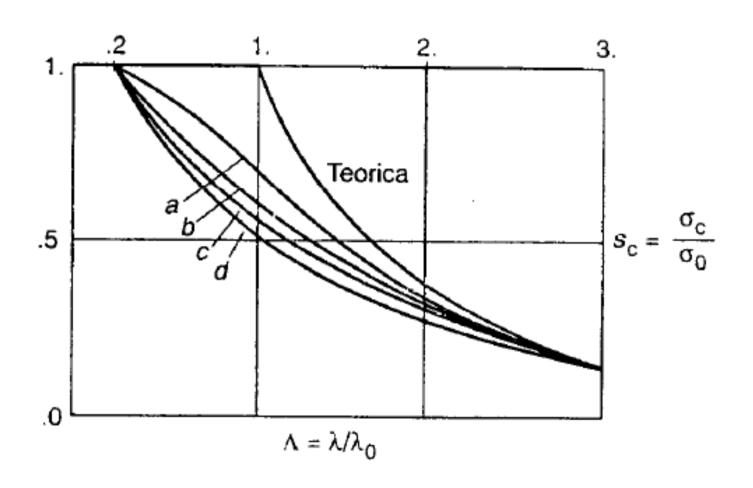
Curve di stabilità per aste reali: osservazioni

- 1) Avevamo visto in analisi limite che le auto-tensioni non influenzano il carico di collasso. Ciò è vero solo nell'ipotesi di piccoli spostamenti.
- 2) Quando si considera l'equilibrio che si instaura in configurazione variata, si ha che effettivamente il carico di collasso è influenzato dalle auto-tensioni
- 3) La presenza di curvature iniziali o imperfezioni iniziali influenza il carico critico
- 4) Eccentricità dei carichi e variazioni del limite di snervamento lungo la struttura influenzano il valore del carico critico

Curve di stabilità per aste reali: osservazioni

Pertanto si conglobano tutti gli effetti delle imperfezioni in un unico parametro espressione della deviazione dalla linearità iniziale

Occorre inoltre distinguere le curve di stabilità secondo


- -la forma della sezione
- -I valori della snellezza in quanto determinate imperfezioni possono avere conseguenze diverse in aste tozze ed aste snelle

Classificazione secondo la normativa Italiana

Tabella 16.4

Α	S _e				Aste	Forme della sezione		Curva
	Curva a	Curva b	Curva c	Curva d	8888			
0.00	1.000	1.000	1,000	1.000	1.000 Semplici 1.000 -	Profili cavi quadri, rettangoli o tondi saldati o laminati f ≤ 40 mm		á
0.10	1.000	1.000	1.000					
0.20	1.000	1.000	1.000					
0.30	.978	.965	.951	.917	I taminati $\frac{h}{b} \ge 1.2$ h			
0.40	.953	.925	.900	.841				
0.50	.923	.885	.843	.769				ř
0.60	.885	.838	.733	.699				
0.70	.844	.785	.719	.633		n		
0.80	.796	.727	.655	.572		_	4 <u> </u>	1
0.90	.739	.663	.583	.517		I taminati rinfor- zali con platti		
1.00	.674	,599	.537	.468			_	
1.10	.606	.538	.486	.424	Semplici			
1,20	.540	.481	.439	.385			٠	
1.30	.480	.429	.395	.350				
1.40	.427	.383	.357	.319				
1.50	.381	.343	.323	,290	1	saldati r, < 40	143	
1.60	.341	.306	.293	,265	1	t ₂ ≤ 40	*	
1.70	.306	_277	.266	.242		13 24 40		
1.80	.277	.250	.241	.222				Ti.
1.90	.251	.226	.219	.204				
2.00	.228	.205	.200	.188		Chiusa, a cassone,		
2.10	.208	,188	.183	.173	saldata			
2.20	.190	,173	.169	.160		1 ≤ 40		
2.30	.175	.159	.158	.148		12-40		
2.40	.162	.147	.147	.138				
2.50	.149	.137	.137	.129	1	Generica f≤4	t ≤ 40 mm	ım s
2.60	.138	.128	28	.120	Committee	Generios	1 4 10 11111	
2.70	.120	.119	.19	.112	Semplici o composte			
2.80	.119	.110	.110	.105		Tutte f > 40 mm	2.50 m S22	7
2.90	.112	.103	,103	10 To			r > 40 mm	
3.09	.105	.096	,096	.092	1	1 dite	NEW STATE	·

