Serie di Taylor

Sviluppo in serie di Taylor delle funzioni e^x , $\sin x$, $\cos x$ (dimostrazione).

Sviluppi in serie di Taylor di $\log(1+x)$ e di $(1+x)^{\alpha}$

Proprietà delle serie di Taylor

Serie in campo complesso: serie geometrica ed esponenziale complesso.

Utilizzo del criterio di Leibniz per determinare un valore approssimato di $\sin(0.8)$

Successioni e serie di funzioni, convergenza puntuale e convergenza uniforme.

Esempi di funzioni che convergono puntualmente e non uniformemente.

Criterio per la convergenza uniforme di una successione di funzioni:

Siano $(f_n)_{n\in\mathbb{N}}$ una successione di funzioni in $D\subseteq\mathbb{R}$ e f il suo limite puntuale. Se esiste una successione

infinitesima $\left(a_{n}\right)_{n\in\mathbb{N}}$ con $a_{n}\in\mathbb{R}$ tale che $\left|f_{n}\left(x\right)-f\left(x\right)\right|\leq a_{n}$, $\forall x\in D$, allora f_{n} converge uniformemente a f.

Criterio di Weierstrass per la convergenza uniforme di serie di funzioni.

Teoremi di passaggio al limite (senza dimostrazioni).

Serie di potenze.

L'insieme di convergenza di una serie di potenze è sempre un intervallo (dimostrazione).

Raggio di convergenza di una serie di potenze.

Criteri di convergenza.

Riordinamento.

Le serie di potenze e le serie di Taylor.

Continuità della funzione somma.

Integrazione termine a termine.

Derivazione termine a termine.

Sviluppo in serie di Taylor

Esempi di calcolo di integrali attraverso sviluppi in serie di potenze.