MATLAB BASIC CHEAT SHEET

Basics	
clc	Clear command window
clear	Clear all variables
close all	Close all plots
help function	Print help page for function
% This is a comment	Comments
ctrl-c	Abort the current operation
format short	Display 4 decimal places
format long	Display 15 decimal places

Defining and Changing Variables		
a = 3	Define variable a to be 3	
x = [1, 2, 3]	Set x to be the row vector $[1,2,3]$	
x = [1; 2; 3]	Set x to be the column vector $[1,2,3]^T$	
A = [1, 2, 3, 4; 5, 6, 7, 8; 9, 10, 11, 12]	Set A to be a 3×4 matrix	
x(2) = 7	Change x from $\left[1,2,3 ight]$ to $\left[1,7,3 ight]$	
A(2,1) = 0	Change $A_{2,1}$ from 5 to 0	
syms x	Define variable x to be symbolic	
double(x)	Convert x from symbolic to double	
subs(x)	Replace all variables in the symbolic expression of x with their values taken from the MATLAB workspace	

Constants		
pi	$\pi = 3.141592653589793$	
NaN	Not a number (i.e. 0/0)	
Inf	Infinity	

Basic Arithmetic and Trigonometric Functions		
3*4, 7+4, 2-6, 8/3	multiply, add, subtract and divide	
3^7	Compute 3 ⁷	
sqrt(5)	Compute $\sqrt{5}$	
log(3)	Compute $\ln(3)$	
log10(100)	Compute $\log_{10}(100)$	
abs(-5)	Compute $ -5 $	
sin(5*pi/3)	Compute $\sin(5\pi/3)$, angle expressed in rad	
cos(pi/2)	Compute $\cos(\pi/2)$, angle expressed in rad	
tan(pi/4)	Compute $ an(\pi/2)$, angle expressed in rad	
asin(0.5)	Compute $\arcsin(0.5)$, result expressed in rad	
atan(3)	Compute $\arctan(\pi/2)$, result in rad	
atan2(2,3)	Compute $\arctan(2/3)$, result $\in [-\pi,\pi]$	
sind(300)	Compute $\sin(300)$, angle expressed in deg	
cosd(90)	Compute $\cos(90)$, angle expressed in deg	

Complex Numbers (either numeric or symbolic)		
a = 4+i*3	define <i>a</i> with 4 as the real part and 3 as the imaginary part	
abs(a)	compute $ a $ (i.e. $\sqrt{4^2+3^2}$)	
angle(a)	compute $arg(a)$ (i.e. atan2(3,4))	

Constructing Matrices and Vectors		
zeros(12, 5)	Make a $12 imes 5$ matrix of zeros	
ones(12, 5)	Make a $12 imes 5$ matrix of ones	
eye(5)	Make a $5 imes 5$ identity matrix	
linspace(0, 50, 1000)	Make a vector with 1000 elements evenly spaced between 0 and 50	
0:10	Row vector of $0, 1, \ldots, 9, 10$	
0:0.001:50	Row vector of elements from 0 to 50 with 0.001 step	

Operations	s on Matrices and Vecto	rs	
3 * x	Multiply every element of x	by 3	
x + 2	Add 2 to every element of x		
x + y	Element-wise addition of tw	Element-wise addition of two vectors x and y	
А * у	Product of a matrix and vec	tor	
A * B	Product of two matrices		
A^3	Square matrix A to the third	d power	
A .^ 3	Every element of A to the t	hird power	
exp(A)	Compute the exponential of	f every element of A	
expm(A)	Compute the exponential m	atrix of A (i.e. e^A)	
abs(A)	Compute the absolute value	es of every element of A	
Α'	Transpose of A		
inv(A)	Compute the inverse of ${\cal A}$		
det(A)	Compute the determinant o	of A	
eig(A)	Compute the eigenvalues of	f A	
rank(A)	Compute the rank of ${\cal A}$		
E de la constance de la	Mar 1		
Entries of I	Matrices and vectors		
x(2:12)	The 2 nd to the 12 nd elem	ients of x	
x(2:end)	The 2 nd to the last elem	ients of x	
x(1:3:end)	x(1:3:end) Every third element of <i>x</i> from the first to last		
A(5,:)	Get the 5th row of <i>A</i>		
A(:,5)	Get the 5 th column of A	Get the 5 th column of A	
A(5, 1:3)	Get the first to third ele	ments in the 5 th row	
Plotting			
plot(x,y)	Plot y versus x (m	ust be the same length)	
loglog(x,y) Plot y versus x on have a logarithmic	a log-log scale (both axes c scale)	
semilogx(x	(, y) Plot y versus x with	th x on a log scale	
semilogy(x	(, y) Plot y versus x with	th y on a log scale	
axis equal	Force the x and y	axes to be scaled equally	
grid on	Add a grid to the plot		
hold on	Multiple plots on s	single figure	
figure	Start a new plot		
_			
Equations	and Polynomials		
coeffs(x^2	*x-1) Ret pol sio	urn the coefficients of a ynomial symbolic expres- n	
solve(x^2+	x==0) Cor bol	npute the solution of a sym- ic equation	
solve([x1+	x2==0;x2+6==0]) Cor ter	npute the solution of a sys- n of symbolic equations	

