INTRODUZIONE AGLI ALGORITMI

- Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.
- Se voglio calcolare una moltiplicazione, posso usare diversi metodi:
 - mi baso sull'addizione:

oppure faccio il calcolo in colonna

13 x 12 = -----26 + 13- = ----- INTRODUZIONE AGLI ALGORITMI

• Se dobbiamo spiegare ad una persona come fare una moltiplicazione, possiamo fare un esempio:

$$13 \times 12 = 13 + 13 + 13 + ... + 13$$

- però così abbiamo spiegato solo come si fa una particolare moltiplicazione: 13 x 12.
- Vogliamo spiegare un metodo che valga "sempre", per tutti i numeri. Dobbiamo innanzitutto definire per quali valori di ingresso funziona il nostro metodo

2

INTRODUZIONE AGLI ALGORITMI

- La persona che ci ascolta è in grado di imparare da esempi. Il calcolatore no
 - non possiamo spiegarlo con un esempio, dobbiamo dire quali passi deve svolgere
- Proviamo così:

$$A \times B = A + A + A + \dots + A$$

Cosa vogliono dire i puntini?

Ambiguo!

3

INTRODUZIONE AGLI ALGORITMI

- La persona che ci ascolta è in grado di imparare da esempi. Il calcolatore no
 - non possiamo spiegarlo con un esempio, dobbiamo dire quali passi deve svolgere
- Proviamo così:

$$A \times B = A + A + A + ... + A$$

в volte

- •Ma cosa vuol dire una somma con B termini?
- •Es, cosa vuol dire 0 termini?
- Quale istruzione deve essere ripetuta B volte?

INTRODUZIONE AGLI ALGORITMI

- Se vogliamo scrivere un libro di matematica di base, spiego come si fa una moltiplicazione. Devo scriverlo in modo che chiunque capisca il metodo
- non deve essere ambiguo
- dobbiamo dire quali sono i prerequisiti, le istruzioni di base che l'esecutore deve saper compiere
 - per capire questo algoritmo bisogna sapere come si calcola un'addizione
- dobbiamo dire su quali valori di ingresso si può applicare il metodo
 - sui naturali

.

IL PIU' PICCOLO NUMERO REALE >0

- 1. Assegna a R il valore 1
- 2. Dividi R per 2 e metti il risultato in R
- 3. Vai al passo 2
- 4. Stampa R
- •Non stampa mai il valore R
- Non termina

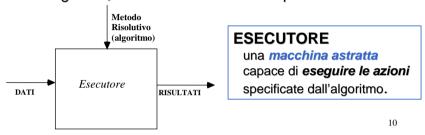
SOLUZIONE: CALCOLO DEL PRODOTTO

6

RISOLUZIONE DI PROBLEMI

- La risoluzione di un problema è il processo che, dato un problema e individuato un opportuno metodo risolutivo, trasforma i dati iniziali nei corrispondenti risultati finali.
- Affinché la risoluzione di un problema possa essere realizzata attraverso l'uso del calcolatore, tale processo deve poter essere definito come sequenza di azioni elementari.

ALGORITMO


 II termine Algoritmo deriva dal nome del matematico persiano
 Muhammad ibn Mūsā al-Khwārizmī (ca. 780-850)

9

ALGORITMO

- Un algoritmo è una sequenza **finita** di mosse che risolve *in un tempo finito* una *classe* di problemi.
- L'esecuzione delle azioni *nell'ordine specificato* dall'algoritmo consente di ottenere, a partire dai dati di ingresso, i risultati che risolvono il problema

ALGORITMI: PROPRIETÀ

- Eseguibilità: ogni azione dev'essere eseguibile dall'esecutore in un tempo finito
- Non-ambiguità: ogni azione deve essere univocamente interpretabile dall'esecutore.

L'italiano è ambiguo, come si vede bene dagli indovinelli IL MESE DI MAGGIO:

"Ratto trascorre e a noi rose dispensa"

 Finitezza: il numero totale di azioni da eseguire, per ogni insieme di dati di ingresso, deve essere finito

ALGORITMI: PROPRIETÀ (2)

Quindi, l'algoritmo deve:

- essere applicabile a qualsiasi insieme di dati di ingresso appartenenti al dominio di definizione dell'algoritmo
- essere costituito da operazioni appartenenti ad un determinato insieme di operazioni fondamentali
- essere costituito da regole non ambigue, cioè interpretabili in modo univoco qualunque sia l'esecutore (persona o "macchina") che le legge

