Prove d'esame a.a. 2014–15, 2015–16, 2016–17

Andrea Corli*

6 gennaio 2018

Sono qui raccolti i testi delle prove d'esame assegnati negli a.a. 2014–15, 2015–16, 2016–17, relativi al Corso di Analisi Matematica I (semestrale, 12 crediti), Laurea in Ingegneria Civile e Ambientale, tenuto da me presso l'Università degli Studi di Ferrara.

10/11/2014 - Prima prova parziale

- 1. Calcolare degli asintotici semplici delle successioni: $a_n = \sqrt[3]{1 + \sin\left(\frac{2}{n^2}\right)} 1$, $b_n = \frac{(n-1)^{n+1}}{(n+1)^{n-1}}$.
- 2. Studiare la convergenza (semplice) delle serie: (a): $\sum_{n=0}^{\infty} \frac{n+3^n}{n!+2^n}$; (b): $\sum_{n=1}^{\infty} (-1)^n \sin\left(\frac{1}{n}\right)$.
- 3. Disegnare i grafici qualitativi delle seguenti funzioni (e i grafici intermedi): $f(x) = 1 \sqrt[3]{|x+2|}$; $g(x) = 1 \left(\frac{1}{2}\right)^{|x-1|}$.
- 4. Provare che la funzione $f(x) = \operatorname{tg} x$ definita in $[0,\pi) \setminus \left\{\frac{\pi}{2}\right\}$ è invertibile e disegnare il grafico della sua inversa f^{-1} . Come si puo' esprimere f^{-1} in termini di arctg?
- 5. Sia f una funzione invertibile. E' vero che i grafici di f e f^{-1} possono intersecarsi solo sui punti della bisettrice y = x del primo e terzo quadrante?
- 6. Provare, usando la definizione di limite, che $\lim_{x\to 0+} \left(\sqrt[4]{x} \sqrt{x}\right) = 0$.
- 7. Calcolare gli asintoti della funzione $f(x) = \frac{x+1}{\log|x|}$. Rappresentare graficamente.
- 8. (Matlab) Sia $\{a_n\}$ la successione definita da $a_1 = 1$ e $a_n = a_{n-1} + \frac{1}{a_{n-1}}$ se $n \ge 2$. Calcolare i primi 10 termini della successione e rappresentarli su un grafico.

8/1/2015 - Seconda prova parziale

- 1. Sia $f_n(x) = x^{-n}$ in [1, b] per $n \in \mathbb{N}$ e b > 1. Applicare il Teorema di Lagrange a f_n trovando un punto c_n ; dimostrare che è unico. Si calcoli poi c_n nei casi n = 2 e n = 3. Dire se $c_3 < c_2$ asintoticamente per $b \to +\infty$.
- 2. Dire in quali intervalli la funzione $f(x) = xe^{-\frac{1}{x}}$ è invertibile. Calcolare, se possibile, $(f^{-1})'(y)$ nei punti y = f(1) e y = f(-1).
- 3. Calcolare $\int \sqrt{2x^2 + 3} \, dx$.
- 4. Calcolare $\int_{-1}^{1} \frac{x^2 + 2x}{1 + |x|} dx$.

^{*}Dipartimento di Matematica, Università di Ferrara

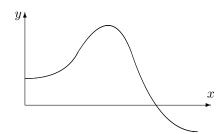
- 5. Trovare i valori dei parametri $\alpha \in \mathbf{R}$ e $\beta \in \mathbf{R}$ tali che l'integrale $\int_0^{+\infty} \frac{1}{|x-1|^{\alpha} x^{\beta}} dx \ e$ convergente. Disegnare l'insieme di tali valori in un piano (α, β) .
- 6. Sia $f:[0,+\infty)\to \mathbf{R}$ una funzione continua con $f(x)\geq 0$ per ogni $x\in \mathbf{R}$. Provare che esiste il $\lim_{x\to +\infty}\int_0^x f(t)\,dt$. Provare che tale risultato non vale più togliendo l'ipotesi che $f\geq 0$.
- 7. (Matlab) Trovare $n \in \mathbb{N}$ tale che $\int_{-n}^{n} e^{-x^2} dx > \sqrt{\pi} 10^{-3}$; per tale n valutare numericamente l'integrale.
- 8. Studiare la funzione $f(x) = \sqrt[3]{\frac{x}{x-1}}$.