Classificazione secondo la normativa Italiana

Capacità portante di travi presso-inflesse

Il comportamento di una trave presso-inflessa può essere assimilato a quella di un'asta imperfetta con inflessione iniziale

Ovviamente la soluzione elastica perde di validità quando si raggiunge la combinazione di momento M e sforzo normale N raggiunge il limite del dominio elastico nella sezione maggiormente sollecitata

La situazione di crisi è sempre dovuta ad instabilità della struttura parzialmente plasticizzata e corrisponde ad un valore del carico < di quello teorico P_L calcolato con l'analisi limite supponendo gli spostamenti piccoli

Capacità portante di travi presso-inflesse

Una stima della capacità portante di travi presso-inflesse è fornita dalla formula di Rankine

$$\frac{1}{\mathbf{P_R}} = \frac{1}{\mathbf{P_E}} + \frac{1}{\mathbf{P_L}}$$

Dove:

P_E=carico critico predetto dalla formula di Rankine
P_E=carico critico Euleriano della trave compressa
P_L=carico critico limite calcolato nelle ipotesi di piccoli spostamenti tenendo conto di un comportamento elastoplastico perfetto (detto anche carico di collasso rigidoplastico)

Capacità portante di travi presso-inflesse

Essendo nella maggior parte dei casi PL << PE la formula di Rankine si riscrive come

$$\mathbf{P_R} = \mathbf{P_L} \frac{1}{1 + \frac{\mathbf{P_L}}{\mathbf{P_E}}}$$

Cosicché Pr si ottiene riducendo Pi ovvero moltiplicando Pl per un coefficiente <1

OSS: la formula di Rankine è limitata solo a casi in cui la deformata critica assomiglia al meccanismo di collasso rigido-plastico → la formula non si utilizza per le verifiçhe

Le verifiche si solito si basano sulla ricostruzione di un dominio ammissibile per i carichi esterni

la delimitazione del dominio ammissibile, definita *Curva* di Interazione, sarà una funzione della snellezza λ dell'asta

Vediamo la costruzione della curva di interazione per il caso della trave isostatica incernierata presso-inflessa in figura

Supponiamo che la sezione della trave sia una putrella ideale

In tal caso il domino limite di interazione si scrive come

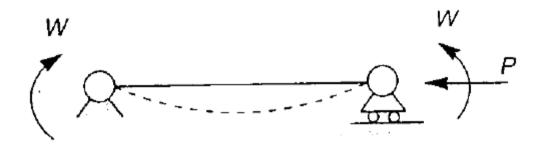
$$\frac{\mathbf{N}}{\mathbf{N}_0} + \frac{\mathbf{M}}{\mathbf{M}_0} = 1$$

Poiché la trave è isostatica, l'esaurimento delle risorse elastiche implica il collasso della trave stessa

Pertanto la curva di interazione si ottiene sostituendo N_{max} ed M_{max} nel dominio limite di interazione

Mentre lo sforzo normale

N=P


si dimostra che (LC III pagg 345 -350) il momento massimo nel caso in esame si può ottenere attraverso

l'approssimazione

$$\mathbf{M} = \mathbf{M}_{\text{max}} = \frac{\mathbf{W}}{1 - \frac{\mathbf{P}}{\mathbf{P}_{\mathbf{E}}}}$$

Dove
$$\beta = \frac{1}{1 - \frac{P}{P_E}}$$
 è detto fattore di amplificazione di M

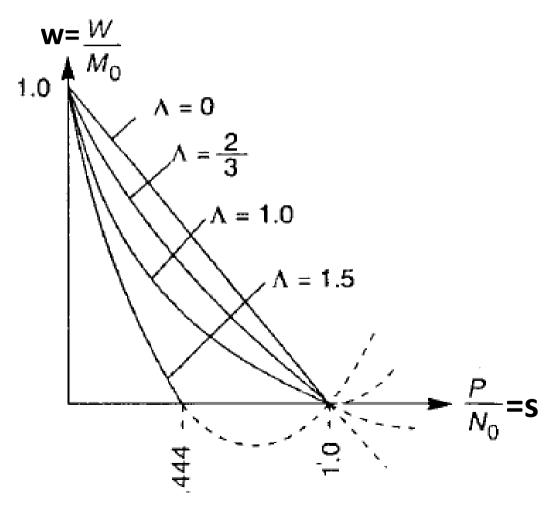
Infatti i diagrammi delle azioni interne tenendo conto della non linearità diventano

$$\mathbf{N}_{\text{max}} = \frac{\mathbf{W}}{1 - \frac{\mathbf{P}}{\mathbf{P_E}}} \qquad \mathbf{W} \qquad \mathbf{M}_{\text{max}} \qquad \mathbf{M}(x)$$

