
Fixed and floating point numbers in VHDL

Engineering Department in Ferrara

Fixed point Floating point Projects 1

Motivations

• Machine learning applications such as those based on
neural networks require the use of real values

• Floating point units are no longer a need of scientific
calculus only

• VHDL - 2008 supports both fixed and floating point
customizable data types

• why customize?
• unuseful bits occupy area, increase delays and

dissipate power
• bit level accessibility to data

• Format compatible with IEEE-754 floating point standard

• Growing support from simulation and synthesis EDA tools

Fixed point Floating point Projects 2

Trade-offs (VLSI)

• Consider for instance parallel multipliers and dividers

• The delay is proportional to word width (O(n));

• The cost and power dissipation are quadratic in word width
(O(n2));

• Word width reduction may be a problem because of
accuracy, precision and numerical stability

Fixed point Floating point Projects 3

Summary

Fixed point

Floating point

Projects

Fixed point Floating point Projects 4

VHDL fixed point package

• Package & types

• Format

• Sizing

• Overloading

• Assignments and expressions

Fixed point Floating point Projects 5

Package & types

• use ieee.fixed_pkg.all;

• ufixed unsigned fixed point
type ufixed is array (integer range <>) of
std_logic;

• sfixed signed fixed point
type sfixed is array (integer range <>) of
std_logic;

• unresolved types

Fixed point Floating point Projects 6

Fixed point format

• constant x: ufixed(3 downto -3) :=
"0100101"

• whole number from index 3 downto 0: 0100=4

• fractional number on the right from index -1 downto -3:
101=0.625

• x=4.625

• it is legal to have only an integer (4 downto 0) or a fraction
(-1 downto -6)

Definition
ufixed(k downto -j) assigned to ik ik−1....i0 . f−1f−2....f−j

corresponds to the fractional number
ik2k + ik−12k−1 ++ f−12−1 + f−22−2 + i020....+ f−j2−j

Fixed point Floating point Projects 7

Fixed precision math

• Main difference with signed and unsigned data types: the
math is full precision and not in modulo

• The result size must accomodate for all the bits of the
result

signal a43, b43 : ufixed(3 downto -3);
signal y53: ufixed(4 downto -3);
....
y53 <= a43+b43;

• Overloading for
+,-,*,/,rem,mod,abs,=,/=,>,<,>=,<= : ufixed is
compatible with ufixed, real and natural

Fixed point Floating point Projects 8

Assignments

• signal x: ufixed (3 downto -3);

• to a string literal: x <="0110100"; - 6.5

• to a real (integer) literal: x <= to_ufixed(6.5,a); (the
base conversion sized to a that is equivalent to texttt x <=
to_ufixed(6.5,3,-3);)

• rules for function matching in VHDL: search in libraries
for a function with the same name of the callee, if more
functions are found search for the one with compatible
parameters number and types

Fixed point Floating point Projects 9

Expressions

signal a43 : ufixed(3 downto -3);
signal y53: ufixed(4 downto -3);
....
y53 <= a43+"0111001"; -- not correct
y53 <= a43+6.9;
y53 <= a43+9;

signal a43 : ufixed(3 downto -3);
signal y63: ufixed(6 downto -3);
....
y63 <= y63+a43; -- not correct, result too large

• use the function resize to constrain the size of the result

y63 <= resize(arg=>y63+a43,size_res=>y63,
overflow_style=>fixed_saturate/fixed_wrap,
round_style=>fixed_round/fixed_truncate);

Fixed point Floating point Projects 10

Fixed point conversions

• to_ufixed : integer, real, unsigned, std_logic_vector to
ufixed

• to_sfixed : integer, real, unsigned, std_logic_vector to
sfixed

• resize : ufixed to ufixed, sfixed to sfixed

• add_sign : ufixed to sfixed

• to_real : ufixed o sfixed to real

• to_integer: ufixed o sfixed to integer

• to_unsigned: ufixed to unsigned

• to_signed: sfixed to signed

• to_slv: ufixed o sfixed to std_logic_vector

Fixed point Floating point Projects 11

Signed fixed point

• Complement two notation for the integer part

• Positive for the fractional part
• Example signal q: sfixed(5 downto -4) :=
"1100100011";

• integer part (from 5 to 0) 110010 that is equal to -14
• fractional part (from -1 to -4) 0011 that is equal to 0.1875
• q=-13.8125

Fixed point Floating point Projects 12

Signed fixed point

• The manual conversion from base ten is as follows:
• convert the integer part to its complement two

representation
• if the integer part is ≥ 0 convert the fractional part to binary
• if the integer part is < 0 and the fractional part is > 0

subtract 1 from the integer part and convert 1 minus the
fractional part to binary

• if the fractional part is 0 simply place 0s

Fixed point Floating point Projects 13

Summary

Fixed point

Floating point

Projects

Fixed point Floating point Projects 14

Floating point numbers

• Allow for a flexible use of the available digits to represent
numbers with different orders of magnitudo

• y = s × be where y is the number value, s is the
significand, b is the base and e is the exponent

• FPUs are a necessary part of all general purpose CPUs

• IEEE-754 standard

• Up to the last years floating point calculations were mainly
performed by general purpose CPUs

