Segnali binari

M. Favalli

Engineering Department in Ferrara

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ </p> Segnali binari Reti logiche

Sommario

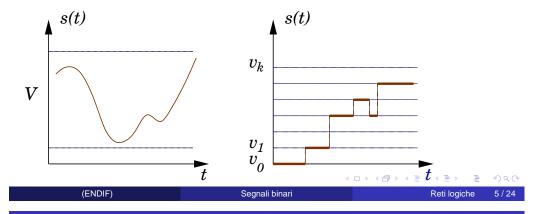
(ENDIF)

- Segnali analogici e digitali

Sommario

- Segnali analogici e digitali
- Segnali binari
- Segnali sincroni e asincroni

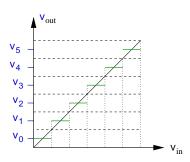
(ENDIF) Segnali binari


Introduzione

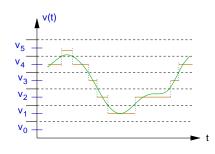
- La maggior parte dei sistemi digitali utilizzano grandezze binarie (bit che pssono assumere i valori 0/1) per codificare le informazioni
- Questa non é l'unica alternativa possibile
- La codifica binaria delle informazioni presenta dei vantaggi dal punto di vista:
 - dell'affidabitá nella trasmissione, elaborazione e memorizzazione delle informazioni
 - della semplicitá ed efficienza dei blocchi logici che elaborano tali informazioni

Segnali binari

Segnali


- Gli elementi del supporto fisico dell'informazione e le grandezze fisiche che li caratterizzano vengono definiti come segnali
- Ciascun segnale pu
 ó assumere valori all'interno di un insieme che pu
 ó essere infinito (un intervallo di reali) o finito
- Nel primo caso il sistema viene definito "analogico", nel secondo "digitale"

Discretizzazione

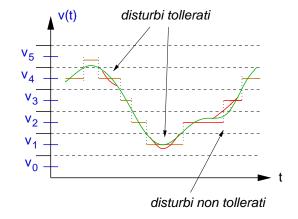

Si tratta dell'operazione che consente di passare da un segnale analogico a uno discreto.

Funzione di discretizzazione

(ENDIF)

Esempio

Segnali


- I segnali possono essere costituiti dalle piú diverse quantitá (forza, pressione, tensione, corrente, intensitá di flusso luminoso) e tipicamente assumono valori continui
- In prospettiva possono esistere anche segnali discreti (numero di elettroni), posizione di elettroni, spin etc.
- I segnali evolvono nel tempo dando luoo a forme d'onda
- Nel seguito, faremo riferimento a a segnali il cui valore é dato dalla tensione in una interconnessione di un circuito

(ENDIF) Segnali binari Reti logiche 6 / 24

Disturbi

Qualsiasi sistema fisico é soggetto a disturbi che possono alterare un segnale. Nel caso di segnali digitali, gli effetti del disturbo sono limitati dall'operazione di discretizzazione che introduce un margine di tolleranza

Segnali binari

Sommario

- Segnali binari

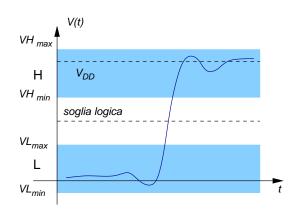
	•	∢ ≣	> ∢ ≣ >	=	200
(ENDIF)	Segnali binari		Reti logich	ne	9/24

Bit e configurazioni binarie

• I valori binari di un segnale H ed L possono essere associati a un bit $b \in \{0, 1\}$

Codifica ("positiva")	Codifica ("negativa")
<i>H</i> → 1	<i>H</i> → 0
$L \rightarrow 0$	$L \rightarrow 1$

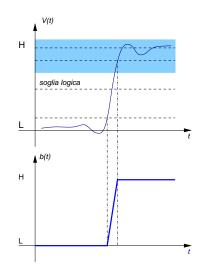
- Un insieme di n segnali puó assumere come valore una configurazione di *n* bit
- Esempio: configurazioni di 3 bit:


(ENDIF)

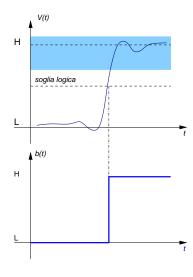
000	100
001	101
010	110
011	111

• Le configurazioni binarie sono in numero 2ⁿ

Segnali binari


- A paritá di intervallo di variazione dei segnali, il caso in cui n=2presenta il migliore margine di immunitá ai disturbi
- Esempio nel caso in cui il segnale sia costituito da una tensione

(ENDIF) Segnali binari


Astrazione di forme d'onda binarie

Piecewise linear

(ENDIF)

Segnali binari vs. segnali multilivello

- Se sono disponibili k livelli logici e n segnali, si hanno kⁿ configurazioni
- Il rapporto fra il numero di configurazioni binarie e k-arie per n segnali é

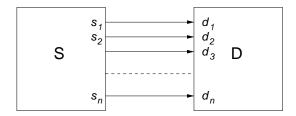
$$\left(\frac{2}{k}\right)^n$$

- I segnali binari richiedono un numero molto grande di interconnessioni a paritá di informazione portata
- Esempio: se k = 10 e n = 4 possiamo rappresentare tutti i naturali da 0 a 9999, mentre se k = 2, solo quelli da 0 a 15

(ENDIF) Segnali binari Reti logiche 13/2

Sommario

- Segnali analogici e digitali
- Segnali binar
- Segnali sincroni e asincroni

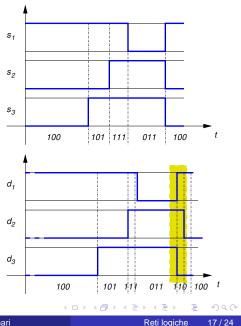

Esercizi

- **1** Si calcolino le configurazioni binarie per n = 4
- ② Si considerino 3 livelli logici e n = 3; si determinino tutte le possibili configurazioni per tali parole

