DIMOSTRAZIONE DEI SEGUENTI TEOREMI (INGEGNERIA DELL'INFORMAZIONE) 2015-2016

Le seguenti dimostrazioni sono fondamentali ma non rappresentano la totalita' di quelle svolte a lezione.

- (Teorema di caratterizzazione del sottospazio generato) Sia V uno s.v. su R e sia $S = \{v_1, v_2, ..., v_n\} \subseteq V (n \ge 1)$. Allora:
 - a) [S] é un sottospazio di V;
 - b) $[S] \supseteq S$;
 - c) se W é un sottospazio di V e $W \supseteq S$ allora $W \supseteq [S]$.
- (Teorema di caratterizzazione dei sottoinsiemi linearmente dipendenti)

Sia V uno s.v. su R e sia $S = \{v_1, v_2, ..., v_n\} \subseteq V (n \ge 1)$. Allora:

- a) $S = \{v_1\}$ é linearmente dipendente $\Leftrightarrow v_1 = 0$;
- b) Se n > 1, S é linearmente dipendente \Leftrightarrow esiste un elemento di S che è combinazione lineare degli altri elementi di S.
- (Teorema che porta al concetto di coordinate di un vettore rispetto ad una base) Se $\beta = (v_1, v_2, ..., v_n)$ é una base dello s.v. V, allora ogni elemento $v \in V$ si può rappresentare in un unico modo come combinazione lineare degli elementi di β . (Segue definizione di $M_\beta(v)$).
- Se $A \in M_n(R)$ é invertibile, allora $|A| \neq 0$ e $|A^{-1}| = \frac{1}{|A|}$.
- Teorema di Cramer. Se il sistema lineare AX = B ha n equazioni in n incognite e $|A| \neq 0$, allora AX = B ha una ed una sola soluzione (non vale il viceversa). Calcolo della soluzione col "metodo della matrice inversa".
- Teorema di Rouché-Capelli. Il sistema lineare AX = B ha soluzione $\Leftrightarrow r(A) = r(A : B)$.
- Se V é uno s.e.r. allora presi $v, v_1, ..., v_m \in V, a_1, ..., a_m \in R$,
 - a) <0, v>=0;
 - b) $\langle v, a_1 v_1 + ... + a_m v_m \rangle = a_1 \langle v, v_1 \rangle + ... + a_m \langle v, v_m \rangle$.
- Se *V* é uno s.e.r. allora
 - a) $\|\alpha v\| = |\alpha| \|v\|$,
 - b) Se $v \neq 0$, allora $\frac{v}{\|v\|}$ é un versore,
 - c) $v cw \perp w (w \neq 0, v, w \in V, c)$ coefficiente di Fourier di v rispetto a w).
- Se $\beta = (v_1, ..., v_n)$ é una base ortonormale di V e $v \in V$ allora $M_{\beta}(v) = \begin{pmatrix} \langle v, v_1 \rangle \\ \langle v, v_2 \rangle \\ ... \\ \langle v, v_n \rangle \end{pmatrix}$.
- Costruzione di una base ortogonale . Procedimento di Gram-Schmidt e dimostrazione che $v_1 \perp v_2$. Passaggio da una base ortogonale ad una ortonormale.

- Proprieta' caratteristica delle matrici ortogonali ($AA_{-1} = I$).
- Se $A = (a_{ii}) \in M_n(R)$ é una matrice ortogonale, allora
 - a) le righe (colonne) di A formano una base ortonormale di R^n e viceversa (per n=2),
 - b) $|A| = \pm 1$ (non vale il viceversa),
 - c) $A_{ii} = \pm a_{ii}$ (non vale il viceversa).
- Se $A, B \in M_n(R)$ sono matrici ortogonali, allora AB é ortogonale.
- Geometria analitica e s.e.r. Dimostrazioni delle condizioni di perpendicolarità e di parallelismo "rette-piani" (tutti i casi possibili).
- Parallelismo piano-retta mediante la discussione del sistema formato dalle loro equazioni.
- Equazioni della sfera e della circonferenza. Determinazione di centro e raggio.
- Se λ é un autovalore di $A \in M_n(R)$ allora V_{λ} é un sottospazio di R^n .
- Se $A \in M_2(R)$ allora $\Delta_A(\lambda) = \lambda^2 tr(A)\lambda + |A|$.
- Teorema fondamentale per il calcolo degli autovalori e degli autospazi.
- m.g. di $\lambda = n r(\lambda I A)$.
- Se $A \in M_n(R)$ é diagonalizzabile con U ortogonale, allora A é simmetrica.
- a) $\lambda = 0$ é autovalore di $A \Leftrightarrow |A| = 0$.
 - b) Se x_1, x_2 sono autovettori di A associati agli autovalori λ_1, λ_2 con $\lambda_1 \neq \lambda_2$, allora x_1, x_2 sono linearmente indipendenti.
 - c) $A \approx B \rightarrow |A| = |B|$ e $A \approx B \rightarrow \Delta_A(\lambda) = \Delta_B(\lambda)$.
 - d) Se λ é autovalore di A e x é un relativo autovettore, allora λ^2 é autovalore di A^2 e x é un autovettore di A^2 .
- Se G é una matrice a scala, allora r(G) = numero di righe non nulle di G.
- Teorema sulla riduzione a forma diagonale di una forma quadratica.
- Teorema sulle forme quadratiche definite (semi-definite) positive.
- Se $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ e' definita positiva $\Leftrightarrow |A| > 0$ e a > 0.
- Se $A \in M_n(R)$ é simmetrica e (semi-) definita positiva, allora esiste una (unica) matrice B simmetrica e (semi-) definita positiva tale che $B^2 = A$. Segue definizione di \sqrt{A} .
- Lo s.v. R[x] (polinomi nell'indeterminata x e a coefficienti reali) non ha dimensione finita.
- Una funzione $f : V \to V' \quad V, V'$ s.v. su R) é lineare $\Leftrightarrow a') f(a_1 w_1 + a_2 w_2) = a_1 f(w_1) + a_2 f(w_2)$.
- Noti gli elementi di una base $\beta = (v_1, ..., v_n)$ di V e noti i corrispondenti tramite una funzione lineare $f : V \to V'$ degli elementi di β (cioé noti $f(v_1), ..., f(v_n)$), possiamo trovare f(v) per ogni $v \in V$.
- Se $f : V \to V'$ é una funzione lineare, allora
 - a) f(0) = 0,
 - b) f(-w) = -f(w),
 - c) N_f é un sottospazio di V,
 - d) I_f é un sottospazio di V'.
- Una funzione lineare $f : V \to V'$ é iniettiva $\Leftrightarrow N_f = \{0\}$.
- Le funzioni del tipo f_A ($A \in M_{m,n}(R)$) sono funzioni lineari da $R^n \to R^m$.

- La funzione lineare f_A con $A \in M_n(R)$ e' iniettiva se e solo se $|A| \neq 0$.
- Se $f: V \to V'$ e' lineare e $S = \{v_1, ..., v_n\} \subseteq V$ e' linearmente dipendente, allora $f(S) = \{f(v_1), ..., f(v_n)\} \subseteq V'$ e' linearmente dipendente.
- Se $f : V \to V'$ e' lineare e 1-1 e $S = \{v_1, ..., v_n\} \subseteq V$ e' linearmente indipendente, allora $f(S) = \{f(v_1), ..., f(v_n)\} \subseteq V'$ e' linearmente indipendente.
- $\bullet \quad \text{Se } S \subseteq V \ \text{e' una base di } V \ \text{allora} \ f(S) \ \text{genera} \ I_f.$