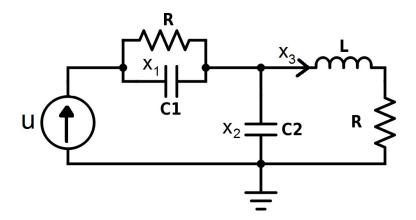
SOLUZIONE della Prova TIPO – F per:

- Esame di "FONDAMENTI DI AUTOMATICA" (9 CFU): 6 degli 8 esercizi numerici + 4 delle 5 domande a risposta multipla (v. ultime due pagine) NOTA: nell'effettiva prova d'esame i due esercizi e la domanda non richiesti verranno scartati a priori dal docente (lo studente riceverà un testo già adattato al numero di CFU)
- Esame di "FONDAMENTI DI AUTOMATICA" (6 CFU) / "CONTROLLI AUTOMATICI": tutti gli 8 esercizi numerici + 5 domande a risposta multipla (v. ultime 2 pagine)

ESERCIZIO 1.

Si consideri il seguente circuito elettrico passivo:



Applicando le leggi di Kirchhoff e le formule di base dei componenti RLC, si ottiene il seguente modello matematico:

$$C_1 \dot{x}_1 + \frac{x_1}{R} = u$$

$$C_2 \dot{x}_2 + x_3 = u$$

$$L \dot{x}_3 + R x_3 = x_2$$

Si determini il corrispondente modello dinamico nello spazio degli stati, del tipo:

$$\dot{x}(t) = Ax(t) + Bu(t); \ y(t) = Cx(t) + Du(t)$$

considerando le ovvie scelte per stato e ingresso, mentre l'uscita sia fissata $y=x_1$;

RISPOSTA:

Le equazioni fornite sono già predisposte per una immediata riscrittura in forma compatibile con la definizione delle matrici di sistema A, B, C, D:

$$\dot{x}_1 = -\frac{1}{RC_1}x_1 + \frac{1}{C_1}u
\dot{x}_2 = -\frac{1}{C_2}x_3 + \frac{1}{C_2}
\dot{x}_3 = \frac{1}{L}x_2 - \frac{R}{L}x_3$$

Dalle quali risulta appunto:

$$A = \begin{bmatrix} -\frac{1}{RC_1} & 0 & 0 \\ 0 & 0 & -\frac{1}{C_2} \\ 0 & \frac{1}{L} & -\frac{R}{L} \end{bmatrix} \qquad B = \begin{bmatrix} \frac{1}{C_1} \\ \frac{1}{C_2} \\ 0 \end{bmatrix}$$

e poiché $y = x_1$, l'uscita non dipende dall'ingresso (D = 0, sistema puramente dinamico) e la matrice di dimensione 1x3 che estrae la prima variabile dal vettore di stato è:

$$C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \qquad D = \begin{bmatrix} 0 \end{bmatrix}$$

ESERCIZIO 2.

Dato il modello ottenuto nell'Esercizio 1, si sostituiscano i seguenti valori per i parametri fisici:

$$R = 2$$
; $C_1 = 0.25$; $C_2 = 0.5$; $L = 0.25$;

e si verifichi se il sistema sia o meno completamente osservabile, calcolando la matrice di osservabilità ed il relativo rango.

RISPOSTA:

Con i parameri fissati, la matrice \boldsymbol{A} (la matrice \boldsymbol{B} non interessa ai fini dell'analisi di osservabilità) diventa:

$$A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 4 & -8 \end{bmatrix}$$

Pertanto la matrice di osservabilità è:

$$Q^{T} = \begin{bmatrix} C^{T} & A^{T}C^{T} & (A^{T})^{2}C^{T} \end{bmatrix} = \begin{bmatrix} 1 & -2 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$rango(Q^T) = 1$$

Perciò il sistema **E**' → **NON E**' completamente osservabile.

ESERCIZIO 3.