(ENDIF) Segnali binari Reti logiche 14/24

Interpretazione dei segnali nel dominio del tempo

Chiaramente l'informazione viene portata da gruppi di segnali binari



Nasce il problema di determinare il valore segnali al tempo *t* ovvero di associare una configurazione binaria a tale valore

(ENDIF)

Interpretazione dei segnali nel dominio del tempo

- La sorgente dei segnali é connessa alla destinazione tramite interconnessioni le quali presentano un ritardo
- Tali ritardi sono difficili da controllare ⇒ é facile che i ritardi associati a segnali diversi presentino valori diversi
- Come si puó osservare la sequenza di configurazioni ricevute differisce da quella trasmessa

(ENDIF) Segnali binari Reti logiche 17 /

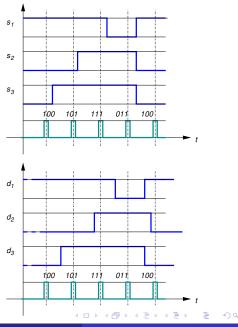
Segnale di clock

 Si tratta di un segnale periodico (binario) in cui un evento (fronti di salita/discesa) o un livello (alto, nell'esempio seguente) denota gli istanti o intervalli (brevi) in cui i segnali sincroni devono avere un valore costante

Nota

Un segnale s(t) si dice periodico con periodo T se s(t) = s(t - T)

- In conseguenza di un evento di sincronizzazione la sorgente puó variare il valore dei segnali e, se alcune condizioni sono rispettate, i segnali sono campionabili dalla destinazione
- Diversamente dal caso asincrono, la stessa configurazione puó essere trasmessa per piú istanti di sincronizzazione


Segnali asincroni e segnali sincroni

- Nel caso precedente ogni volta che si ha un cambiamento di un segnale, si suppone di avere ricevuto una nuova configurazione
- In questo caso i segnali vengono definiti asincroni
- L'utilizzo di segnali asincroni ha alcuni vantaggi, ma presenta diversi problemi dal punto di vista della progettazione
- Si puó fare un operazione simile alla discretizzazione nel dominio dei tempi, si suppone che esistano istanti nei quali il significato dei segnali é definito correttamente lasciando i segnali liberi di cambiare al di fuori di questi intervalli di tempo
- É necessario un supporto fisico per questa operazione di sincronizzazione che é dato da uno o piú segnali di clock

(ENDIF) Segnali binari Reti logiche 18 / 24

Segnali sincroni

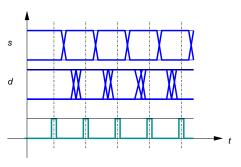
- La sequenza di configurazioni ricevute é uguale a quella trasmessa nonostante il ritardo da s₂ a d₂ sia maggiore rispetto agli altri ritardi
- Tale ritardo puó avere un qualsiasi valore? Si puó campionare un segnale in qualsiasi momento?

◆□▶◆□▶◆豊▶◆豊▶ 豊 釣९()

Reti logiche 19 / 24

(ENDIF) Segnali binari

(ENDIF)


Segnali binari

Reti logiche

20 / 24

Segnali sincroni

Le forme d'onda di piú segnali sono accorpate in una sola dando rilievo ai cambiamenti di valore della configurazione e agli intervalli di tempo in cui i segnali rimangono stabili

- Gli istanti di sincronizzazione devono corrispondere a intervalli di tempo in cui non avvengono transizioni
- Si vedrá in seguito il modo per progettare reti di questo tipo

			4)40
(ENDIF)	Segnali binari	Reti logiche	21 / 24

Confronto

- La facilitá di progetto é il principale vantaggio dei sistemi sincroni
- Lo svantaggio é dato dalla velocitá
 - ritardi delle interconnessioni nell'esempio precedente

interc.	ritardo		
$s_1 \rightarrow d_1$	0.2ns		
$s_2 \rightarrow d_2$	0.4ns		
$s_3 \rightarrow d_3$	0.3ns		

- si supponga di voler trasmettere la sequenza di configurazioni 101,
 111 e 011 a partire dalla conf. iniziale 000
- nel caso asincrono ho bisogno di 0.3ns per 101 (cambiano s_1 e s_3), 0.4ns per 111 (cambia s_3) e 0.2ns per 011 (cambia s_1) \Rightarrow totale = 0.9ns
- nel caso sincrono il periodo di clock deve essere almeno uguale del ritardo massimo per cui per trasmettere 101, 111 e 011 impiego $3 \cdot 0.4ns = 1.2ns$
- margini sui ritardi nominali

Notazione per segnali sincroni

- Nel caso di sistemi sincroni, l'attenzione puó essere focalizzata sul valore dei segnali negli istanti di sincronizzazione k=0,1,2... prescindendo dai dettagli sulle temporizzazioni
- Il valore del segnale nel k-mo periodo di clock puó essere denotato come s(k) (intendendo s(t = kT))
- Si noti che questa é un operazione di astrazione: un sistema sincrono é l'astrazione di un sistema asincrono progettato secondo determinate regole
- I valori al di fuori degli istanti di sincronizzazione non interessano
- Le convenzioni su ritardi e periodo di clock sono rispettate

 ⟨ENDIF⟩
 Segnali binari
 Reti logiche
 22 / 24

Conclusioni

Abbiamo visto le caratteristiche dei segnali utilizzati nei sistemi digitali:

- discretizzazione dei segnali
- sistemi asincroni e sincroni

Per poter vedere le unitá in grado di elaborare tali segnali dovremo prima introdurre un adeguato modello matematico

Segnali binari

(ENDIF)