27/1/2015

- 1. Calcolare estremo superiore, inferiore e, se esistono, massimo e minimo, dell'insieme $E = \{e^{(-1)^n n}; n = 0, 1, 2, \ldots\}.$
- 2. (Matlab) Sia $p(x) = x^4 + 8x^3 + 8x^2 32x + 16$. Numericamente: calcolarne le radici e, usando il comando polyval, disegnarne il grafico in coordinate logaritmiche in modo che il grafico sia simile a quello di una retta. Simbolicamente: calcolarne gli zeri e fattorizzarlo.
- 3. Dire se le successioni $a_n=ne^{-n}$ e $b_n=ne^{-\frac{1}{n}}$ sono (definitivamente) monotone.
- 4. Siano $f(x) = \log(e^x 1)$ e $g(x) = e^x \log(e^x 1)$ due funzioni. Motivare l'esistenza di primitive di f, g e calcolarle (tutte) nel caso in cui esse siano esprimibili tramite combinazione semplici di funzioni elementari.
- 5. Stabilire per quali numeri reali α e β la serie $\sum_{n=1}^{\infty} n^{\alpha} \arctan\left(\frac{1}{n^{\beta}}\right)$ converge. Disegnare tali coppie (α, β) in un piano.
- 6. Sia $\alpha \geq 0$. Dire se la funzione $f(x) = \log(1+|x|)x^{\alpha}$ è di classe C^1 .
- 7. Studiare la convergenza dell'integrale generalizzato $\int_0^1 \frac{\log x}{x^{\alpha}(1-x)^{\beta}} dx$, con α e β numeri reali.
- 8. Studiare la funzione $f(x) = \log(1 + e^{-x})$; scrivere l'equazione della retta tangente al grafico nel punto (0, f(0)).

17/2/2015

- 1. Studiare la convergenza della serie $\sum_{n=0}^{\infty}q^{n^{\alpha}}$, per $q>0, q\neq 1$ e $\alpha>0, \alpha\neq 1$.
- 2. Provare, usando la definizione di limite, che (a) $\lim_{x\to+\infty} e^{-x^2} = 0$ che (b) $\lim_{x\to+\infty} x \log x = +\infty$.
- 3. Si considerino le funzioni sin e cos in $[0, \frac{\pi}{2}]$, $P = (P_1, P_2)$ il punto di intersezione dei loro grafici. (a) Stabilire se le tangenti ai loro grafici nel punto P sono perpendicolari. (b) Applicare il Teorema di Lagrange alla funzione cos in $[0, \frac{\pi}{2}]$, trovando un punto c; provare che esso e' unico. Dire se è vero che $c < P_1$.
- 4. Sia h(x) = (f(x)g'(x))'; siano poi p(x) = f(-x), q(x) = g(-x), r(x) = (p(x)q'(x))'. Che relazione c'è tra $h \in r$?
- 5. Si consideri l'integrale generalizzato $\int_0^{+\infty} \frac{e^{-\frac{1}{x^2}}}{x^4} dx$. Provare che è convergente usando i criteri di convergenza e quindi calcolarne il valore.



- 6. Si consideri la funzione f il cui grafico è riportato in figura. Si disegnino in un analogo grafico le funzioni f'(x) e $\int_0^x f(y) \, dy$, dando le opportune motivazioni.
- 7. (Matlab) Si considerino le funzioni $f_n(x) = \frac{1}{1+n^2x^2}$, per $n = 1, \ldots, 10$ e $x \in [0,3]$. Calcolare, in simbolico e col ciclo for, le primitive delle f_n e disegnarne i grafici in 10 diverse finestre grafiche. Rappresentare quindi tutte le primitive a command window in una sola riga.
- 8. Studiare la funzione $f(x) = \frac{\log(\log x)}{\log x}$.

