
Prova TIPO – B per:


- Esame di "FONDAMENTI DI AUTOMATICA" (9 CFU): 6 degli 8 esercizi numerici + 4 delle 5 domande a risposta multipla (v. ultime due pagine)
 NOTA: nell'effettiva prova d'esame i due esercizi e la domanda non richiesti verranno scartati a priori dal docente (lo studente riceverà un testo già adattato al numero di CFU)
- Esame di "FONDAMENTI DI AUTOMATICA" (6 CFU) / "CONTROLLI AUTOMATICI": <u>tutti gli 8 esercizi numerici + 5 domande a risposta</u> <u>multipla</u> (v. ultime 2 pagine)

ESERCIZIO 1.

Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente figura:

Tale dispositivo è un sistema elettromeccanico che può essere schematizzato dal diagramma seguente, che evidenzia la presenza di un circuito elettrico RL e di un gruppo massa-molla-smorzatore azionato dalla forza di attrazione magnetica F_L :

Le equazioni differenziali che descrivono il modello dinamico del sistema sono le seguenti:

$$V = RI + L\dot{I} + k_A\dot{x}$$
$$m\ddot{x} + b\dot{x} + k_E x = k_A I$$

Si determini il corrispondente modello dinamico nello spazio degli stati, del tipo:

$$\dot{x}(t) = Ax(t) + Bu(t); \ y(t) = Cx(t) + Du(t)$$

fissando le seguenti scelte per stato, ingresso e uscita:

$$x_1 = I$$
; $x_2 = x$; $x_3 = \dot{x}$; $u = V$; $y = x_1$

RISPOSTA:

$$A =$$

$$B =$$

$$C =$$

$$D =$$

ESERCIZIO 2.

Dato il modello ottenuto nell'Esercizio 1, si sostituiscano i seguenti valori per i parametri fisici:

$$m = 0.1$$
: $b = 0.4$: $k_F = 0.6$: $R = 4$: $L = 0.5$: $k_A = 0.5$

e si verifichi se il sistema sia o meno completamente osservabile, calcolando la matrice di osservabilità ed il relativo rango.

RISPOSTA:

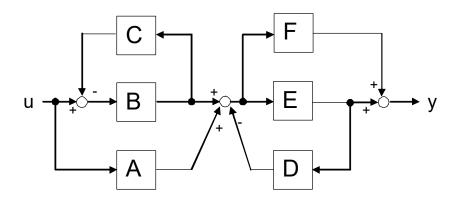
$$Q^T =$$

rango(
$$Q^T$$
) =

Perciò il sistema E' / NON E' completamente osservabile.

ESERCIZIO 3.

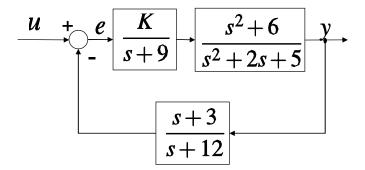
Si calcoli l'antitrasformata di Laplace della seguente funzione:


$$F(s) = \frac{6s + 26}{s^2 + 8s + 15}$$

RISPOSTA:

$$f(t) =$$

ESERCIZIO 4.


Si determini la funzione di trasferimento del seguente schema a blocchi:

RISPOSTA:

ESERCIZIO 5.

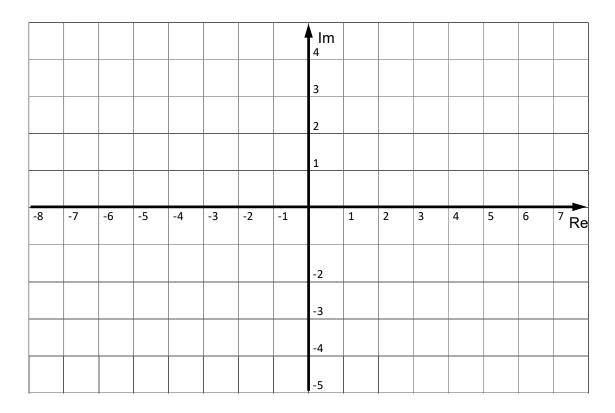
Dato lo schema a blocchi della seguente figura:

si calcoli il valore di K tale per cui risulti:

$$\lim_{t\to\infty}e(t)=0,2$$

qualora ad U sia applicato un gradino unitario:

$$u(s) = \frac{1}{s}$$


RISPOSTA:

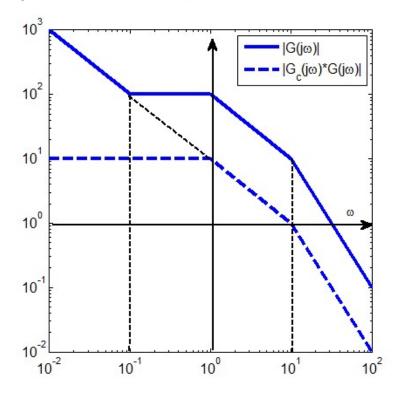
ESERCIZIO 6.

Dato il sistema descritto dal seguente diagramma a blocchi:

si disegni il corrispondente luogo delle radici valido per K > 0 (luogo diretto) e si determini il valore di K (compatibile con il luogo diretto) per cui il sistema risulti semplicemente stabile

RISPOSTA:

ESERCIZIO 7.


Dato il sistema descritto dal seguente diagramma a blocchi:

si determini il valore di K tale che il sistema ad anello chiuso risulti avere coefficiente di smorzamento δ = 0,5 = 1/2

RISPOSTA:

ESERCIZIO 8.

Dati i seguenti diagrammi di Bode delle ampiezze:

si determinino le corrispondenti funzioni di trasferimento G(s) e $G_c(s)$, supponendo che siano entrambe a fase minima:

RISPOSTA:

$$G_c(s) =$$

TEST A RISPOSTA MULTIPLA

DOMANDA 1.

La matrice di transizione del sistema dinamico: $\dot{x}(t) = ax(t) \quad (x(t) \in \mathbb{R})$ risulta essere:

- e^{0t}
- o e^{-at}
- o e^{at}
- 0 0

DOMANDA 2.

Il polinomio minimo di un sistema dinamico lineare, stazionario e tempo continuo, è:

$$\lambda(\lambda+3)^2$$

Il sistema:

- O ha un modo instabile
- O potrebbe avere un modo instabile
- O ha un modo semplicemente stabile
- O ha due modi asintoticamente stabili

DOMANDA 3.

Il moto libero di un sistema dinamico, lineare, stazionario, continuo e di ordine due, è del tipo:

$$x_1(t) = e^{-t}x_1(0)$$

 $x_2(t) = e^{-2t}x_2(0)$

Il sistema considerato:

- O è completamente controllabile
- O può essere completamente controllabile
- O è asintoticamente stabile
- O è instabile

DOMANDA 4.

Il valore a regime $y(\infty)$ della risposta al gradino unitario (U(s) = 1 / s) della seguente funzione di trasferimento:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{s+2}{s+3}$$

- O è infinito
- O è finito e vale 2
- O è finito e vale 2/3
- O è nullo

DOMANDA 5.

Il tempo di salita T_s della risposta al gradino di un sistema retroazionato è definito come:

- O il tempo necessario per raggiungere il 50% del valore finale
- O il tempo necessario per raggiungere il 90% del valore finale
- O il tempo necessario per passare dal 10% al 90% del valore finale
- O il tempo necessario perché l'uscita rimanga entro il $\pm 5\%$ del valore finale