MATLAB BASIC CHEAT SHEET

Basics	
clc	Clear command window
clear	Clear all variables
close all	Close all plots
help function	Print help page for function
\% This is a comment	Comments
ctrl-c	Abort the current operation
format short	Display 4 decimal places
format long	Display 15 decimal places
Defining and Changing Variables	
$\mathrm{a}=3$	Define variable a to be 3
$\mathrm{x}=[1,2,3]$	Set x to be the row vector [1,2,3]
$x=[1 ; 2 ; 3]$	Set x to be the column vector $[1,2,3]^{T}$
$\begin{aligned} A= & {[1,2,3,4 ;} \\ & 5,6,7,8 ; \\ & 9,10,11,12] \end{aligned}$	Set A to be a 3×4 matrix
$x(2)=7$	Change x from [1,2,3] to [1, 7, 3]
$A(2,1)=0$	Change $A_{2,1}$ from 5 to 0
syms x	Define variable x to be symbolic
double(x)	Convert x from symbolic to double
subs(x)	Replace all variables in the symbolic expression of x with their values taken from the MATLAB workspace

Constants

```
pi }\quad\pi=3.14159265358979
NaN Not a number (i.e. 0/0)
Inf Infinity
```

Basic Arithmetic and Trigonometric Functions	
$3 * 4,7+4,2-6,8 / 3$	multiply, add, subtract and divide
$3^{\wedge} 7$	Compute 3^{7}
$\operatorname{sqrt}(5)$	Compute $\sqrt{5}$
$\log (3)$	Compute $\ln (3)$
$\log 10(100)$	Compute $\log _{10}(100)$
$\operatorname{abs}(-5)$	Compute $\|-5\|$
$\sin (5 * \mathrm{pi} / 3)$	Compute $\sin (5 \pi / 3)$, angle expressed in rad
$\cos (\mathrm{pi} / 2)$	Compute $\cos (\pi / 2)$, angle expressed in rad
$\tan (\mathrm{pi} / 4)$	Compute $\tan (\pi / 2)$, angle expressed in rad
$\operatorname{asin}(0.5)$	Compute $\arcsin (0.5)$, result expressed in rad
$\operatorname{atan}(3)$	Compute $\arctan (\pi / 2)$, result in rad
$\operatorname{atan2(2,3)}$	Compute $\arctan (2 / 3)$, result $\in[-\pi, \pi]$
$\operatorname{sind}(300)$	Compute $\sin (300)$, angle expressed in deg
$\operatorname{cosd}(90)$	Compute $\cos (90)$, angle expressed in deg

Complex Numbers (either numeric or symbolic)

$a=4+i * 3$	define a with 4 as the real part and 3 as the imaginary part
abs (a)	compute $\|a\|$ (i.e. $\left.\sqrt{4^{2}+3^{2}}\right)$
angle(a)	compute $\arg (a)($ i.e. $\operatorname{atan2}(3,4))$

Constructing Matrices and Vectors	
zeros $(12,5)$	Make a 12×5 matrix of zeros
ones $(12,5)$	Make a 12×5 matrix of ones
eye(5$)$	Make a 5×5 identity matrix
linspace $0,50,1000)$	Make a vector with 1000 elements evenly spaced between 0 and 50
$0: 10$	Row vector of $0,1, \ldots, 9,10$ $0: 0.001: 50$ Row vector of elements from 0 to 50 with 0.001 step

Operatio	on Matrices and Vectors
3 * x	Multiply every element of x by 3
$x+2$	Add 2 to every element of x
$x+y$	Element-wise addition of two vectors x and y
A * y	Product of a matrix and vector
A * B	Product of two matrices
$A^{\wedge} 3$	Square matrix A to the third power
A.^ 3	Every element of A to the third power
$\exp (\mathrm{A})$	Compute the exponential of every element of A
$\operatorname{expm}(A)$	Compute the exponential matrix of A (i.e. e^{A})
abs(A)	Compute the absolute values of every element of A
A^{\prime}	Transpose of A
$\operatorname{inv}(\mathrm{A})$	Compute the inverse of A
$\operatorname{det}(\mathrm{A})$	Compute the determinant of A
eig(A)	Compute the eigenvalues of A
rank(A)	Compute the rank of A

Entries of Matrices and Vectors
$\mathrm{x}(2: 12)$
$\mathrm{x}(2:$ end $)$
$\mathrm{The} 2^{\text {nd }}$ to the $12^{\text {th }}$ elements of x
$\mathrm{x}(1: 3:$ end $)$
$\mathrm{The} 2^{\text {nd }}$ to the last elements of x
$\mathrm{~A}(5,: 5)$
Every third element of x from the first to last
$\mathrm{A}(5,1: 3)$
:---