11/6/2015

- 1. Calcolare il $\lim_{n\to\infty}\frac{\log(n+1)}{\log(n)}$. Verificare poi il risultato ottenuto tramite la definizione di limite.
- 2. Studiare la convergenza delle serie (a) $\sum_{n=1}^{\infty} \frac{1 + n \log n}{n^2}$; (b) $\sum_{n=1}^{\infty} \frac{\log n}{n^2}$.
- 3. Sia f una funzione della variabile x. Calcolare una primitiva di (a) ff'''; (b) f' $\log f$.
- 4. Si consideri la funzione $f(x) = (1 + x^{\alpha}e^{-x})^{-\frac{1}{2}}$ definita in $[0, +\infty)$, dove $\alpha \ge 0$. Dire, al variare di α , se f è derivabile in 0 e, in caso affermativo, calcolare f'(0). Disegnare quindi un grafico approssimativo di f vicino a 0.
- 5. Calcolare $\int \frac{x-2}{x^2-x+1} dx.$
- 6. Dire per quali $\alpha > 0$ l'integrale generalizzato $\int_0^{+\infty} \frac{x^{\alpha}}{x^{\frac{1}{2}}(1+x^{\frac{2}{3}})} dx$ è convergente.
- 7. (Matlab) Calcolare il primo numero naturale n tale che $ne^{-n} < 1/100$.
- 8. Studiare la funzione $f(x) = \frac{e^x}{1 e^{-x}}$.

15/7/2015

- 1. Dimostrare che la successione $a_n = \left(1 + \frac{\cos\left(\frac{n\pi}{2}\right)}{n}\right)^n$ è indeterminata.
- 2. Studiare la convergenza della serie $\sum_{n=1}^{\infty} \left(\frac{n^2}{n^2+1}\right)^n.$
- 3. Si consideri la funzione f definita da $f(x) = |x|^{\alpha} \sin \frac{1}{x}$ se $x \neq 0$ e f(0) = 0. Dire per quali $\alpha \in \mathbf{R}$ la funzione f è continua, per quali è derivabile, per quali è di classe C^1 .

3

- 4. Provare che $e^x \ge x+1$ per ogni $x \in \mathbf{R}$.
- 5. Calcolare $\int \frac{1}{\cos x + 2\sin x + 1} dx.$

- 6. Studiare la convergenza degli integrali generalizzati $\int_0^1 \frac{\sin x}{x^2} dx$ e $\int_1^{+\infty} \frac{\sin x}{x^2} dx$.
- 7. (Matlab) Siano $f(x) = x^2$ e $g(x) = e^{-x}$. Calcolare il punto x_0 in cui $f(x_0) = g(x_0)$; calcolare l'area della regione di piano compresa tra il grafico di f, quello di g e l'asse x, per $x \in [0,1]$; disegnare i grafici di f e g.
- 8. Studiare la funzione $f(x) = \arctan x \frac{1}{1+x^2}$, in particolare la sua convessità e concavità.

11/9/2015

- 1. Calcolare $\lim_{n\to\infty} \frac{n!-2e^n}{n!+e^{2n}}$.
- 2. Sia $N \in \mathbb{N}$ e $a \in \mathbb{R}$. Dire per quali a converge la serie $\sum_{n=N}^{\infty} e^{-an}$ e calcolarne la somma.
- 3. Calcolare $\lim_{x\to 0\pm} \frac{\log\left(1+e^{-\frac{1}{x}}\right)}{x}$.
- 4. Si considerino le funzioni f(x) = |x-1|, g(x) = 1/x se $x \in (0,2]$ e g(0) = 0, $h(x) = \sqrt{x}$, definite nell'intervalle [0,2]. Disegnarne un grafico approssimativo. Dire a quali di esse si applica il Teorema di Lagrange; in quei casi, applicarlo e calcolare il punto x_0 .
- 5. Calcolare $\int x \log(x+1) dx$.
- 6. Studiare la convergenza dell'integrale generalizzato $\int_{\frac{2}{-}}^{+\infty} \operatorname{tg}\left(\frac{1}{x}\right) dx$.
- 7. Scrivere un breve script che calcola il punto di minimo e il minimo della funzione $f(x) = (x-3)\sin(2x)$ nell'intervallo [0,3].
- 8. Studiare la funzione $f(x) = (x^2 x 6)e^x$.