• Machine learning and power/delay constraints are
focusing the attention to accelerator architectures
performing specific tasks

• Specific tasks may require data formats different from
the standards used in FPUs

Fixed point Floating point Projects 15

Floating point type and subtypes

• Library and package: use ieee.float_pkg.all;

• type float is array (integer range <>) of
std_logic;

• The type is customizable, but some predefined subtype is
available to emulate the IEEE 754 standards that you have
seen in computer architecture

• single precision: subtype float32 is float(8
downto -23);

• double precision: subtype float64 is float(11
downto -52);

• IEEE 854 extended precision: subtype float128 is
float(15 downto -112);

Fixed point Floating point Projects 16

Format

• signal y: float (p downto -q); where
q ≤ −6

• The leftmost bit (y(p)) is used for sign

• The p bits from y(p-1) to y(0) are used for the exponent

• The q bits from y(-1) to y(-q) are used for the (positive)
fraction (similar to the significand in the scientific notation)

• The value is biased by 2p−1 − 1. This allows for the use of
natural numbers in the exponent

v(y) = (−1)y(p) × 2e−(2p−1−1) × (1.0 + f)

Fixed point Floating point Projects 17

Example: normal numbers

• normal number (y(-1)=1) the leading 0s are moved to the
exponent

• signal y: float (4 downto
-10):="001001100000000";

• positive sign
• the exponent is given by 0100 which is equal to 4
• the fraction is 2−1 + 2−2 = 0.75
• v(y) = 24−23+1 × (1.0 + 0.75) = 2−3 × 1.75 = 0.21875

• signal y: float (4 downto
-10):="010011001000000";

• positive sign
• the exponent is given by 1010 which is equal to 9
• the fraction is 2−1 + 2−4 = 0.5625
• v(y) = 29−23+1 × (1.0 + 0.5625) = 22 × 1.75 = 6.25

Fixed point Floating point Projects 18

Special cases

• When using the float type in the previous slide, the
minimal abs value for normal numbers would be
20−7 × (1.0 + 0.5) = 0.01171875

• If we remove the hypothesis y(-1)=1 , we have
sub-normal numbers that are smaller than the minimum
normal number

• They have the exponent’s bits equal to 0 (i.e. they are
multiplied by e−(2p−1−1)), while fraction’s bits are allowed
to have any value and are added to 0.0 and not 1.0

• Example: signal y: float (4 downto
-10):=000000100010000; has value
v(y) = 2−7 × (2−2 + 2−6) = 0.002075195

Fixed point Floating point Projects 19

Special cases

• The IEEE-754 standard defines exceptions for floating
point operations that can be used by programs to avoid the
propagtion of errors to data outputs

• Conventions for∞ and NaN for float(8 downto
-23);

• +∞: 0 11111111 00000000000000000000000

• −∞: 1 11111111 00000000000000000000000

• NaN : 1 11111111 00000000000000000000001

Fixed point Floating point Projects 20

Parameters

• VHDL allows for the definition of floating point parameters
such as the kind of rounding used

• They may significantly affect numerical computations and
they result in small modifications in FP arithmetic units

• We will consider default parameters

Fixed point Floating point Projects 21

Operators

• Arithmetic overloading on floats
• +,-,*,/
• rem, mod, abs
• =, /=, >, <, >=, <= (avoid = and /=)

• Floats can be combined with reals and integers still
returning a float

Fixed point Floating point Projects 22

Conversion I

• signal y: float (4 downto -10);

• String to float: y <="000101001001000";

• Real to float: y <=to_float(6.5,y);

• Real to float: y <=to_float(6.5,4,-10);

• Uses rounding (try to convert the decimal 0.1 number)

• to_float works also with fixed data types, signed,
unsigned and std_logic_vector

Fixed point Floating point Projects 23

Conversion II

• resize: float to float with potential rounding
• to_real, to_integer, to_sfixed, to_ufixed,
to_unsigned, to_signed: convert floats to the
corresponding data types

• use the simulator to understand the behavior in case of
overflow

• to_slv : converts floats to std_logic_vector

Fixed point Floating point Projects 24

Summary

Fixed point

Floating point

Projects

Fixed point Floating point Projects 25

Data size

• Analysis of the relationship between data size and
accuracy

• Function evaluation for e−x and ln(x) via the use of Taylor
series which require only adders and multipliers

• in the nearby of 0.0, e−x =
∞∑

n=0

(−1)nxn

n!

• in the nearby of 2.0, ln(x) = ln(2) +
∞∑

n=1

(−1)n+1

n2n
(x − 2)2

• in the nearby of 0.0,
1

1 + e−x
=

1
2
+

1
4

x −
1

48
x3 +

• Dataflow description whose accuracy has to be compared
with that achievable using the real data type

• Available for both fixed and floating point

Fixed point Floating point Projects 26

Pseudo-random generation of floating point numbers

• Pseudo-random generation is commonly used in test and
built-in self-test

• Compact LFSR based on-chip test generators are
available that produce words with a uniform bit distribution

• A uniform distribution in the word’s bits does not
correspond to a uniform distribution of the corresponding
floats

• Problem analysis and implementation

Fixed point Floating point Projects 27

	Fixed point
	Floating point
	Projects

