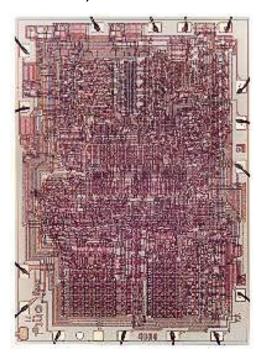
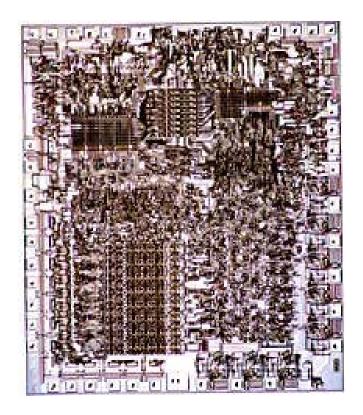

Storia dei Computer


- 1945 John Von Neumann propose la "stored program architecture"
- 1948 Bardeen, Brattain and Shockley inventarono il transistor
- 1958 Jack Kilby introdusse l'IC (integrated circuit) e aprì la strada al calcolo implementato sui chip.
- 1960 I transistor iniziarono ad essere utilizzati sui computer
- 1965 Gordon Moore annunciò la sua famosa legge (che poi vedremo).

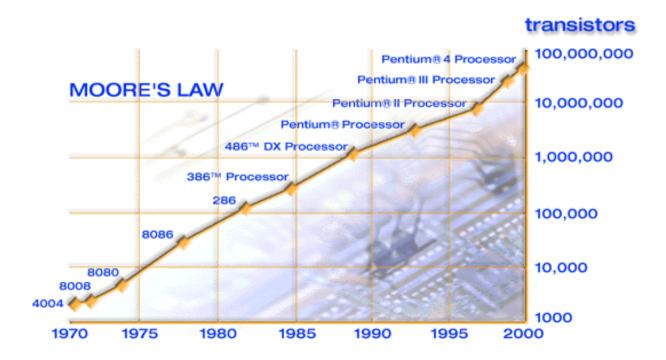
Sistemi a microprocessore

Il primo microprocessore commerciale, l'Intel 4004, risale al 1971 (2250 transistor)



- 1 Alu a 4 bit, 4 bit bus dati, 16 piedini, 2300 transistor, 8KB ROM e 640 byte di RAM indirizzabili
- frequenza di clock = 108 KHz, 0.06 MIPS
- sistema completato da altri chip

Sistemi a microprocessore (2)


Nel 1974 nasce l'8080 al costo di 379 \$ in un kit che prendeva il nome di Altair

Poco più tardi sarebbe diventato il cuore dei Personal Computer

Legge di Moore

Nel 1965 Gordon Moore enunciò la legge secondo cui il numero di transistor componenti un microprocessore sarebbe raddoppiato ogni 18 mesi. E che questo sarebbe risultato valido fino al 1975.

Validità della legge di Moore

In realtà questa è la legge di Moore comparata con i risultati degli ultimi 30 anni..... Si può dire che è ancora abbastanza valida.

1971: 4004 2,250 transistors

1972: 8008 2,500 transistors

1974: 8080 5,000 transistors

1978: 8086 29,000 transistors

1982: 80286 120,000 transistors

1985: 80386 275,000 transistors

1989: 80486 DX 1,180,000 transistors

1993: Pentium 3,100,000 transistors

1997: Pentium II 7,500,000 transistors

1999: Pentium III 24,000,000 transistors

2000: Pentium IV 42,000,000 transistors

Storia dei Computer

- 1974 William H. Gates e Paul Allen scrissero un interprete BASIC
- 1981 IBM introdusse il primo PC, con un 16-bit 8088 @ 4.77 MHz, con memoria composta da cassette, un floppy opzionale e un pessimo OPSYS chiamato DOS
- 1983 Primo PC che possa definirsi tale
- 1984 Introduzione della interfaccia Windows (nato negli Xerox lab.)
- 1985 Primo microprocessore a 32-bit (80386)

Evoluzione dei microprocessori

Principali categorie per i microprocessori moderni:

- Processori general purpose
 - prestazioni elevatissime
 - utilizzati per personal computer e workstation
 - sistema completato da altri "grossi" chip con controllori (2 o 3) detti chipset, da numerosi chip di memoria (cache, memoria centrale, volatile e non) e bus per schede di espansione