Sostituendo Nmax ed Mmax nel dominio di interazione si ha:

$$\frac{\mathbf{W}}{\mathbf{M}_0} = (1 - \frac{\mathbf{P}}{\mathbf{N}_0})(1 - \frac{\mathbf{P}}{\mathbf{P}_{\mathbf{E}}})$$

Vogliamo adimensionalizzare il dominio di interazione Poniamo


$$\mathbf{s} = \frac{\mathbf{P}}{\mathbf{N}_0}, \quad \mathbf{\Lambda} = \frac{\lambda}{\lambda_0}, \quad \mathbf{w} = \frac{\mathbf{W}}{\mathbf{M}_0}, \quad \boldsymbol{\mu} = \frac{\mathbf{P}}{\mathbf{P}_{\mathbf{E}}}$$

Otteniamo

$$\mathbf{w} = (1 - \mathbf{s})(1 - \mu) = (1 - \mathbf{s})(1 - \mathbf{s}\Lambda^2)$$

Essendo
$$\mu = \frac{\mathbf{P}}{\mathbf{P_E}} = \frac{\mathbf{P}}{\mathbf{N_0}} \frac{\mathbf{N_0}}{\mathbf{P_E}} = \mathbf{s} \frac{\lambda^2}{\lambda_0^2} = \mathbf{s} \Lambda^2$$

Le equazioni $\mathbf{w}=(1-\mathbf{s})(1-\mu)=(1-\mathbf{s})(1-\mathbf{s}\Lambda^2)$ definiscono delle parabole nel piano (s,w)

Oss: per w=0 dovremmo trovare s=sc previsto dalla curva di stabilità dell'asta reale ed invece si trova s=1 cioè P=N₀

Questo non è accettabile

Le parabole così ottenute non sono soddisfacenti

Per tenere conto della presenza di imperfezioni si è proposto

1) Di sostituire No con Pc dell'asta reale nelle formule appena viste

$$\frac{\mathbf{W}}{\mathbf{M}_0} = (1 - \frac{\mathbf{P}}{\mathbf{P}_c})(1 - \frac{\mathbf{P}}{\mathbf{P}_E}), \quad \mathbf{w} = (1 - \frac{\mathbf{s}}{\mathbf{s}_c})(1 - \mathbf{s}\Lambda^2)$$

2) Di considerare un'imperfezione geometrica sinusoidale

$$\overline{\mathbf{v}}(\mathbf{x}) = \mathbf{U}_{\varsigma} \sin \frac{\pi \mathbf{x}}{\ell} \qquad \qquad \mathbf{U} = \mathbf{v}(\frac{\ell}{2}) = \mathbf{U}_{\varsigma} \frac{1}{1 - \frac{\mathbf{P}}{\mathbf{P}_{\mathbf{E}}}}$$

2) Se si considera un'imperfezione geometrica sinusoidale il momento massimo risulta

$$\mathbf{M}_{\text{max}} = \frac{\mathbf{W}}{1 - \frac{\mathbf{P}}{\mathbf{P}_{\mathbf{E}}}} + \mathbf{P}\mathbf{U} = \frac{\mathbf{W} + \mathbf{P}\mathbf{U}_{\varsigma}}{1 - \frac{\mathbf{P}}{\mathbf{P}_{\mathbf{E}}}}$$

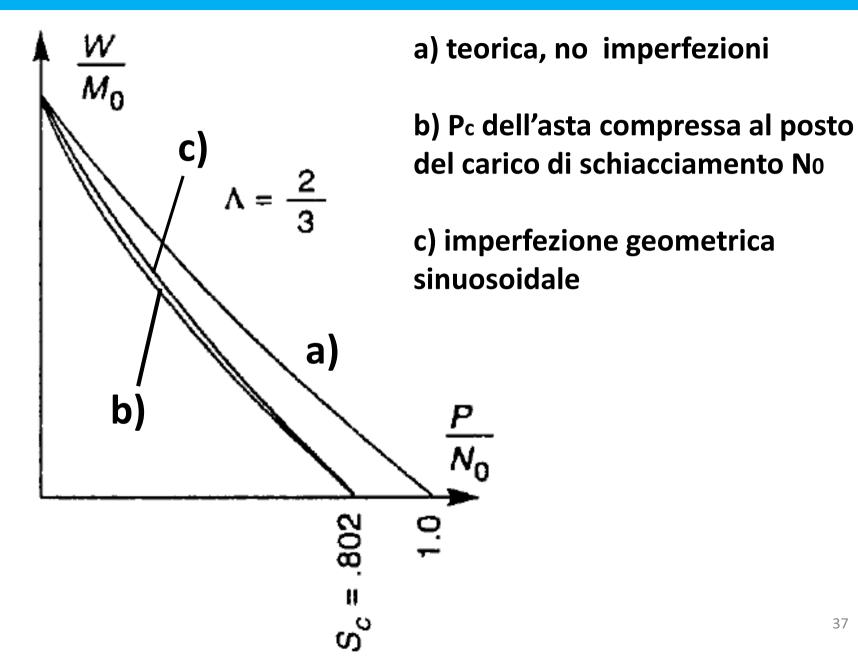
Sostituendo si ottiene una curva di interazione del tipo