Si calcoli la risposta impulsiva del sistema descritto dal seguente modello matematico ingresso-uscita nel dominio del tempo:

$$\dot{y}(t) + 4y(t) = 2u(t)$$

RISPOSTA:

La risposta impulsiva del sistema è l'antitrasformata di Laplace della funzione di trasferimento ingresso-uscita. Quest'ultima, può essere ottenuta in modo molto semplice dalla trasformata di Laplace del modello matematico fornito, ricordando il teorema della trasformata di Laplace per la derivata di un segnale:

$$sY(s) + 4Y(s) = 2U(s)$$

Da cui si ottiene:

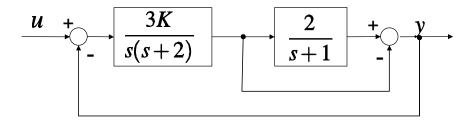
$$G(s) = \frac{Y(s)}{U(s)} = \frac{2}{(s+4)}$$

la cui antitrasformata è il risultato immediato:

$$W(t) = \mathcal{L}^{-1}[G(s)] = 2e^{-4t}$$

ESERCIZIO 4.

Dato il sistema descritto dal seguente diagramma a blocchi:



si determini l'intervallo di valori di K tali per cui il sistema ad anello chiuso risulti essere ASINTOTICAMENTE STABILE.

RISPOSTA:

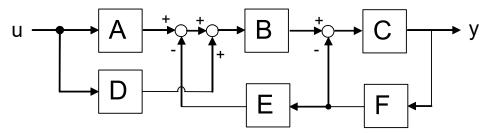
Il denominatore del sistema ad anello chiuso, ottenuto risolvendo la retroazione tra il blocco dipendente da K e il parallelo di 2/(s+1) con un ramo unitario negativo, risulta:

$$s^3 + 3 s^2 + (1 - 3 K) s + 3 K$$

Applicando a quest'ultimo il criterio di Routh si ottiene la condizione:

ESERCIZIO 5.

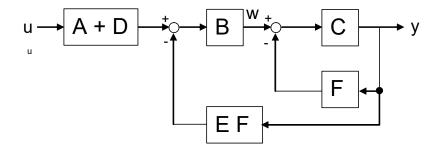
Si determini la funzione di trasferimento del seguente schema a blocchi:



RISPOSTA:

$$Y/U = (A + D) (BC)/(1 + CF + BCEF)$$

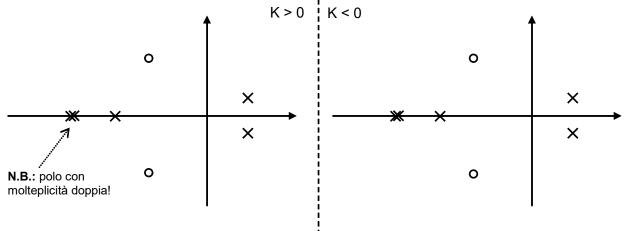
Lo schema è equivalente al seguente, ottenuto scambiando di ordine i due nodi sommatori dopo il blocco A e spostando la diramazione che precede il blocco E a monte di F:



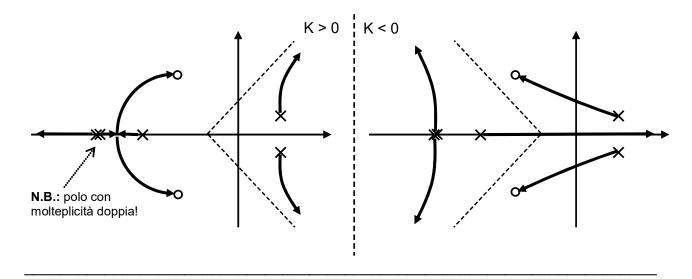
I due anelli di retroazione presenti possono essere ridotti in successione, a partire da quello più interno (per il quale risulta y / w = C / (1 + CF)).

ESERCIZIO 6.

Si tracci l'andamento <u>qualitativo</u> del luogo delle radici per un sistema in retroazione la cui funzione di trasferimento d'anello abbia poli (X) e zeri (O) come indicato in figura:



RISPOSTA:



ESERCIZIO 7.

Si calcoli la risposta y(t) del sistema avente funzione di trasferimento ed al quale è applicato un ingresso a gradino unitario (trasformata di Laplace u(s) = 1/s):

$$G(s) = \frac{7s + 24}{s^2 + 7s + 12}$$

RISPOSTA:

Applicando il metodo della scomposizione in fratti semplici alla funzione ottenuta da $Y(s) = G(s) \ U(s)$, avente poli in 0 (dalla funzione del gradino in ingresso), -3 e -4 (poli di G(s)), si ottiene:

$$y(t) = 2 - e^{-3t} - e^{-4t}$$

ESERCIZIO 8.

