VALIDAZIONE DEL SOFTWARE "RISK-NET"

RECONnet

Rete Nazionale sulla gestione e la Bonifica dei Siti Contaminati

VALIDAZIONE DEL SOFTWARE "RISK-NET"

Marzo 2012 (Rev. 0)

Gruppo di lavoro RECONnet:

Simona Berardi, Istituto Nazionale Assicurazione contro gli Infortuni sul Lavoro (INAIL) Igor Villani, Provincia di Ferrara

Andrea Sconocchia, Agenzia Regionale di Protezione Ambientale (ARPA) Umbria Antonio Traversa, Agenzia Regionale di Protezione Ambientale (ARPA) Lazio Andrea Forni, SGM Ingegneria Srl

Iason Verginelli, Università degli studi di Roma "Tor Vergata"

Coordinamento del GdL:

Simona Berardi, Istituto Nazionale Assicurazione contro gli Infortuni sul Lavoro (INAIL)

RECONnet, Rete Nazionale sulla gestione e la Bonifica dei Siti Contaminati Viale del Politecnico, 1 00133 Roma www.reconnet.net

INDICE

1	INI	RODUZIONE 1
2	ME	TODOLOGIA DI VALIDAZIONE2
3	RIS	SULTATI DELLA VALIDAZIONE4
	3.1	Verifica delle equazioni governanti4
	3.2	Individuazione degli errori di implementazione4
	3.3	Verifica della funzionalità del sistema
	3.3	.1 Controllo con altre soluzioni
	3.3	.2 Controllo dell'usabilità17
	3.3	.3 Controllo dell'efficienza19
	3.3	.4 Controllo dell'affidabilità19
4	BIB	SLIOGRAFIA21
5	API	PENDICE 122

1 INTRODUZIONE

Il presente documento è stato predisposto da un Gruppo di Lavoro costituito da membri appartenenti alla Rete Nazionale sulla gestione e la Bonifica dei Siti Contaminati (RECONnet) e riporta i criteri e i risultati della validazione del software di analisi di rischio sanitario-ambientale "RISK-NET (Versione Beta 1.1c)".

Come noto, l'applicazione dell'analisi di rischio (AdR), in modalità diretta, per il calcolo del rischio e/o in modalità inversa, per il calcolo di obiettivi di bonifica sito-specifici, è prevista da numerosi strumenti normativi vigenti (D.Lgs. 152/06 e s.m.i., D.M. 7/11/2008 e s.m.i., Circolare MATTM 30/06/2009). Il documento di riferimento, a livello nazionale, per la sua applicazione è il manuale "Criteri metodologici per l'applicazione dell'analisi di rischio ai siti contaminati" [APAT, 2008].

Il software "RISK-NET" rappresenta il primo prodotto della rete RECONnet ed è stato predisposto dall'Università degli Studi di Roma "Tor Vergata". Tale software permette di applicare la procedura di analisi di rischio in completo accordo con quanto contenuto nel suddetto documento [APAT, 2008].

2 METODOLOGIA DI VALIDAZIONE

Esistono in letteratura numerose definizioni per i termini validazione, verifica e taratura di un software. Questi termini comunque sono spesso utilizzati in modo intercambiabile con riferimento allo stesso concetto: il complesso di procedure necessarie per individuare le carenze di correttezza, completezza e affidabilità di un software. La validazione guindi consiste nel controllo di qualità del prodotto rispetto ai requisiti dello stesso, ossia nel controllo che il prodotto finito abbia funzionalità e prestazioni conformi con quelle stabilite all'inizio del processo di sviluppo.

La pianificazione e la realizzazione del processo di validazione sono attività che possono essere realizzate seguendo diversi approcci e metodologie [UNICHIM, 2002] [Cignoni et. Al., 2009] che si differenziano in funzione delle caratteristiche e della complessità del software da validare e delle finalità che si intendono raggiungere.

La procedura di analisi di rischio comprende un insieme di formule analitiche e di modelli matematici che permettono di ricostruire determinati fenomeni reali. In particolare i modelli matematici utilizzati in un livello 2 di analisi, così come le formule, sono di tipo prettamente analitico. Con ciò è possibile affermare che l'analisi di rischio è supportata dall'utilizzo di modelli estremamente semplificati, tale aspetto è comunque compensato dalla conservatività che caratterizza i risultati della procedura e quindi gli output delle simulazioni.

La validazione del software "Risk-net" è stata quindi condotta applicando alcune specifiche metodologie, selezionate in funzione della semplicità che caratterizza la procedura di analisi di rischio, che sono riportate di seguito:

- Verifica del modello: La verifica del modello ha come obiettivo quello di stabilire l'adequatezza del modello a rappresentare il sistema reale che deve essere simulato. Il modello implementato nel software "Risk-net" ricalca il modello concettuale del sito descritto nel documento [APAT, 2008] e per tale ragione non necessita di verifica.
- Verifica delle equazioni governanti: La correttezza della formattazione in termini matematici dello schema fisico corrisponde alla necessità che le equazioni governanti prescelte descrivano i processi in modo adeguato. Nell'analisi di rischio sanitario-ambientale, le equazioni governanti sono molteplici e riguardano essenzialmente la stima dei fattori di trasporto, della portata effettiva di esposizione, del rischio e/o dell'indice di pericolo. Come per il modello, anche le equazioni di governo contenute nel software in oggetto ricalcano quelle contenute nel documento [APAT, 2008] e per tale ragione non si pone dubbio alla loro validità. Unica eccezione riguarda l'introduzione di alcune opzioni di calcolo esplicitate nel paragrafo 3.1.
- Individuazione degli errori di implementazione: A tal fine è stato effettuato un controllo interno e statico [Cignoni et. Al., 2009], ossia un controllo proveniente dallo stesso soggetto impegnato nel processo di sviluppo del software e basato sulla analisi del codice di calcolo. I risultati di tale controllo sono riportati nel paragrafo 3.2.

Verifica della funzionalità del sistema: A tal fine è stato effettuato un controllo esterno, ossia un controllo condotto da personale diverso rispetto al soggetto che si è occupato della realizzazione del software. Per la verifica del corretto funzionamento sono state applicate diverse tecniche di controllo che hanno avuto come obiettivo sia la verifica della correttezza funzionale del sistema, che la valutazione di altri fattori di qualità come l'usabilità, l'efficienza, e l'affidabilità del sistema. Le tecniche utilizzate (Controllo con altre soluzioni, Controllo dell'usabilità. Controllo dell'efficienza e Controllo dell'affidabilità) ed i risultati ottenuti sono riportati nel dettaglio nel paragrafo 3.3.

Nella fase di "Controllo con altre soluzioni" i risultati sono stati posti a confronto a mezzo sia di grafici che di tabelle. In quest'ultimo caso la differenza dei risultati è riportata in termini di rapporto tra quelli di "Risk-net" e quelli dell'" altra soluzione". Quindi risulta che se:

- "Risultato = 1": i due valori sono coincidenti;
- "Risultato < 1": il valore di "Risk-net" è inferiore a quello dell'"altra soluzione";
- "Risultato > 1": il valore di "Risk-net" è superiore a quello dell'altra soluzione";
- "Risultato = 2" (oppure "Risultato = 0,5"): il valore di "Risk-net" è il doppio (oppure la metà) rispetto a quello dell'"altra soluzione";
- "Risultato = 10" (oppure "Risultato = 0,1"): il valore di "Risk-net" è di un ordine di grandezza superiore (oppure inferiore) rispetto a quello dell'"altra soluzione".