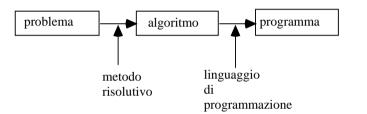
determinato **insieme di operazioni fondamen**i

UNA VOLTA DECISO L'ALGORITMO

- Una volta che ho deciso l'algoritmo, devo fare in modo che l'elaboratore sia in grado di eseguirlo
- Le "mosse elementari" devono essere eseguibili dal calcolatore (quindi devo sapere quali istruzioni il calcolatore può eseguire)
- Le istruzioni vengono eseguite sui dati e forniscono dei risultati
- L'algoritmo deve essere scritto in maniera formale: codificato in un preciso linguaggio di programmazione

13

PROGRAMMA


Un programma è un testo scritto in accordo alla sintassi e alla semantica di un linguaggio di programmazione.

Un *programma* è la **formulazione testuale**, in un certo linguaggio di programmazione, di un **algoritmo** che risolve un dato *problema*.

ALGORITMO & PROGRAMMA

Passi per la risoluzione di un problema:

- individuazione di un procedimento risolutivo
- scomposizione del procedimento in un insieme ordinato di azioni
 ALGORITMO
- rappresentazione dei dati e dell'algoritmo attraverso un formalismo comprensibile dal calcolatore LINGUAGGIO DI PROGRAMMAZIONE

1

16

UN ESEMPIO DI PROGRAMMA (in linguaggio C)

```
main() {
  int A, B;
  printf("Immettere due numeri: ");
  scanf("%d %d", &A, &B);
  printf("Somma: %d\n", A+B);
}
```

L'ELABORATORE ELETTRONICO

- Il calcolatore elettronico è uno strumento in grado di eseguire insiemi di azioni ("mosse") elementari
- le azioni vengono <u>eseguite</u> su oggetti (*dati*) per <u>produrre</u> altri oggetti (*risultati*)
- l'esecuzione di azioni viene richiesta all'elaboratore attraverso frasi scritte in qualche linguaggio (istruzioni)

PROGRAMMAZIONE

L'attività con cui si predispone l'elaboratore a **eseguire** un *particolare insieme di azioni* su *particolari dati*, allo scopo di *risolvere un problema*

18

ALCUNE DOMANDE FONDAMENTALI

- Quali istruzioni esegue un elaboratore?
- Quali problemi può risolvere un elaboratore?
- Esistono problemi che un elaboratore non può risolvere?
- Che ruolo ha il linguaggio di programmazione?

PROBLEMI DA RISOLVERE

- I problemi che siamo interessati a risolvere con l'elaboratore sono di natura molto varia.
 - Dati due numeri trovare il maggiore
 - Dato un elenco di nomi e relativi numeri di telefono trovare il numero di telefono di una determinata persona
 - Dati a e b, risolvere l'equazione ax+b=0
 - Stabilire se una parola viene alfabeticamente prima di un'altra
 - · Somma di due numeri interi
 - · Ordinare una lista di elementi
 - Calcolare il massimo comun divisore fra due numeri dati.
 - Calcolare il massimo in un insieme.

RISOLUZIONE DI PROBLEMI

- La descrizione del problema non fornisce (in generale) un metodo per risolverlo.
 - Affinché un problema sia risolvibile è però necessario che la sua definizione sia chiara e completa
- Non tutti i problemi sono risolvibili attraverso l'uso del calcolatore. Esistono classi di problemi per le quali la soluzione automatica non è proponibile. Ad esempio:
 - se il problema presenta infinite soluzioni
 - per alcuni dei problemi non è stato trovato un metodo risolutivo
 - per alcuni problemi è stato dimostrato che non esiste un metodo risolutivo automatizzabile

ALGORITMI E PROGRAMMI

- Ogni elaboratore è una macchina in grado di eseguire azioni elementari su oggetti detti DATI.
- L'esecuzione delle azioni è richiesta all'elaboratore tramite comandi elementari chiamati ISTRUZIONI espresse attraverso un opportuno formalismo: il LINGUAGGIO di PROGRAMMAZIONE.
- La formulazione testuale di un algoritmo in un linguaggio comprensibile a un elaboratore è detta programma.