Dato il seguente diagramma di Bode delle ampiezze:



si determinino le incognite della corrispondente funzione di trasferimento, supposta a fase minima:

$$G(s) = \frac{K(1+2s)(1+as)^{m_a}}{s(1+\frac{s}{20})^2(1+bs)^{n_b}(1+\frac{s}{2500})}$$

RISPOSTA:

$$K = 20$$
 $a = 1/2$ (punto di rottura a pulsazione = 2) $m_a = 2$

$$b = 1/300$$
 (punto di rottura a pulsazione = 300) $n_b = 1$

TEST A RISPOSTA MULTIPLA

DOMANDA 1.

La stabilità di un sistema lineare e stazionario:

- O È funzione delle condizioni iniziali di un sistema
- O È funzione del valore degli ingressi
- O È funzione del valore dei disturbi
- X È funzione degli autovalori del sistema

DOMANDA 2.

L'ingresso u(t) e l'uscita y(t) di un sistema sono legati dalla relazione $\dot{y}(t)=u(t)$ Tale sistema:

- O ha una funzione di trasferimento pari a G(s) = Y(s) / U(s) = s
- **X** ha una funzione di trasferimento pari a G(s) = Y(s) / U(s) = 1 / s
- O ha una funzione di trasferimento pari a G(s) = Y(s) / U(s) = 1 / (s+1)
- X è puramente dinamico

NOTA: Il modello del sistema in questione equivale ad un modello nello spazio degli stati con: $\dot{x}(t) = u(t)$; y(t) = x(t). Riconducendo questo modello a quello di un generico modello nello spazio degli stati, si può notare come le "matrici" (di dimensione 1x1) del sistema siano A=0, B=1, C=1 e D=0. Pertanto, il sistema è puramente dinamico e la corrispondente funzione di trasferimento è $G(s) = C(sI-A)^{-1}B = 1/s$.

DOMANDA 3.

Il luogo delle radici di una funzione di trasferimento di anello avente \mathbf{n} poli e \mathbf{m} zeri, con $\mathbf{n} > \mathbf{m}$, presenta almeno un asintoto reale:

- x quando K > 0 (luogo diretto) e n m è dispari
- o quando K > 0 (luogo diretto) e n m è pari
- x quando K < 0 (luogo inverso) e n m è dispari
- **x** quando K < 0 (luogo inverso) e n m è pari

NOTA: Se n > m il luogo delle radici presenta sempre almeno un asintoto. Nel caso in cui sia K < 0 il primo asintoto ha sempre un angolo nullo rispetto all'asse reale, pertanto coincide con il semiasse reale positivo. Se invece K > 0 ed n — m è dispari, sempre in base alla regola sugli angoli degli asintoti, uno degli asintoti avrà angolo π rispetto all'asse reale, pertanto coinciderà con il semiasse reale negativo.

DOMANDA 4.

Sia F(s) una funzione razionale fratta nella variabile di Laplace s. La scomposizione in fratti semplici mediante il metodo dei residui, cioè:

$$F(s) = \frac{N(s)}{D(s)} = \sum_{i=1}^{n} \frac{k_i}{s - p_i}$$

nella quale i valori p_i sono i poli (tutti distinti) di F(s), n è il grado di D(s), m è il grado di N(s) e:

$$k_i = \left[(s - p_i) \frac{N(s)}{D(s)} \right]_{s = p_i}$$

- O è sempre possibile
- O è possibile solo se la funzione F(s) è propria ($m \le n$)
- \mathbf{X} è possibile solo se la funzione $\mathbf{F}(\mathbf{S})$ è strettamente propria $(\mathbf{m} < \mathbf{n})$
- O è sempre impossibile

DOMANDA 5.

Il criterio di Routh per lo studio di stabilità di un sistema retroazionato:

- X è un criterio necessario e sufficiente
- O è un criterio solo sufficiente
- O si applica solo a sistemi ad anello aperto che siano stabili
- O è un metodo basato sull'approssimazione