E' stato inoltre fissato il seguente limite di accettabilità per la differenza tra i due risultati:

 $1,10 \le$ "Risultato" $\le 0,90$

3.1 Verifica delle equazioni governanti

Come anticipato nel precedente capitolo, in linea generale le assunzioni e le equazioni di governo contenute in "Risk-net" ricalcano quelle contenute nel documento [APAT, 2008]. E' comunque necessario evidenziare la presenza nel software di alcuni elementi aggiuntivi, comunque selezionabili a discrezione dell'utente, che riguardano:

- L'introduzione di formule analitiche in grado di tener conto dell'esaurimento della sorgente di contaminazione anche in caso di lisciviazione, mentre il doc [APAT, 2008] ne tiene conto solo nel caso di volatilizzazione.
- Nel trasporto in falda, l'implementazione dell'equazione di Domenico anche in condizione non stazionaria, ossia in funzione del tempo, oltreché stazionaria, dando la possibilità di optare tra le tre possibilità: DAF1, DAF2 e DAF3.
- La possibilità di limitare la Concentrazione Rappresentativa alla Sorgente (CRS) alla concentrazione di saturazione (Csat) per volatilizzazione e lisciviazione nei casi in cui risulti CRS > Csat.
- L'implementazione delle equazioni previste nel documento ASTM-E2081 (2000) che permettono di effettuare delle verifiche sulla mobilità del prodotto libero in zona satura ed insatura.
- Per volatilizzazione in ambienti confinati, l'implementazione del modello di Johnson-Ettinger che tiene conto anche del contributo convettivo, oltre che diffusivo.
- La possibilità di inserire concentrazioni in sorgente come soil-gas, nel caso di volatilizzazione outdoor ed indoor.

3.2 Individuazione degli errori di implementazione

Il controllo riguardante l'individuazione degli errori di implementazione è stato condotto a mezzo di un'esecuzione manuale delle equazioni implementate nel software, i cui risultati sono stati posti a confronto con gli output intermedi e finali del software stesso. Tale attività ha permesso di scoprire difetti originati da errori algoritmici.

Un ulteriore controllo è stato condotto a mezzo di un confronto tra i valori di Concentrazioni Soglia di Rischio (CSR) esplicitati dallo standard ASTM-RBCA E2081-00 per un uso del suolo industriale con quelli ottenuti come output da "Risk-net" imponendo gli stessi parametri di input per le tre sorgenti di contaminazione: suolo superficiale, suolo profondo e falda.

In tabella 1 e nelle figure 1.a - 1.g sono riportati i risultati forniti da "Risk-net" e dallo standard ASTM-RBCA E2081-00. Nella tabella la differenza dei risultati è riportata in termini di rapporto tra gli stessi, come descritto nel Capitolo 2.

Tab. 1 - Confronto tra "Risk-net" e Standard ASTM-RBCA E2081-00

		Rappo	rto CSR "Ris	k-net" / "AST	M E2081-00"		
Contaminanti	Suolo Superficiale	Suolo Profondo			Falda		
	Inalazione vapori e polveri outdoor	Lisciviazione Inalazione Inalazione vapori outdoor Vapori Indoor		Ingestione di acqua	Inalazione vapori outdoor	Inalazione Vapori Indoor	
Benzene	1.00E+00	1.00E+00	1.00E+00	9.88E-01	1.00E+00	9.98E-01	9.97E-01
Benzo(a)pirene	1.00E+00	9.95E-01	1,00E+00 (*)	9.81E-01	1.00E+00	1,00E+00 (*)	1,00E+00 (*)
Cadmio	9.72E-01	9.90E-01	NV	NV	1.00E+00	NV	NV
Clorofenolo, 2-	9.95E-01	9.98E-01	9.70E-01	9.62E-01	1.00E+00	9.84E-01	9.73E-01
DDT	1.00E+00	1.00E+00	1,00E+00 (*)	9.87E-01	1.00E+00	1,00E+00 (*)	1,00E+00 (*)

NV = Non volatile

(*) CSR > Concentrazione di saturazione (Csat)

Da un'analisi delle differenze tra i due risultati, emerge che le stesse risultano essere trascurabili in quanto comprese tra 1,10 e 0,90.

Fig. 1.a - Confronto output "Risk-net" e "ASTM-E2081-00" (Sorgente: SS; Esposizione: Inalazione di vapori e polveri outdoor)



Fig. 1.b - Confronto output "Risk-net" e "ASTM-E2081-00" (Sorgente: SP; Esposizione: Ingestione di acqua)

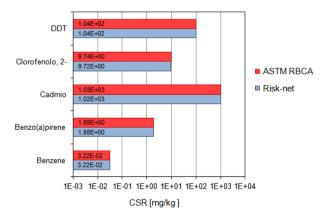


Fig. 1.c - Confronto output "Risk-net" e "ASTM-E2081-00"

(Sorgente: SP; Esposizione: Inalazione di vapori outdoor)

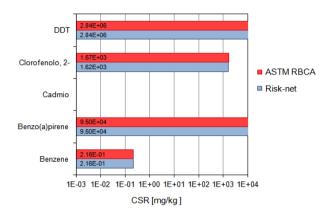


Fig. 1.d - Confronto output "Risk-net" e "ASTM-E2081-00"

(Sorgente: SP; Esposizione: Inalazione di vapori indoor)

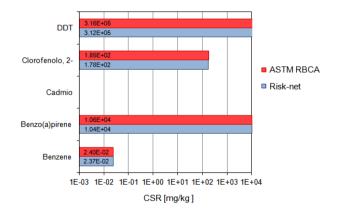


Fig. 1.e - Confronto output "Risk-net" e "ASTM-E2081-00" (Sorgente: GW; Esposizione: Ingestione di acqua)

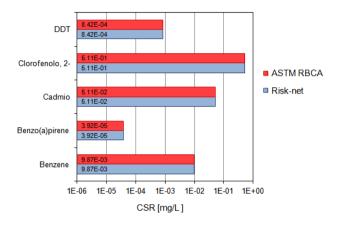


Fig. 1.f - Confronto output "Risk-net" e "ASTM-E2081-00" (Sorgente: GW; Esposizione: Inalazione di vapori outdoor)

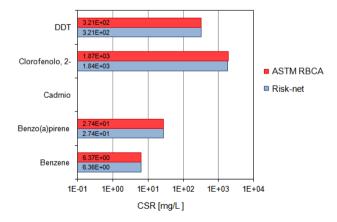
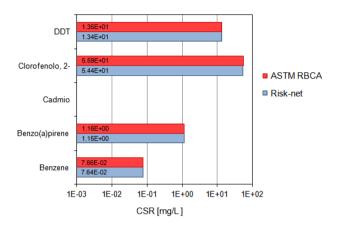



Fig. 1.g - Confronto output "Risk-net" e "ASTM-E2081-00"

(Sorgente: GW; Esposizione: Inalazione di vapori indoor)

3.3.1 Controllo con altre soluzioni

Tale controllo, finalizzato essenzialmente alla verifica della correttezza funzionale del sistema, si è basato sul confronto degli output di "Risk-net" con quelli di software già esistenti e comunemente utilizzati a livello nazionale. In particolare son stati selezionati:

- RBCA (Risk Based Corrective Action) Tool Kit for Chemical Realase ver. 2.5, software commercializzato dalla Groundwater Service, Inc. di Houston (USA). Il software sviluppa la procedura di A.R. di livello 2, secondo le linee guida riportate negli standard ASTM-RBCA (E1739-95 e PS104-98).
- GIUDITTA (Gestione Informatizzata Di Tollerabilità Ambientale) ver. 3.1, free software prodotto dalla Provincia di Milano e dalla URS S.p.A., scaricabile gratuitamente da WEB. Anche questo software permette di effettuare una analisi di rischio in corrispondenza ad un livello 2 di analisi.