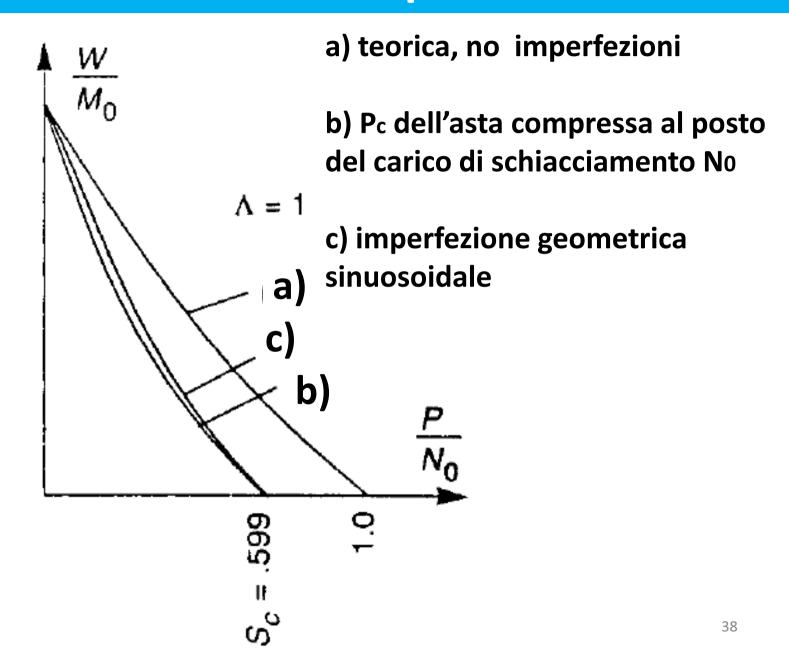
$$\mathbf{w} = (1 - \frac{\mathbf{s}}{\mathbf{s_c}})(1 - \mathbf{s}\Lambda^2) - \frac{\mathbf{s}}{\mathbf{s_c}}(1 - \mathbf{s_c})(1 - \mathbf{s_c}\Lambda^2)$$

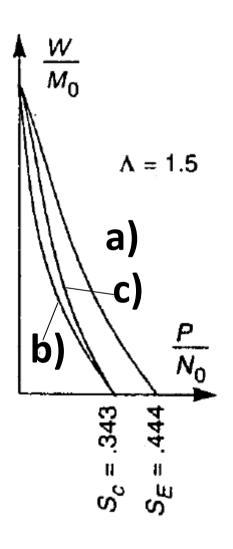
Vogliamo confrontare tra loro

a) la curva teorica

$$\mathbf{w} = (1 - \mathbf{s})(1 - \mu) = (1 - \mathbf{s})(1 - \mathbf{s}\Lambda^2)$$


Che non tiene conto delle imperfezioni


b) la curva ottenuta considerando Pc dell'asta compressa al posto del carico di schiacciamento No


$$\mathbf{w} = (1 - \frac{\mathbf{s}}{\mathbf{s_c}})(1 - \mathbf{s}\Lambda^2)$$

c) La curva ottenuta considerando una imperfezione geometrica sinuosoidale

$$\mathbf{w} = (1 - \frac{\mathbf{s}}{\mathbf{s_c}})(1 - \mathbf{s}\Lambda^2) - \frac{\mathbf{s}}{\mathbf{s_c}}(1 - \mathbf{s_c})(1 - \mathbf{s_c}\Lambda^2)$$

Il divario tra la curva b) la curva c) aumenta all'aumentare della snellezza adimensionale