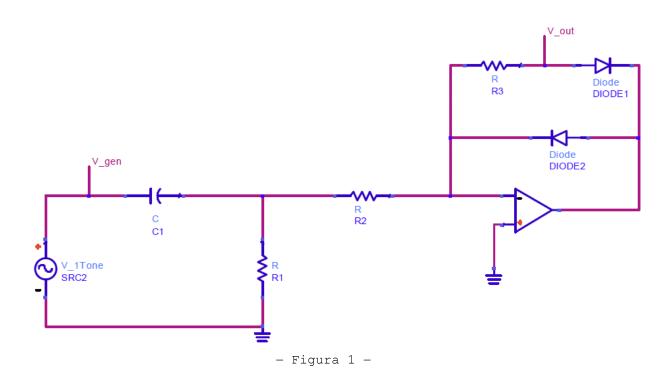
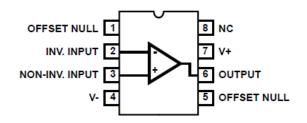
STRUMENTAZIONE E MISURE ELETTRONICHE LABORATORIO DI ELETTRONICA

A.A. 2016-2017 - Davide Bertozzi


ESERCITAZIONE 3 (10/05/2017)

ANALISI SPERIMENTALE DI UNA RETE ELETTRICA IN REGIME NON LINEARE DINAMICO

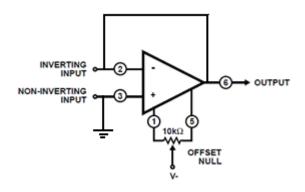
FINALITÀ


L'esercitazione ha lo scopo di far acquisire allo studente familiarità con l'utilizzo dell'oscilloscopio.

REALIZZAZIONE DEL CIRCUITO SU BREAD-BOARD E CARATTERIZZAZIONE SPERIMENTALE

	Valore/sigla
R1,R2	100 Ω 5%
R3	1 KΩ 5%
C1	4.7μF elettrolitico
D1,D2	1N4148
OpAmp	LM741

- Tab. 1 -


- Figura 2 [Piedinatura LM741 (vista da sopra)]

COMPENSAZIONE DELLA TENSIONE DI OFFSET.

- a) Realizzare il circuito di figura 4, ripreso dal data-sheet del dispositivo.
- **b)** Alimentare l'operazionale con tensione duale di \pm 12 V (figura 3).
- c) Misurare, con il multimetro, la tensione in uscita (pin 6 dell'OpAmp).
- d) Regolare il potenziometro fino ad ottenere $V_{OUT} = 0$. Ricordare che il cursore del potenziometro (terminale centrale) deve essere collegato all'alimentazione negativa (V^-) e i due estremi ai pin 1 e 5 dell'Op-Amp.

- Figura 3 - Configurazione alimentatore per tensione di tipo duale.

- Figura 4 - Circuito per la compensazione della tensione di OFFSET dell'OpAmp LM741

1. IMPLEMENTAZIONE DEL CIRCUITO

- e) Disattivare l'erogazione di tensione dell'alimentatore al circuito realizzato per l'offset.
- f) Togliere il collegamento, servito per l'offset, tra pin tra pin 2 e 6 dell'OpAmp. NON TOGLIERE il potenziometro altrimenti si vanifica l'offset ottenuto in precedenza.
- g) Realizzare il circuito di Figura 1 con i componenti riportati in Tabella 1.
- h) Impostare il generatore di funzioni per erogare una forma d'onda sinusoidale di 2 VPP (è consigliato impostare la frequenza a 1 kHz). Visualizzare e "leggere" la forma d'onda sull'oscilloscopio: collegare l'uscita del generatore direttamente al canale 1 dell'oscilloscopio, utilizzando un cavo BNC-BNC o semplicemente collegare tra loro i puntali del generatore e dell'oscilloscopio.
- i) Collegare il generatore di funzioni all'ingresso del circuito.
- j) Monitorare la V_gen collegando il canale 1 dell'oscilloscopio all'ingresso del circuito.
- k) Alimentare l'operazionale con tensione duale \pm 12 V.
- 1) Monitorare la V_out collegando il canale 2 dell'oscilloscopio all'uscita del circuito.
- m) **Verificare il comportamento** del circuito nella banda di frequenza 10Hz ÷ 50 KHz, ai valori di frequenza riportati in tabella 2, rilevando le ampiezze picco-picco di V_gen→ (V_gen^{PP}) e V_out→(V_out^{PP}).
- n) Descrivere dettagliatamente il funzionamento del circuito in base ai valori rilevati alle forme d'onda ottenute e al relativo schema circuitale.

Frequenza	V_gen ^{PP}	V_out ^{PP}
10 Hz.		
100 Hz.		
200 Hz.		
500 Hz.		
1 kHz.		
5 kHz.		
10 kHz.		
30 kHz.		
50 kHz.		

– Tab. 2 –

escrizione del Circuito					