Plotting	
plot (x, y)	Plot y versus x (must be the same length)
$\log \log (\mathrm{x}, \mathrm{y})$	Plot y versus x on a log-log scale (both axes have a logarithmic scale)
semilogx (x, y)	Plot y versus x with x on a log scale
semilogy $\mathrm{x}, \mathrm{y})$	Plot y versus x with y on a log scale
axis equal	Force the x and y axes to be scaled equally
grid on	Add a grid to the plot
hold on	Multiple plots on single figure
figure	Start a new plot

Equations and Polynomials	
$\operatorname{coeffs}\left(x^{\wedge} 2 * x-1\right)$	Return the coefficients of a polynomial symbolic expres- sion
solve $\left(x^{\wedge} 2+x==0\right)$	Compute the solution of a sym- bolic equation
solve $([x 1+x 2==0 ; x 2+6==0])$	Compute the solution of a sys- tem of symbolic equations

MATLAB SYMBOLIC AND CONTROL SYSTEM TOOLBOXES

Laplace Transform (Symbolic)	
dirac(t)	Dirac impulse
heaviside(t)	Heaviside step function
laplace(f(t))	Compute the Laplace transform of a symbolic expression
ilaplace(G(s))	Compute the inverse Laplace transform of a symbolic expression

LTI Systems and Transfer Functions	
ctrb (A, B)	Compute the controllability matrix
$\operatorname{obsv}(\mathrm{A}, \mathrm{C})$	Compute the observability matrix
$s s(A, B, C, D)$	Get the state-space representation of a LTI system
tf(num, den)	Get the transfer function given the coefficients of numerator and denominator
tf(sys)	Get the transfer function given the ss representation of a system
[Num, Den] $=\operatorname{ss2tf}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$	Compute the coefficients of the transfer function of the A, B, C, D system
$s=t f(' s ')$	Define the laplace s variable as a transfer function
pole(G)	Compute the poles of the transfer function G
zero(G)	Compute the zeroes of the transfer function G
dcgain(G)	Compute the DC gain of the transfer function G (i.e. gain at zero frequency)
damp(G)	Print poles, natural frequencies and damping factors of G

Connected Systems and Responses	
parallel(G1,G2)	Return the G1-G2 parallel connection
series(G1,G2)	Return the G1-G2 series connection
feedback(G1,G2)	Return the G1-G2 negative feedback connection
impulse(G)	Plot the impulse response of G
impulse(G,t)	Plot the impulse response of G in time $t(t$ is a sampled vector)
$y=$ impulse (G)	Return the impulse response of G as a column vector
step(G)	Plot the step response of G
$\operatorname{step}(\mathrm{G}, \mathrm{t})$	Plot the step response of G in time $\mathrm{t}(\mathrm{t}$ is a sampled vector)
$y=\operatorname{step}(G)$	Return the step response of G as a column vector
step(G, popt)	Plot the step response of G with specified time options (popt = timeoptions)
stepinfo(G)	Print the characteristics of the step response of G

PID Controllers (standard form)

pidstd(Kp)	Return a P controller
pidstd $(\mathrm{Kp}, \mathrm{Ti})$	Return a PI controller
pidstd $(\mathrm{Kp}, \mathrm{Inf}, \mathrm{Td})$	Return a PD controller
pidstd(Kp,Ti,Td)	Return a PID controller

Root locus and Bode Plots	
rlocus(G)	Plot the root locus of the transfer function G
rlocus(G,k)	Plot the root locus of G with given k values (k is a vector)
bode(G)	Plot the Bode diagrams of G (amplitude and phase)
bode(G,w)	Plot the Bode diagrams of G at given frequencies w (w is a vector)
margin(G)	Plot the Bode diagrams of G specifying the stability margin
[Gm,Pm,Wpi,Wc]=margin(G)	Return the gain (Gm) and phase (Pm) margins and the cross frequencies Wpi and Wc

Example: Root Locus

```
s = tf('s'); % Laplace variable
G = (s+5)/((s+1)*(s+2)*(s+8)); % Transfer function
rlocus(G) % Plot the root locus of G
```


Example: Bode
$s=t f(' s ') ; ~ \% ~ L a p l a c e ~ v a r i a b l e ~$
$G=(s+5) /((s+1) *(s+2) *(s+8)) ; \%$ Transfer function
bode(G) \% Amplitude and phase Bode diagrams