Il confronto ha visto l'applicazione dei suddetti modelli su 9 distinti casi studio, estrapolati da casi reali.

Al fine di rendere possibile la riproduzione delle simulazioni si riportano in Appendice 1 le tabelle relative a tutti i parametri di input utilizzati; in particolare in:

- Tabella 2 sono descritti gli scenari di calcolo dei 9 casi studio
- Tabella 3 sono riportati i valori delle Concentrazioni Rappresentative alla Sorgente (CRS) per i casi studio 7, 8 e 9
- Tabella 4.a e Tabella 4.b sono riportati i valori dei parametri sito-specifici per i casi studio da 1 a 6. Per i casi studio da 7 a 9, i valori dei parametri sito specifici sono assunti pari a quelli proposti come default dal documento [APAT, 2008].
- Tabella 5 sono riportati i valori dei fattori di esposizione per casi studio da 1 a 6. Per i casi studio da 7 a 9, i valori dei fattori di esposizione sono assunti pari a quelli proposti come default dal documento [APAT, 2008], ad eccezione del "Tasso di inalazione outdoor e indoor" posto pari a 20 m³/d.

Riguardo le proprietà chimico-fisiche e tossicologiche degli inquinanti indicatori sono stati utilizzati i valori contenuti nella Banca dati ISS-ISPESL (Maggio 2009).

Inoltre, in allegato al presente documento sono riportati i file delle simulazioni, relativi ai tre software, elaborati per il controllo con altre soluzioni.

Come è possibile osservare, per permettere il confronto sono stati resi omogenei tutti i parametri di input. In tale ambito è inoltre necessario tener conto del fatto che i due software sopra elencati, RBCA Tool KiT e Giuditta, non rispecchiano esattamente quanto riportato nel documento "Criteri metodologici..." [APAT, 2008], non solo in termini di parametri di input proposti quali default, ma anche in relazione alle equazioni analitiche e alle formule adottate per i calcoli. Quindi per rendere possibile il confronto sono state

attivate per i vari software specifiche opzioni in modo che per il confronto fossero utilizzati gli stessi criteri di calcolo. In particolare si riportano nella tabella 6 e nella tabella 7 rispettivamente le opzioni di calcolo attivate per il confronto tra Risk-net/RBCA Tool.Kit e Risk-net/Giuditta.

Tab. 6 - Opzioni di calcolo utilizzati per il confronto tra Risk-net e RBCA Tool Kit

Via di esposizione	Sorgente di contaminazione	Risk-net	RBCA toolkit
Volatilizzazione Outdoor	Suolo superficiale (SS) e Suolo profondo (SP)	 Attivata opzione "Esaurimento in sorgente" Disattivata opzione "Limita CRS a Csat" 	 Attivata opzione "Esaurimento in sorgente" Attivata opzione modello: "Combination surface soil/Johnson & Ettinger"
	Falda (GW)	Disattivata opzione "Limita CRS a Csat"	(Impostazioni di default)
Volatilizzazione	Suolo superficiale (SS) e Suolo profondo (SP)	 Attivata opzione "Esaurimento in sorgente" Disattivata opzione "Limita CRS a Csat" 	Attivato esaurimento in sorgente Attivata opzione modello: "Johnson & Ettinger model for soil and groundwater volatilization"
Indoor	Falda (GW)	Disattivata opzione "Limita CRS a Csat"	 Attivata opzione modello: "Johnson & Ettinger model for soil and groundwater volatilization"
Lisciviazione in falda	Suolo superficiale (SS) e Suolo profondo (SP)	 Attivato calcolo "SAM" Disattivata opzione "Limita CRS a Csat" Disattivata opzione "Esaurimento sorgente" 	Attivato calcolo "SAM Utilizzato "ASTM Model"
Trasporto in falda	Falda (GW)	 Dispersione in falda: DAF2 Disattivata opzione "Limita CRS a Csat" 	Attivata opzione modello: "Domenico equation with dispersion only (no biodegradation)"

Tab. 7 – Opzioni di calcolo utilizzate per il confronto tra Risk-net e Giuditta

Via di esposizione	Sorgente di contaminazione	Risk-net	Giuditta
Volatilizzazione Outdoor	Suolo superficiale (SS) e Suolo profondo (SP)	 Attivata opzione "Esaurimento in sorgente" Attivata opzione "Limita CRS a Csat" 	(Impostazioni di default)
	Falda (GW)	Attivata opzione "Limita CRS a Csat"	(Impostazioni di default)
Volatilizzazione Indoor	Suolo superficiale (SS) e Suolo profondo (SP)	 Attivato esaurimento in sorgente Attivata opzione "Limita CRS a Csat" 	(Impostazioni di default)
	Falda (GW)	Attivata opzione "Limita CRS a Csat"	(Impostazioni di default)
Lisciviazione in falda	Suolo superficiale (SS) e Suolo profondo (SP)	 Attivato calcolo "SAM" Attivata opzione "Limita CRS a Csat" Attivata opzione "Esaurimento sorgente" 	 Attivato calcolo "SAM
Trasporto in falda	Falda (GW)	 Dispersione in falda: DAF1 Attivata opzione "Limita CRS a Csat" 	(Impostazioni di default)

Nelle tabelle seguenti sono riportati i risultati ottenuti in questa fase di confronto con altre soluzioni. Anche in questo caso nelle tabelle la differenza dei risultati è riportata in termini di rapporto tra gli stessi, come descritto nel Capitolo 2.

Inoltre per alcuni casi particolarmente significativi è riportato sotto forma di grafico il confronto numerico degli output.

Risultati "Caso studio 1":

Tab. 8 - Caso studio 1: Uso del suolo Industriale, Sorgente di contaminazione Suolo Superficiale

	Rapporto "Risk-net" / "RBCA ToolKit"						
Contaminanti	RISCHIO (Ingestione di Suolo)	INDICE DI PERICOLO (Ingestione di Suolo)	RISCHIO (Contatto Dermico)	INDICE DI PERICOLO (Contatto Dermico)	RISCHIO Risorsa Idrica		
Fenolo		1.00E+00		1.00E+00	1.00E+00		
Piombo		1.00E+00		1.00E+00	1.00E+00		
Tricloroetilene	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00		
Etilbenzene		1.00E+00		1.00E+00	1.00E+00		
Alifatici C9-18		1.00E+00		1.00E+00	1.00E+00		
Crisene	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00		
	Rapporto "Risk-net" / "Giuditta"						
Contaminanti	RISCHIO (Ingestione di Suolo)	INDICE DI PERICOLO (Ingestione di Suolo)	RISCHIO (Contatto Dermico)	INDICE DI PERICOLO (Contatto Dermico)	RISCHIO Risorsa Idrica		
Fenolo		1.00E+00		1.00E+00	6 43F-01		
				1.002.00	0.102 01		
Piombo		1.00E+00		1.00E+00	7.68E-01		
Piombo Tricloroetilene	1.00E+00	1.00E+00 1.00E+00	 1.00E+00		7.68E-01 1.75E+00		
	1.00E+00		1.00E+00	1.00E+00			
Tricloroetilene	1.00E+00 	1.00E+00	1.00E+00	1.00E+00 1.00E+00	1.75E+00		

Si ritiene opportuno sottolineare che nel caso di "Rischio per la risorsa idrica" (Figura 2.a e Figura 2.b) il software "Risk-net" fornisce dei risultati diversi a seconda che il confronto sia effettuato con RBCA Tool Kit o con Giuditta. Ciò è giustificato dal fatto che nel caso di lisciviazione e il trasporto in falda:

- per il confronto con RBCA Tool Kit è necessario in Risk-net disattivare l'opzione "Esaurimento sorgente" e utilizzare il DAF 2 come equazione per la simulazione del trasporto in falda (vedi tabella 6);
- mentre per il confronto con Giuditta è necessario in Risk-net attivare l'opzione "Esaurimento sorgente" e utilizzare il DAF 1 come equazione per la simulazione del trasporto in falda (vedi tabella 7)

Dall'esame delle tabelle e dei grafici è possibile costatare che:

- Riguardo le modalità di esposizione "contatto dermico" e "ingestione di suolo" i risultati dei tre software sono perfettamente coincidenti (Tabella 8).
- Riguardo il rischio per la risorsa idrica sotterranea, risulta che:
 - I risultati di Risk-net e RBCA Tool Kit sono perfettamente coincidenti (Figura 2.a);
 - I risultati di Risk-net e Giuditta invece evidenziano delle differenze che, in termini di rapporto tra fattori, oscillano tra 0,6 e 2,5 (Figura 2.b); la ragione di tali differenze non sono risultate facilmente identificabili, principalmente a causa dell'impossibilità di visionare gli output intermedi di Giuditta.

Fig. 2.a - Caso studio 1: Confronto output "Risk-net" e "RBCA Took Kit" (Sorgente: SS; Rischio per la risorsa idrica)

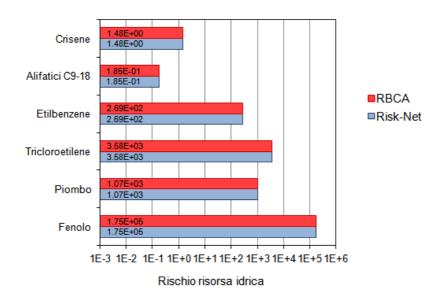
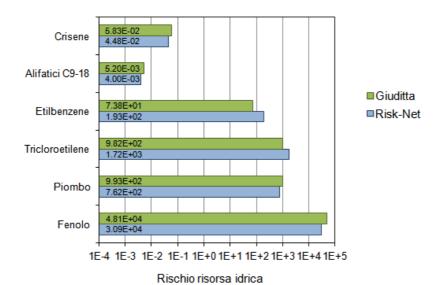



Fig. 2.b - Caso studio 1: Confronto output "Risk-net" e "Giuditta" (Sorgente: SS; Rischio per la risorsa idrica)

Risultati "Caso studio 2" e "Caso studio 3":

Tab. 9 - Caso studio 2: Uso del suolo Residenziale, Sorgente di contaminazione Suolo Profondo

	Rapporto "Risk-net	net" / "RBCA ToolKit" Rapporto "Risk-net" / "		net" / "Giuditta"		
Contaminanti	Esposizione: INALAZIONE OUTDOOR					
	RISCHIO	INDICE DI PERICOLO	RISCHIO	INDICE DI PERICOLO		
Cloruro di vinile	1.00E+00	1.00E+00	8.00E-01	1.00E+00		
Benzene	1.00E+00	1.00E+00	8.00E-01	1.00E+00		
Mercurio		1.00E+00		9.96E-01		
2-Clorofenolo		1.00E+00		1.00E+00		
PCB	1.00E+00		7.98E-01			

Tab. 10 - Caso studio 3: Uso del suolo Residenziale, Sorgente di contaminazione Falda

	Rapporto "Risk-net" / "RBCA ToolKit"		Rapporto "Risk-net" / "Giuditta"			
Contaminanti	Esposizione: INALAZIONE INDOOR					
	RISCHIO	INDICE DI PERICOLO	RISCHIO	INDICE DI PERICOLO		
Cloruro di vinile	9.94E-01	9.94E-01	8.00E-01	1.00E+00		
Benzene	1.00E+00	1.00E+00	7.97E-01	9.96E-01		
Mercurio		1.00E+00		9.98E-01		
2-Clorofenolo		1.00E+00		9.50E-01		
PCB	1.00E+00		7.69E-01			

Dall'esame delle tabelle e dei grafici è possibile costatare che riguardo le modalità di esposizione inalazione outdoor da suolo profondo (Caso 2) e inalazione indoor da falda (Caso 3) i risultati con RBCA Tool Kit risultano coincidenti, mentre le differenze con Giuditta sono comprese tra 0,8 e 1.

Fig. 3.a - Caso studio 2: Confronto RISCHIO

Uso del suolo Residenziale Sorgente di contaminazione: Suolo Profondo, Inalazione Outdoor

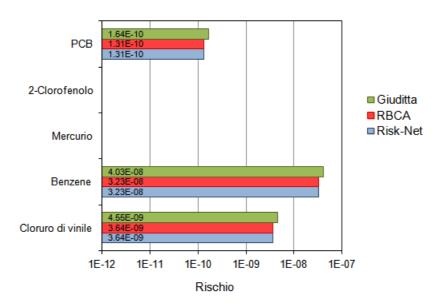


Fig. 3.b - Caso studio 2: Confronto INDICE DI PERICOLO
Uso del suolo Residenziale

Sorgente di contaminazione: Suolo Profondo, Inalazione Outdoor

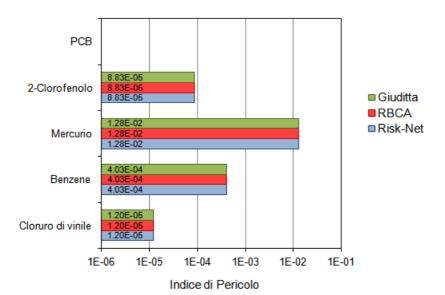


Fig. 4.a - Caso studio 3: Confronto RISCHIO

Uso del suolo Residenziale Sorgente di contaminazione: Falda, Inalazione Indoor

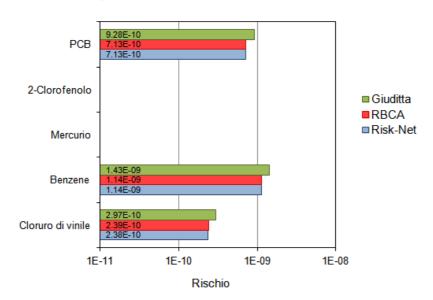
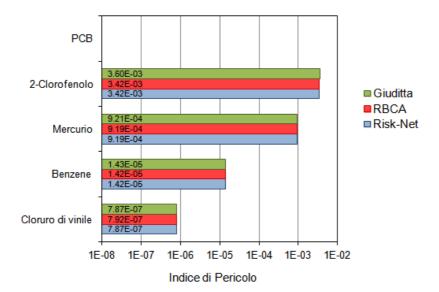



Fig. 4.b - Caso studio 3: Confronto INDICE DI PERICOLO Uso del suolo Residenziale

Sorgente di contaminazione Falda, Inalazione Indoor

Risultati da "Caso studio 4" a "Caso studio 9":

Per tali casi studio il confronto è stato condotto rispetto al software RBCA Tool Kit.

