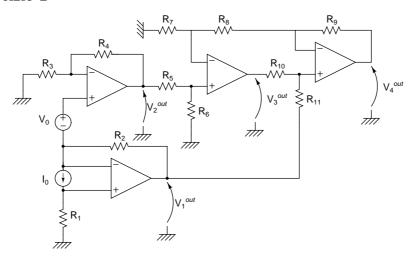
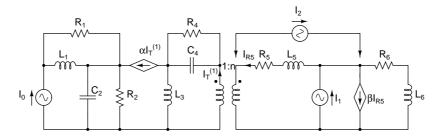

Esame di Teoria dei Circuiti - 26 marzo 2010


Esercizio 1

Con riferimento al circuito di figura si assumano i seguenti valori: $R_1=1\,\mathrm{k}\Omega,\;R_2=R_3=2\,\mathrm{k}\Omega,\;r=1\,\mathrm{k}\Omega,\;\alpha=2,\;R_4=R_5=2\,\mathrm{k}\Omega,\;I_3=3\,\mathrm{mA},\;R_6=2\,\mathrm{k}\Omega,\;V_3=6\,\mathrm{V}.$ Calcolare:

- la descrizione del due porte tramite matrice ibrida \underline{H} , definita come $\begin{pmatrix} I_1 \\ V_2 \end{pmatrix} = \underline{H} \begin{pmatrix} V_1 \\ I_2 \end{pmatrix}$;
- il circuito equivalente di Thevenin alla porta 1 del due porte calcolato al punto precedente, quando alla porta 2 viene collegato il circuito formato dal generatore ideale di corrente I_3 e le resistenze R_4 e R_5 , come mostrato in figura;
- la potenza dissipata dal due porte quando entrambi i circuiti formati da I_3 , V_3 , R_4 , R_5 e R_6 vengono collegati al due porte stesso.


Esercizio 2

Con riferimento al circuito di figura si assumano i seguenti valori: $R_1=R_2=\ldots=R_{11}=1\,\mathrm{k}\Omega,\ I_0=0.5\,\mathrm{mA},\ V_0=2\,\mathrm{V}.$ Si supponga inoltre

che gli amplificatori operazionali siano ideali e che lavorino sempre nella zona ad alto guadagno. Calcolare le tensioni di uscita V_1^{out} , V_2^{out} , V_3^{out} e V_4^{out} degli amplificatori operazionali.

Esercizio 3

Con riferimento al circuito di figura si assumano i seguenti valori: $\omega = 200\,\mathrm{rad/s},\ R_1 = 400\,\Omega,\ L_1 = 2\,\mathrm{H},\ C_2 = 16.6\,\mu\mathrm{F} = 16.6\cdot10^{-6}\,\mathrm{F},\ R_2 = 300\,\Omega,\ L_3 = 100\,\mathrm{mH},\ R_4 = 200\,\Omega,\ C_4 = 25\,\mu\mathrm{F} = 25\cdot10^{-6}\,\mathrm{F},\ R_5 = 1\,\mathrm{k}\Omega,\ L_5 = 17.5\,\mathrm{H},\ R_6 = 2.5\,\mathrm{k}\Omega,\ L_6 = 12.5\,\mathrm{H},\ \alpha = 4,\ \beta = \frac{2}{5},\ n = 5,\ I_0(t) = 350\cos(\omega t - \pi/2)\mu\mathrm{A} = 350\cos(\omega t - \pi/2)\cdot10^{-6}\,\mathrm{A},\ I_1(t) = 2\sqrt{2}\cos(\omega t + \pi/4)\mathrm{mA}.$

Calcolare:

- la potenza attiva e reattiva ai capi dell'induttore L_6 ;
- supponendo di collegare al circuito un generatore ideale di corrente I_2 come indicato in figura, determinare per quale valore di corrente I_2 la potenza calcolata al punto precedente si annulla.