MATLAB SYMBOLIC AND CONTROL SYSTEM TOOLBOXES

Laplace Transform (Symbolic)		
dirac(t)	Dirac impulse	
heaviside(t)	Heaviside step function	
laplace(f(t))	Compute the Laplace transform of a symbolic expression	
<pre>ilaplace(G(s))</pre>	Compute the inverse Laplace transform of a symbolic expression	

LTI Systems and Transfer Functions		
ctrb(A,B)	Compute the controllability ma- trix	
obsv(A,C)	Compute the observability ma- trix	
ss(A,B,C,D)	Get the state-space representa- tion of a LTI system	
tf(num,den)	Get the transfer function given the coefficients of numerator and denominator	
tf(sys)	Get the transfer function given the ss representation of a sys- tem	
[Num,Den]=ss2tf(A,B,C,D)	Compute the coefficients of the transfer function of the A,B,C,D system	
<pre>s=tf('s')</pre>	Define the laplace s variable as a transfer function	
pole(G)	Compute the poles of the trans- fer function G	
zero(G)	Compute the zeroes of the trans- fer function G	
dcgain(G)	Compute the DC gain of the transfer function G (i.e. gain at zero frequency)	
damp(G)	Print poles, natural frequencies and damping factors of G	

Connected Systems and Responses

series(G1,G2)Return the G1-G2 sefeedback(G1,G2)Return the G1-G2 ne	eries connection egative feedback connec-
feedback(G1,G2) Return the G1-G2 ne	egative feedback connec-
tion	
impulse(G) Plot the impulse res	sponse of G
<pre>impulse(G,t) Plot the impulse re is a sampled vector</pre>	esponse of G in time t (t)
y=impulse(G) Return the impulse umn vector	e response of G as a col-
step(G) Plot the step respon	nse of G
step(G,t)Plot the step resposampled vector)	nse of G in time t (t is a
y=step(G) Return the step res vector	ponse of G as a column
step(G,popt)Plot the step respotime options (popt)	onse of G with specified = timeoptions)
stepinfo(G) Print the characteris of G	tics of the step response

PID Controllers (standard form)		
pidstd(Kp)	Return a P controller	
pidstd(Kp,Ti)	Return a PI controller	
pidstd(Kp,Inf,Td)	Return a PD controller	
pidstd(Kp,Ti,Td)	Return a PID controller	

Root locus and Bode Plots	
rlocus(G)	Plot the root locus of the trans- fer function G
rlocus(G,k)	Plot the root locus of G with given k values (k is a vector)
bode(G)	Plot the Bode diagrams of G (amplitude and phase)
bode(G,w)	Plot the Bode diagrams of G at given frequencies w (w is a vec- tor)
margin(G)	Plot the Bode diagrams of G specifying the stability margin
[Gm,Pm,Wpi,Wc]=margin(G)	Return the gain (Gm) and phase (Pm) margins and the cross fre- quencies Wpi and Wc

Example: Root Locus

s = tf('s'); % Laplace variable
G = (s+5)/((s+1)*(s+2)*(s+8)); % Transfer function
rlocus(G) % Plot the root locus of G

Example: Bode

s = tf('s'); % Laplace variable
G = (s+5)/((s+1)*(s+2)*(s+8)); % Transfer function
bode(G) % Amplitude and phase Bode diagrams