Tab. 11 - Risultati "Caso studio 4", "Caso studio 5" e "Caso studio 6"

	Rapporto "Risk-net" / "RBCA ToolKit"					
Contaminanti	Caso Studio 4			Caso Studio 5	Caso Studio 6	
	INDICE DI PERICOLO (Ingestione di Suolo)	INDICE DI PERICOLO (Contatto Dermico)	RISCHIO Risorsa Idrica	INDICE DI PERICOLO (Inalazione Outdoor)	INDICE DI PERICOLO (Inalazione Outdoor)	
Alifatici C5-8	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.01E+00	
Alifatici C9-18	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.01E+00	
Alifatici C19-36	1.00E+00	1.00E+00				
Aromatici C9-10	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	
Aromatici C11-22	1.00E+00	1.00E+00	1.00E+00			

Caso studio 4: Uso Industriale, Sorgente di contaminazione Suolo Superficiale

Caso studio 5: Uso Residenziale, Sorgente di contaminazione Suolo Profondo

Caso studio 6: Uso Residenziale, Sorgente di contaminazione Falda

Tab. 12 – Caso studio 7: Uso del suolo Industriale, Sorgente di contaminazione Falda

	Rapporto "Risk-net" / "RBCA ToolKit"					
Contaminanti	RISCHIO (Inalazione outdoor)	INDICE DI PERICOLO (Inalazione outdoor)	RISCHIO (Inalazione indoor)	INDICE DI PERICOLO (Inalazione indoor)		
Benzene	1.00E+00	1.00E+00	1.00E+00	1.00E+00		
Toluene		1.00E+00		1.00E+00		
Alifatici C9-18		1.00E+00		1.00E+00		
MTBE		1.00E+00		1.00E+00		

Tab. 13 - Caso studio 8: Uso del suolo Industriale, Sorgente di contaminazione Suolo Superficiale

		Rapporto "Risk-ne	t" / "RBCA ToolKit"	
Contaminanti	INDICE DI PERICOLO (Ingestione di Suolo)	INDICE DI PERICOLO (Contatto Dermico)	INDICE DI PERICOLO (Inalazione outdoor)	INDICE DI PERICOLO (Inalazione indoor)
Mercurio	1.00E+00	1.00E+00	1.00E+00	1.00E+00

Tab. 14 - Caso studio 9: Uso del suolo Industriale, Sorgente di contaminazione Falda

	Rapporto "Risk-net" / "RBCA ToolKit"			
Contaminanti	RISCHIO (Inalazione indoor)	INDICE DI PERICOLO (Inalazione indoor)		
Benzene	1.00E+00	1.00E+00		
Toluene		1.00E+00		
Benzo(a)antracene	1.00E+00	1.00E+00		
Cloruro di vinile	1.00E+00	1.00E+00		
Triclorometano	1.00E+00	1.00E+00		
Dicloroetano, 1,2-	1.00E+00	1.00E+00		
Dicloroetilene - 1,1	1.00E+00	1.00E+00		
Tricloroetilene	1.00E+00	1.00E+00		
Dicloroetano, 1,1-		1.00E+00		
Dicloropropano, 1,2-	1.00E+00	1.00E+00		
Tricloroetano, 1,1,2-	1.00E+00	1.00E+00		

3.3.2 Controllo dell'usabilità

Il controllo dell'usabilità è una valutazione sulla facilità d'uso del prodotto da parte dell'utente finale. In generale, il controllo deve prendere in esame oltre al prodotto anche tutta la documentazione che lo accompagna e deve tener conto del livello di competenza dell'utenza e delle caratteristiche operative dell'ambiente d'uso del prodotto.

In tabella 15 si riportano gli aspetti presi in considerazione per eseguire tale controllo e i corrispondenti esiti in termini di:

- Tipologia di documentazione di supporto;
- Qualità dell'interfaccia utente.

Tab. 15 - Controllo dell'usabilità

Analisi	Esi	to
Tipologia di documentazione di sup	porto	
Presenza del "Manuale d'uso"	■ SI	□ NO
Presenza della funzione di supporto "Help"	■ SI	□ NO
Qualità dell'interfaccia utente		
Qualità e chiarezza nel processo di inserimento dati	Il software risult interpretazione. Il inserimento dei dati del modello concudefinizione dei conta dei parametri del sit appare lineare.	l processo di per la ricostruzione ettuale e per la iminanti indicatori e
Possibilità di inserimento automatico dei parametri stimabili con metodi indiretti, in funzione della granulometria del suolo (Spessore della frangia capillare; Contenuto volumetrico d'acqua e di aria nel suolo insauro, saturo e nella frangia capillare; Dispersività longitudinale, trasversale e verticale in suolo saturo)	■ SI	□ NO
Possibilità di selezione automatica del valore di K_{d} in funzione del pH, secondo documento [APAT, 2008]	■ SI	□ NO
Possibilità di calcolo automatico dello spessore della zona di miscelazione in falda ($\delta_{\text{GW}})$	■ SI	□ NO
Possibilità di eseguire analisi statistiche dei dati di concentrazione o sito specifici, per identificazione del valore rappresentativo.	□SI	■ NO
Possibilità di passaggio da concentrazioni sul secco a concentrazioni sul tal quale.	■ SI	□ NO
Numero e tipologia di scenari di esposizione attivabili.	Il numero di scenari att - Suolo Superficiale: - Suolo Profondo: 3 o - Falda: 3 on-site + 3 La tipologia di scenari quanto contenuto nel di	7 on-site + 3 off-site; n-site+ 2 off-site; off-site. risulta conforme col
Destinazione d'uso del suolo	Industriale/CResidenzialeRicreativo	

Analisi	Esi	to		
Recettori	 Adulto Bambino Adjusted (Adulto + Bambino) Risorsa Idrica (Rispetto CSC falda) 			
Possibilità di modificare i parametri chimico/fisici e tossicologici degli inquinanti rispetto a quelli della banca dati di default.	■ SI	□ NO		
Possibilità di salvataggio delle modifiche della banca dati dei parametri chimico/fisici e tossicologici su file.	■ SI	□ NO		
Possibilità di sostituire la banca dati di default dei parametri chimico/fisici e tossicologici.	■ SI	□ NO		
Qualità e trasparenza delle uscite	Il software in oggivisualizzazione di tu verificare la corre analisi. In particola possibile ricavare: I fattori di trasporto Le concentrazioni a esposizione La portata di esposi Il rischio e l'indice di individuale (anche pi di esposizione) e cu Gli obiettivi di bonifi	itte le uscite utili a etta procedura di are da Risknet è i punti di zione i pericolo, per singola modalità amulativo		
	■ SI	□ NO		
Possibilità di esportazione degli output	E' possibile stampare input inseriti ed i diver software.			
	■ SI	□ NO		
Possibilità di inserire in input, come concentrazione rappresentativa alla sorgente, la concentrazione nel soil-gas.	Nel caso in cui sia attiva la volatilizzaz outdoor o indoor è possibile inserire concentrazioni espresse sul soil-gas.			
	■ SI	□ NO		
Possibilità di calcolo delle CSR oltre la concentrazione di saturazione (C_{sat})	Per i contatti non dire CSR (teorica) risul saturazione, la conc (alla saturazione) che lisciviare garantisce pertanto non esiste rischio (CSR). In que calcolato dal softwa saturazione (Csat) quanto la CSR ris saturazione viene da visualizzare la CSR (te	lti maggiore della entrazione massima e può volatilizzare o rischi accettabili e un valore soglia di uesti casi Il rischio re si riferisce alla Al fine di valutare sulti superiore alla ta la possibilità di		
Possibilità di cambiare le unità di misura dei parametri di input	■ SI	□ NO		
Presenza di un sistema che evidenzi le variazioni effettuate dall'utente sui valori di default dei parametri di input.	■ SI Nel riepilogo degli inpu i parametri del sito o valore di default def APAT (2008).	che risultano pari al		
Possibilità di funzionare in contemporanea con altri programmi di calcolo (software).	■ SI	□ NO		
Possibilità di utilizzare il modello di Domenico, per il trasporto in falda, anche in condizioni non stazionarie.	■ SI	□ NO		