RISOLUZIONE DI PROBLEMI

- Noi ci concentreremo sui problemi che, ragionevolmente, ammettono un metodo risolutivo in funzioni calcolabili.
- Uno degli obiettivi del corso è presentare le tecnologie e le metodologie di programmazione
 - Tecnologie: strumenti per lo sviluppo di programmi
 - Metodologie: metodi per l'utilizzo corretto ed efficace delle tecnologie di programmazione

22

ALGORITMI: ESEMPI

- Soluzione dell'equazione ax+b=0
 - leggi i valori di a e b
 - calcola -b
 - dividi quello che hai ottenuto per a e chiama x il risultato
 - stampa x

NOTA: per denotare dati nell'algoritmo si utilizzano VARIABILI ossia nomi simbolici

ALGORITMI: ESEMPI

• Calcolo del massimo di una sequenza di numeri $a_1...a_n$

1 livello di specifica

- Scegli il primo elemento come massimo provvisorio max←a₁
- Per ogni elemento a_i dell'insieme: se a_i>max eleggi a_i come nuovo massimo provvisorio: max ← a_i
- Il risultato è max

25

ALGORITMI: ESEMPI

· Somma degli elementi dispari di un insieme

- Detto INS l'insieme di elementi considero un elemento X di INS alla volta senza ripetizioni. Se X è dispari, sommo X a un valore S inizialmente posto uguale a 0. Se X è pari non compio alcuna azione.
- Somma di due numeri X e Y

Si supponga di avere a disposizione come mossa elementare solo l'incremento e non la somma tra interi

ALGORITMI: ESEMPI

• Stabilire se una parola P viene alfabeticamente prima di una parola Q

- leggi P,Q
- ripeti quanto segue:
 - se prima lettera di P < prima lettera di Q
 - allora scrivi vero
 - altrimenti se prima lettera P > Q
 - allora scrivi falso
 - altrimenti (le lettere sono =)
 - togli da P e Q la prima lettera
- fino a quando hai trovato le prime lettere diverse.

ALGORITMI: ESEMPI

· Somma degli elementi dispari di un insieme

 Detto INS l'insieme di elementi considero un elemento X di INS alla volta senza ripetizioni. Se X è dispari, sommo X a un valore S inizialmente posto uguale a 0. Se X è pari non compio alcuna azione.

• Somma di due numeri X e Y

- Incrementare il valore di Z, inizialmente posto uguale a X per Y volte. Ovvero:
 - poni Z = X
 - poni U = 0
 - finché U è diverso da Y
 - incrementa Zincrementa U(Z:=Z+1)(U:=U+1)
 - Il risultato è 7

ALGORITMI EQUIVALENTI

Due algoritmi si dicono equivalenti quando:

- hanno lo stesso dominio di ingresso;
- hanno lo stesso dominio di uscita;
- in corrispondenza degli stessi valori del dominio di ingresso producono gli stessi valori nel dominio di uscita.

29

ALGORITMI EQUIVALENTI (2)

Due algoritmi equivalenti

- forniscono lo stesso risultato
- ma possono avere <u>diversa efficienza</u>
- e possono essere profondamente diversi!

30

ALGORITMI EQUIVALENTI (3)

ESEMPIO: calcolo del M.C.D. fra due interi M, N

- Algoritmo 1
 - Calcola l'insieme A dei divisori di M
 - Calcola l'insieme B dei divisori di N
 - Calcola l'insieme C dei divisori comuni = A ∩ B
 - Il risultato è il massimo dell'insieme C
- Algoritmo 2 (di Euclide)

 $\textbf{MCD (M,N) = } \left\{ \begin{array}{ll} \textbf{M (oppure N)} & \textbf{se M=N} \\ \textbf{MCD (M-N, N)} & \textbf{se M>N} \\ \textbf{MCD (M, N-M)} & \textbf{se M<N} \end{array} \right.$

ALGORITMI EQUIVALENTI (4)

ESEMPIO: calcolo del M.C.D. fra due interi M, N

- Algoritmo 2 (di Euclide)
- Finché M≠N:
 - se M>N, sostituisci a M il valore M' = M-N
 - altrimenti sostituisci a N il valore N' = N-M
 - Il Massimo Comun Divisore è il valore finale ottenuto quando M e N diventano uguali

	M (oppure N) MCD (M-N, N)	se M=N
MCD(M,N) =		se M>N
	(MCD (M, N-M)	se M <n< th=""></n<>

ALGORITMI EQUIVALENTI (5)

Gli algoritmi 1 e 2 sono equivalenti...
...ma hanno efficienza ben diversa!!

- •Es: calcolo del mcd di 324543324 e 654345432
- •mcd = 12

algoritmo 1:

algoritmo 2:

