Analisi Matematica 1b - Ing. Elettronica e Informatica - (Foschi) - 30.6.2021

Prima di svolgere gli esercizi leggi con attenzione il testo. Scrivi le tue risposte motivando ogni passaggio e **spiegando** in modo chiaro e leggibile le cose che fai.

- 1. (5 punti) Per definire in campo complesso una potenza in cui sia la base che l'esponente sono numeri complessi possiamo porre $z^w := e^{w \log z}$, in questa formula il logaritmo va inteso in senso complesso e quindi non è univocamente determinato. Determina, e rappresenta nel piano complesso, tutti i possibili valori che si possono attribuire alla potenza iⁱ e alla potenza i⁽ⁱ⁾.
- 2. (5 punti) Calcola il valore medio della funzione $f(t) = t \log \left(\frac{4-t}{4+t^2}\right)$ sull'intervallo [0,2].
- 3. (5 punti) Date le funzioni

$$\Phi(x,y) := \int_x^y \frac{\mathrm{d}\theta}{\mathrm{e}^\theta + (\cos\theta)^2}, \qquad \psi(t) := \left(\mathrm{e}^t, (\cos t)^2\right),$$

considera le funzioni composte $f(t) := \Phi(\psi(t))$ e $G(x,y) := \psi(\Phi(x,y))$. Calcola la derivata f'(0) e la matrice Jacobiana $J_G(0,0)$.

- 4. (5 punti) Sia Ω la regione dello spazio \mathbb{R}^3 che si trova sopra la superficie di equazione $z=x^2$ e sotto la superficie di equazione $z=4-y^2$. Si tratta di un dominio semplice rispetto all'asse z.
 - Calcola il volume di Ω tramite un integrale impostato integrando per fili verticali.
 - Calcola il volume di Ω tramite un integrale impostato integrando per strati orizzontali.
- 5. (5 punti) Considera l'integrale generalizzato

$$\int_0^{+\infty} \frac{\arctan(\sqrt[3]{x})}{(x^3 + 2\sin x)^p} \, \mathrm{d}x$$

Determina per quali valori di $p \in \mathbb{R}$ l'integrale risulta essere convergente.

6. (5 punti) Considera l'equazione differenziale

$$2y'' + 3y' + y = e^{-t}$$

- Ricava una formula per la soluzione generale y(t).
- Esistono soluzioni che non si annullano mai?
- Esistono soluzioni che si annullano in più di un punto?