Analisi Esito			
Riguardo il modello di Domenico in condizioni non stazionarie, possibilità di rappresentare graficamente l'andamento spaziale e temporale della concentrazione.	■ SI	□ NO	
Per contaminanti liquidi, possibilità di stimare la capacità residua del suolo (saturo ed insaturo), nei casi in cui risulta CSR > Csat (così come definito nell'ASTM-E2081).	■ SI	□ NO	
Per contaminanti solidi (es. IPA o Fitofarmaci), possibilità di stimare la capacità residua del suolo (saturo ed insaturo), nei casi in cui risulta CSR > Csat o CSR > Solubilità (trasporto in fase colloidale).	■ SI	□ NO	

3.3.3 Controllo dell'efficienza

Il controllo dell'efficienza è mirato a valutare l'efficienza del sistema rispetto: ai tempi di elaborazione e di risposta; alla richiesta di risorse e di memoria, in particolare durante il funzionamento; all'ambiente operativo richiesto per l'istallazione del software; alla gestione degli errori.

In tabella 16 si riportano le valutazioni riguardanti gli aspetti presi in considerazione.

Tab. 16 - Controllo dell'efficienza

Analisi	Esito
Tempi di elaborazione (*)	< 5 sec (con 100 contaminanti inseriti)
Tempi di risposta (*)	< 5 sec (con 100 contaminanti inseriti)
Richiesta di risorse (memoria) per istallazione	Il software è sviluppato per lavorare in ambiente Excel con le equazioni e le automazioni sviluppate in Visual Basic (VBA). Il software non richiede quindi installazione ma è sufficiente attivare il contenuto ActiveX del file.
Richiesta di risorse (memoria) per funzionamento	5-10 MB di spazio su Hard disk
Ambiente operativo richiesto per l'istallazione	Windows XP / Vista / Seven
Gestione degli errori	E' previsto un controllo sugli errori sia di tipo numerico (ad es. se vengono inseriti valori in un formato non corretto) che concettuale (ad es. se spessore suolo insaturo > del piano di falda).

^(*) Testato su Windows 7 (Intel Core i3-330M (2.13 GHz); RAM: 4GB)

3.3.4 Controllo dell'affidabilità

Tale controllo viene condotto effettuando test di carico, ossia sottoponendo il sistema ad un carico di lavoro massimo. Lo scopo quello di valutare il comportamento del sistema in condizioni limite, e quindi di individuare malfunzionamenti che non si presentano in condizioni normali (quali difetti nella gestione della memoria, buffer, overflows, etc.) e di garantire un'efficienza base anche in condizioni di massimo carico.

In tale ambito è stato inoltre eseguito un "Test di sicurezza", cercando di accedere a dati o a funzionalità che dovrebbero essere riservate, per controllare l'efficacia dei meccanismi di sicurezza del sistema.

In tabella 17 si riportano gli esiti di tali valutazioni.

Tab. 17 - Controllo dell'affidabilità

Test di carico	Note	
Inserimento come inquinanti indicatori di tutti i contaminati presenti nel data-base	Comportamento regolare conforme al norm funzionamento	ıale
Inserimento come inquinanti indicatori di tutti i contaminati presenti nel data-base, più dei contaminati aggiuntivi	Comportamento regolare conforme al norm funzionamento	nale
Attivazione di tutte le modalità di esposizione	Comportamento regolare conforme al norm funzionamento	nale
Attivazione di tutti i possibili bersagli di esposizione	Comportamento regolare conforme al norm funzionamento	nale
Attivazione contemporanea di tute le condizioni sopra riportate	Comportamento regolare conforme al norm funzionamento	nale
Test di sicurezza	Note	
Tentativo di accesso a dati o a funzionalità che dovrebbero essere riservate	Sistematico impedimento a procedere	

4 BIBLIOGRAFIA

- 1. APAT-ISS-ISPESL-ARPA/APPA (2008) "Criteri metodologici per l'applicazione dell'analisi assoluta di rischio ai siti contaminati", rev. 2.
- 2. ASTM (2000) 'Standard Guide for Risk-Based Corrective Action', Designation: E-2081-00.
- 3. D.Lgs 04/08 (2008) 'Ulteriori disposizioni correttive ed integrative del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale', Pubblicato nella Gazzetta Ufficiale n. 24 del 29 Gennaio 2008, Supplemento Ordinario n.24.
- 4. D.Lgs 152/06 (2006) 'Norme in materia ambientale', Pubblicato nella Gazzetta Ufficiale N.88 del 14 Aprile 2006, Supplemento Ordinario n.96.
- 5. G.A.Cignoni, C.Montangero, L.Semini (2009) "Il controllo del software: verifica e validazione" Corso di Ingegneria del software, Laurea in Informatica e Informatica applicata, Dipartimento di Informatica, Università di Pisa.
- 6. Groundwater Service Inc. (2009) "RBCA tool kit for chemical releases ver. 2.5", Houston (TX), GSI (Groundwater Service Inc.).
- 7. ISS-ISPESL (2009) "Banca dati ISS/ISPESL. Proprietà chimico-fisiche e tossicologiche dei contaminanti", aggiornata a maggio del 2009.
- 8. Provincia di Milano, URS Italia (2008) "GIUDITTA. Gestione Informatizzata DI Tollerabilità Ambientale", versione 3.2. URL: www.provincia.milano.it.
- 9. Reconnet (2011) "Risk-net Manuale d'uso" Disponibile su www.reconnet.net
- 10. UNICHIM (2002) "Suoli e falde contaminati: analisi di rischio sito-specifica, criteri e parametri" Manuale UNICHIM N. 196/1

