
Floating Point IEEE 754 e
definizione di numeri Fixed Point

Introduzione al trattamento di
numeri Floating Point in sistemi a

microprocessore

Esempio: MC9S12C32 Freescale Microcontroller

• CPU with Hardware multiplier
• Very good timing unit
• Very good PWM module

• Widely used in automotive
applications

• NO FPU (Floating Point Unit)

Floating Point Numbers

   127
23

1

2211 



 









  e

i

i
ibvalue

sign

S (31) e (30-23) m (22-0) “bi”

0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0

1 Hidden bit M = m-1

The IEEE 754 is the most widely accepted standard representation for floating
point numbers. The standard provides definitions for single precision and double
precision representations. The single precision IEEE FPS format is composed of
32 bits, divided into a 23 bit mantissa, M, an 8 bit exponent, E, and a sign bit, S:

• The normalized mantissa, m, is stored in bits 0-22 with the hidden bit, b0, omitted.
Thus M = m-1.

• The exponent, e, is represented as a bias-127 integer in bits 23-30. Thus, E = e+127.
• The sign bit, S, indicates the sign of the mantissa, with S=0 for positive values and S=1

for negative values.

IEEE754: Floating Point Precision

Type Sign Exponent Significand Total bits
Exponent
bias

Bits
precision

Half
(IEEE 754-2008)

1 5 10 16 15 11

Single 1 8 23 32 127 24

Double 1 11 52 64 1023 53

Quad 1 15 112 128 16383 113

Normally PC and emulation environment use Double precision format, while the
CodeWarrior Compiler for HCS12 microcontroller uses single precision format

Due to absence of FPU, all Floating point operations and conversions are software
executed by the microcontroller.

Floating Point/Fixed Point Conversion

The floating/Fixed point conversions are planned and executed by software
routines that are necessarily iterative due to the different possible values of
floating and fixed numbers.

After each shift a comparison is executed by the ALU microcontroller in order
to control if the mantissa (significand) is zero, for normalization.

Barrel shifters are used to vary the base (mantissa value) and to change the
exponent until the number is normalized for conversion

normalized_mantissa = 1.xxxxxx…………x

  127
2 2*.1*1  ES MValue

S E (8 bits) M (23 bits)

Single Precision Floating Point:

FIValue .

I (12 bits) F (20 bits)

Fixed Point (32.20):

Floating Point/Fixed Point Operations

After each shift, a comparison is executed by the ALU microcontroller, in
order to control if the two exponent of the operands are equal for
addition/subtraction.

Barrel shifters are used to vary the base (mantissa value) and to change the
exponent until the number is normalized for conversion before and after
addition/subtraction.

Multiplication and division are similarly complex: exponent are
added/subtracted, significands are multiplied/divided, but, after the
operation, the resulting number must be normalized!

Addition/subtraction

Multiplication/division

Example on Freescale Microcontroller:

long int f; f = px * p2gain; 5,5 µs

float f; f = (float)px * p2gain; 45 µs

Where P2gain is a 2 byte integer (16 bit)

Example of Circuitry/Operations for
Floating Point Addition & subtraction