Microcontrollori

- prestazioni molto più ridotte, ma adeguate per applicazioni di automazione industriale
- integrano numerosi controllori on-chip
- sistema spesso non necessita di altri chip

Digital signal processor

- prestazioni elevatissime nell'elaborazione dei segnali digitali
- sistema specializzato che solitamente necessita solo di chip di memoria

Storia dei Computer

- 1989 80486, dotato di co-processore matematico
- 1992 Pentium (64-bit memory bus)
- 1996 Pentium Pro (RISC core per the x86 ISA)
- 1997 Pentium II, MMX
- 1999 Pentium III, IA-64 (explicitly parallel processor)
- Eccetera (qui qualcuno sarà sicuramente più informato di me.....)

Processori per personal computer (Intel)

- 8088 (1979)
 - 20 bit bus indirizzi -> 1 MB addr. space
 - 8 bit bus dati
 - 1 Alu a 16 bit
 - 40 piedini

- 80286 (1982)
 - 24 bit bus indirizzi -> 16 MB addr. space
 - 16 bit bus dati
 - 1 Alu a 16 bit
 - 68 piedini
 - Frequenza di clock = 12-16 MHz
- 80386 (1985), 80486 (1989)

- Pentium (1993)
 - 32 bit bus indirizzi -> 4 GB addr. space
 - 64 bit bus dati
 - 2 Alu a 32 bit
 - 273 piedini
 - Frequenza di clock = 60-120 MHz
- Pentium II (1997), Pentium III (1999)
- Pentium 4
 - 36 bit bus indirizzi -> 64 GB addr. space
 - 64 bit bus dati
 - equivalente a 4 Alu a 32 bit
 - 478 piedini, 42 M transistor
 - Frequenza di clock = 2500-3800 MHz
- Sistemi Multi-Core
 - Aumento delle prestazioni dovuto al parallelismo

Microcontrollori

• 8051

originalmente di Intel, poi numerosi produttori e numerosissime versioni

80C51 (Philips):

- 128 byte di RAM interna
- 4 KB di EPROM interna
- 17 bit bus indirizzi -> 128 KB addr. space
- 8 bit bus dati
- 1 Alu a 8 bit
- 40 piedini
- Frequenza di clock fino a 33 MHz

Integra: timer/counter, interrupt controller, porta seriale asincrona, periferici vari

Strong Arm SA-1100 (Intel) basato sul core del consorzio ARM

- 26 bit bus indirizzi -> 64 MB addr. space
- 32 bit bus dati
- 1 Alu a 32 bit
- 208 piedini
- Frequenza di clock= 133-220 MHz

Integra:

4 timer/counter, interrupt controller, ASRAM/SDRAM controller, porta seriale asincrona, LCD controller, controller USB, controller PCMCIA, porta seriale a infrarossi, DMA controller, real time clock,...

Digital signal processor

C6X (Texas)

C6414

- 23 bit bus indirizzi -> 8 MB addr. space (256 MB se si usa RAM dinamica)
- 64 bit bus dati
- 8 Alu a 16 e 32 bit
- 532 piedini, 23 x 23 mm
- Frequenza di clock= 600 MHz, 4800 MIPS

C6211 (versione più economica a minore frequenza di clock)

- 22 bit bus indirizzi -> 4 MB addr. space (128 MB se si usa RAM dinamica)
- 32 bit bus dati
- 8 Alu a 16 e 32 bit
- 256 piedini, 27 x 27 mm
- Frequenza di clock= 150 MHz

Integra: 3 timer/counter, interrupt controller, ASRAM/SDRAM/SBSRAM controller, porte seriali sincrone, DMA controller

Trend della ricerca oggi

- Parallelismo nei microprocessori
 - Multithreaded execution
 - "Networks on chip"
 - parallelismo "Explicit instruction-level"
- Low-power portable computing
 - Riduzione della energia assorbita dai microprocessori
 - Low power: 5 V -> 3,3 V -> 2,8 V -> 1,8 V
 - Sensori intelligenti, PDA, e miniaturizzazione delle periferiche
- Internetworking e disponibilità della rete ovunque
 - Servizi disponibili sia su portante fisica (wired) che wireless
 - Protocolli du rete adattati alle applicazioni: WiFi,
 ZigBee, WiMax.....