Controllo con altre soluzioni: Parametri di input utilizzati per i 9 casi studio

Tab. 2 – Controllo con altre soluzioni: Scenari di calcolo dei 9 casi studio

DATI DI INPUT	Caso studio 1	Caso studio	Caso studio 3	Caso studio	Caso studio 5	Caso studio 6	Caso studio 7	Caso studio 8	Caso studio 9	
Destinazione d'uso del sito	Industriale	Residenziale	Residenziale	Industriale	Residenziale	Residenziale	Industriale	Industriale	Industriale	
Modalità di applicazione dell'AdR	diretta	diretta	diretta	diretta	diretta	diretta	diretta/inversa	diretta	diretta	
Sorgenti di contaminazione	SS	SP	GW	SS	SP	GW	GW	SS	GW	
Inquinanti indicatori	Fenolo, Piombo, Tricloroetilene, Etilbenzene, Alifatici C9 - C18, Crisene	Cloruro di vinile, B 2-Clorofei	, ,	Alifatici C5-C8 - Alifatici C9 - C18 - Alifatici C19 - C36, Aromatici C9-C10 - Aromatici C11-C22			Vedere "Tabella 3"			
CRS		CSC x 3			CSC x 3			Vedere "Tabella 3"		
Meccanismi di trasporto	- (Diretto) - Percolazione e trasporto in falda	- Volatilizzazione di vapori outdoor	- Volatilizzazione di vapori indoor	- (Diretto) - Percolazione e trasporto in falda	- Volatilizzazione di vapori outdoor	- Volatilizzazione di vapori indoor	Volatilizzazione vapori outdoor Volatilizzazione vapori indoor	- Volatilizzazione vapori - Sospensione particolato	- Volatilizzazione di vapori indoor	
Modalità di esposizione	- Ing suolo e contatto dermico (ON-SITE) - Rischio risorsa idrica (OFF-SITE)	- Inalazione di vapori outdoor (ON-SITE)	- Inalazione di vapori indoor (ON-SITE)	- Ing suolo e contatto dermico (ON-SITE) - Rischio risorsa idrica (OFF-SITE)	- Inalazione di vapori outdoor (ON-SITE)	- Inalazione di vapori indoor (ON-SITE)	Inalazione di vapori outdoor (ON-SITE) Inalazione di vapori indoor (ON-SITE)	Ing suolo e contatto dermico (ON-SITE) Inalazione di vapori outdoor (ON-SITE) Inalazione di vapori indoor (ON-SITE)	Inalazione di vapori indoor (ON-SITE)	
Recettori	Lavoratori (adulti)	Residenti (adulti)	Residenti (adulti)	Lavoratori (adulti)	Residenti (adulti)	Residenti (adulti)	Lavoratori (adulti)	Lavoratori (adulti)	Lavoratori (adulti)	
Tessitura terreno insaturo										
Tessitura terreno saturo	SANDY LOAM	SILT LOAM	SILTY CLAY	SANDY LOAM	SILT LOAM	SILTY CLAY	SILT	SAND RBCA	SILT	
Parametri caratteristici del sito, diversi da default [ISPRA, 2008]	Infiltrazione efficace, sorgente di contamin	Spessore della fal azione, Conducibilità	da, Geometria della idraulica del terreno	Infiltrazione efficace, sorgente di contamir	dell'acquifero, Spess Spessore della fal nazione, Conducibilità al punto di confori	da, Geometria della idraulica del terreno				
Punto di conformità per la falda	25 metri			25 metri						

Tab. 3 - Concentrazioni rappresentative alla sorgente (CRS) per i casi studio 7, 8 e 9

CASO 7		CASO 8		CASO 9		
Inquinante indicatore	CRS (mg/l)	Inquinante indicatore	CRS (mg/kg)	Inquinante indicatore	CRS (mg/l)	
Benzene	3.1E-3	Mercurio	5.2E+1	Benzene	2.6E-2	
Toluene	2.8E-2			Toluene	4.5E-2	
Alifatici C9-C18	1.5E-1	1		Benzo(a)antracene	2.1E-4	
MTBE	7.3E-2	1		Cloruro di vinile	1.5E+0	
		_		Triclorometano	1.7E-4	
				Dicloroetano, 1,2-	2.1E-3	
				Dicloroetilene - 1,1	1.7E-1	
				Tricloroetilene	1.5E-3	
				Dicloroetano, 1,1-	1.6E-1	
				Dicloropropano, 1,2-	3.3E-1	
				Tricloroetano, 1,1,2-	2.6E-3	

Tab. 4.a – Valori dei parametri sito-specifici per i casi studio da 1 a 6 (*)

	Documento [APAT, 2008]			Caso studio 1	Caso studio 2	Caso studio 3	Caso studio 4	Caso studio 5	Caso studio 6
Simbolo	Parametro	Unità di misura	Valore di default	Valore sito specifico					
Geometria	della zona insatura								
L_{GW}	Livello piezometrico dell'acquifero	cm	300	200	450	450	200	450	450
h _{cap}	Spessore frangia capillare	cm	18.8	25	68.2	192	25	68.2	192
h _v	Spessore della zona insatura	cm	281.2	175	381.8	258	175	381.8	258
D	Spessore del suolo superficiale	cm	100	100	100	100	100	100	100
η_{out}	Frazione areale di fratture nel pavimento outdoor	adim.	1	1	1	1	1	1	1
Geometria della sorgente di contaminazione in zona insatura									
L _s (SS)	Profondità del top della sorgente nel suolo superficiale rispetto al p.c.	cm	0	0			0		
L _s (SP)	Profondità del top della sorgente nel suolo profondo rispetto al p.c.	cm	100		100			100	
L _f (SS)	Profondità della base della sorgente nel suolo superficiale rispetto al p.c.	cm	100	100			100		
L _f (SP)	Profondità della base della sorgente nel suolo profondo rispetto al p.c.	cm	300		450			450	
d	Spessore della sorgente nel suolo superficiale (insaturo)	cm	100	100			100		
d _s	Spessore della sorgente nel suolo profondo (insaturo)	cm	200		350			350	
	Spessore della sorgente nel suolo insaturo	ст	300	100	350		100	350	
L _F	Soggiacenza della falda rispetto al top della sorgente	cm	300	200			200		
Caratterist	iche fisiche del terreno in zona insat	ura							
ρ_s	Densità del suolo	g/cm ³	1.7	1.7	1.7	1.7	1.7	1.7	1.7
θτ	Porosità totale del terreno in zona insatura	adim.	0.41	0.41	0.45	0.36	0.41	0.45	0.36
$\theta_{\rm e}$	Porosità effettiva del terreno in zona insatura		0.353	0.345	0.383	0.29	0.345	0.383	0.29
θ_{w}	Contenuto volumetrico di acqua	adim.	0.103	0.194	0.255	0.274	0.194	0.255	0.274
θ_a	Contenuto volumetrico di aria	adim.	0.250	0.151	0.128	0.016	0.151	0.128	0.016
θ _{wcap}	Contenuto volumetrico di acqua nelle frangia capillare	adim.	0.318	0.288	0.297	0.282	0.288	0.297	0.282
θ_{acap}	Contenuto volumetrico di aria nelle frangia capillare	adim.	0.035	0.057	0.086	0.008	0.057	0.086	0.008
f _{oc}	Frazione di carbonio organico nel suolo insaturo	g-C/g-s	0.01	0.01	0.01	0.01	0.01	0.01	0.01
l _{ef}	Infiltrazione efficace	cm/anno	30	45			45		
рН	pH del suolo insaturo	adim.	6.8	6.8	6.8	6.8	6.8	6.8	6.8
Geometria	della zona satura								
da	Spessore della falda	cm		500		500	500		500
Geometria	della sorgente di contaminazione in	zona satura							
	Estensione della sorgente in direzione parallela alla direzione del flusso di falda	cm	4500	3000	3000	3000	3000	3000	3000
	Estensione della sorgente in direzione ortogonale alla direzione del flusso di falda	cm	4500	5000	5000	5000	5000	5000	5000
Α	Area della sorgente rispetto alla direzione del flusso di falda	cm ²	20250000	1.50E+07	1.50E+07	1.50E+07	1.50E+07	1.50E+07	1.50E+07
δ_{gw}	Spessore della zona di miscelazione in falda	cm	200		da calcolare)		da calcolare)

^(*) Per i casi studio da 7 a 9, i valori dei parametri sito specifici sono assunti pari a quelli proposti come default dal documento [APAT, 2008].

Tab. 4.b – Valori dei parametri sito-specifici per i casi studio da 1 a 6 (*)

	Documento [APAT, 2008]	1		Caso studio 1	Caso studio 2	Caso studio 3	Caso studio 4	Caso studio 5	Caso studio 6
Simbolo	Parametro	Unità di misura	Valore di default	Valore sito specifico					
Caratteris	tiche fisiche del terreno in zona satu	ra							
v_{gw}	Velocità di Darcy	cm/anno	2500	388			388		
K _{sat}	Conducibilità idraulica del terreno saturo	cm/anno		38789			38789		
i	Gradiente idraulico	adim.		0.01			0.01		
v _e	Velocità media effettiva nella falda	cm/anno	7082	1124			1124		
θ_{T}	Porosità totale del terreno in zona satura	adim.	0.41	0.41		0.36	0.41		0.36
$\theta_{\rm e}$	Porosità efficace del terreno in zona satura	adim.	0.353	0.345		0.29	0.345		0.29
f _{oc}	Frazione di carbonio organico nel suolo saturo	g-C/g-s	0.001	0.001		0.001	0.001		0.001
αx	Dispersività longitudinale	cm	10	250			250		
α_{y}	Dispersività trasversale	cm	3.3	83.33			83.33		
α_z	Dispersività verticale	cm	0.5	12.5			12.5		
	SE: Distanza dal punto di conformità	cm	100	2500			2500		
рН	pH del suolo saturo	adim.	6.8	6.8	6.8	6.8	6.8	6.8	6.8
Caratteris	tiche dell'aria outdoor		'						
δ_{air}	Altezza della zona di miscelazione	cm	200	200	200	200	200	200	200
w'	Estensione della sorgente in direzione parallela alla direzione prevalente del vento	cm	4500		3000			3000	
S _w '	Estensione della sorgente in direzione ortogonale alla direzione prevalente del vento	cm	4500		4000			4000	
A'	Area della sorgente rispetto alla direzione prevalente del vento	cm ²	20250000						
U _{air}	Velocità del vento	cm/s	225		225			225	
σ_{y}	Coefficiente di dispersione trasversale	cm							
σ_z	Coefficiente di dispersione verticale	cm							
τ	Tempo medio di durata del flusso di vapore (RES.)	anno	30		30	30		30	30
τ	Tempo medio di durata del flusso di vapore (IND.)	anno	25		25	25		25	25
Pe	Portata di particolato per unità di superficie	g/(cm ² -s)	6.90E-14						
Caratteris	tiche dell'aria indoor		'						
A _b	Superficie totale coinvolta nell'infiltrazione	cm ²	700000			6000000			6000000
L _{crack}	Spessore delle fondazioni/muri	cm	15			25			25
L _b	Rapporto tra volume indoor ed area di infiltrazione (RES.)	cm	200			190			190
L _b	Rapporto tra volume indoor ed area di infiltrazione (IND.)	cm	300						
η	Frazione areale di fratture	adim.	0.01			0.01			0.01
θ _{wcrack}	Contenuto volumetrico di acqua nelle fratture	adim.	0.12			0.12			0.12
θ _{acrack}	Contenuto volumetrico di aria nelle fratture	adim.	0.26			0.26			0.26
ER	Tasso di ricambio di aria indoor (RES.)	1/s	0.00014			0.00014			0.00014
ER	Tasso di ricambio di aria indoor (IND.)	1/s	0.00023						
L _T	Distanza tra il top della sorgente nel suolo insaturo (in falda) e la base delle fondazioni	cm	0 (285)			430			430
Z _{crack}	Profondità delle fondazioni	cm	15			20			20
K _v	Permeabilità del suolo al flusso di vapore	cm ²	1.00E-08			1.00E-08			1.00E-08
Δp	Differenza di pressione tra indoor e outdoor	g/(cm*s ²)	0			0			0
μ _{air}	Viscosità del vapore	g/(cm*s)	1.81E-04			1.81E-04			1.81E-04
τ	Tempo medio di durata del flusso di vapore (IND.)	anni	25			25			25
	Tempo medio di durata del flusso di vapore		-						

^(*) Per i casi studio da 7 a 9, i valori dei parametri sito specifici sono assunti pari a quelli proposti come default dal documento [APAT, 2008].

Tab. 5 - Fattori di esposizione per casi studio da 1 a 6 (**)

FATTORI DI FODOCIZIONE (FF)			Caso studio 1	Caso studio 2	Caso studio 3	Caso studio 4	Caso studio 5	Caso studio 6
FATTORI DI ESPOSIZIONE (EF)	Simbolo	Unità di Misura	Com/Ind	Resid	enziale	Com/Ind	Reside	enziale
			Adulto	Adulto	Adulto	Adulto	Adulto	Adulto
Fattori comuni a tutte le modalità di esposizione								
Peso corporeo	BW	kg	70	70	70	70	70	70
Tempo di esposizione per le sost. cancerogene	ATc	anni	70	70	70	70	70	70
Tempo di esposizione per le sost. non cancerogene	ATn	anni	ED	ED	ED	ED	ED	ED
Inalazione di Aria Outdoor (AO)								
Durata di esposizione	ED	anni		24			24	
Frequenza di esposizione	EF	giorni/anno		350			350	
Frequenza giornaliera di esposizione outdoor	EFgo	ore/giorno		24			24	
Inalazione outdoor	Во	m³/ora		0.8333			0.8333	
Frazione di particelle di suolo nella polvere	Fsd	adim.		1			1	
Inalazione di Aria Indoor (AI)								
Durata di esposizione	ED	anni			24			24
Frequenza di esposizione	EF	giorni/anno			350			350
Frequenza giornaliera di esposizione indoor	EFgi	ore/giorno			24			24
Inalazione indoor	Bi	m³/ora			0.8333			0.8333
Frazione indoor di polvere all'aperto	Fi	adim.			1			1
Contatto dermico con Suolo (SS)								
Durata di esposizione	ED	anni	25			25		
Frequenza di esposizione	EF	giorni/anno	250			250		
Superficie di pelle esposta	SA	cm ²	3300			3300		
Fattore di aderenza dermica del suolo	AF	mg/(cm ² giorno)	1			1		
Ingestione di Suolo (SS)	,		,					
Durata di esposizione	ED	anni	25			25		
Frequenza di esposizione	EF	giorni/anno	250			250		
Frazione di suolo ingerita	FI	adim.	1			1		
Tasso di ingestione di suolo	IR	mg/giorno	50			50		

^(**) Per i casi studio da 7 a 9, i valori dei fattori di esposizione sono assunti pari a quelli proposti come default dal documento [APAT, 2008], ad eccezione del "Tasso di inalazione outdoor e indoor" posto pari a $20~\text{m}^3/\text{d}$.