11/1/2016 - Seconda prova parziale

- 1. Dire a quale classe C^n appartiene la funzione $f(x) = |x| \sin x$.
- 2. Applicare il Teorema del valor medio e il Teorema della media integrale alla funzione $f(x) = x^3$ nell'intervallo [a, b], determinando esplicitamente i relativi punti. Semplificare i calcoli il più possibile e interpretare il risultato ottenuto.
- 3. Discutere il valore del limite $\lim_{x\to 0} \frac{x(x^{\alpha} \sin x^{\alpha})}{(1 \cos x)^3}$, dove $\alpha \ge 0$.
- 4. Calcolare $\int \arctan\left(1 + \frac{1}{x}\right) dx$.
- 5. Calcolare $\int \frac{1}{(1-\sin x)^2} dx$.
- 6. Studiare la convergenza dell'integrale generalizzato $\int_1^{+\infty} e^{-x} \log x dx$.
- 7. (Matlab) Ricordando che $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$, determinare $n \in \mathbb{N}$ in modo che $\int_{-n}^{n} e^{-x^2} dx < \sqrt{\pi} 0.001$.

8. Studiare il grafico della funzione $f(x) = \sqrt{|x^2 + x - 2|}$. Non è richiesto lo studio della derivata seconda.

- 1. Sia $\alpha \geq 0$; calcolare il $\lim_{n \to \infty} \frac{\sqrt{n^3 + n^2} \sqrt{n^3 n^2}}{\sqrt{n^{\alpha} + n}}$.
- 2. Dire per quali $\alpha \geq 0$ e $\beta \geq 0$ la serie $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha} \left(\sqrt{1 + \frac{1}{n^{\beta}}} 1 \right)}$ converge; rappresentare tali valori nel piano (α, β) .
- 3. Calcolare il $\lim_{x \to 2+} (x-2)^{1-\cos(2-x)}$.
- 4. Provare che non sono soddisfatte le ipotesi per applicare il Teorema di Lagrange alla funzione $f(x) = \sqrt[3]{1-x}$ nell'intervallo [0, 2]; provare però che la tesi del Teorema di Lagrange vale ancora, calcolando esplicitamente il punto (i punti) relativi. Disegnare un grafico approssimativo della funzione e interpretare graficamente quanto ottenuto.
- 5. Calcolare (a): $\int e^x \tanh x \, dx$; (b): $\int \frac{1}{\cos x + 2 \lg x} \, dx$.
- 6. Studiare la convergenza dell'integrale generalizzato $\int_0^1 \log\left(\frac{1}{x} 1\right) dx$. Se convergente, calcolarne il valore e interpretare il risultato ottenuto.
- 7. (Matlab) Calcolare il polinomio di grado 2 passante per i punti (0,0), (1,1), (2,3) e disegnarne quindi il grafico. Spiegare brevemente il significato dei due comandi più importanti utilizzati.
- 8. Sia a > 1; studiare il grafico della funzione $f(x) = \sqrt{a^x 1}$. Mostrare graficamente come variano i grafici al variare di a.

9/2/2016

- 1. Calcolare, se esiste, il $\lim_{n\to\infty} \left(\frac{2^n+3^n}{n!}\right)^{\frac{1}{n}}$.
- 2. Studiare la convergenza semplice e assoluta della serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \log n}.$
- 3. Siano $f,g:[0,1]\to [0,1]$ strettamente convesse di classe C^2 , con f crescente, f(0)=0, $f(1)=1,\ f'(0)=0$ e g decrescente, $g(0)=1,\ g(1)=0,\ g'(1)=0$; disegnare un grafico approssimativo di f e g. Provare che $F(x)=\frac{f(x)}{f(x)+g(x)}$ ha almeno un punto di flesso.
- 4. Calcolare la media integrale della funzione $f(x) = \frac{1}{\sqrt[3]{x} + 1}$ nell'intervallo [0, 2].
- 5. Calcolare $\int \frac{dx}{(1+x^2)^{\frac{3}{2}}}.$
- 6. Provare che l'integrale $\int_0^\infty e^{te^{-t}} dt$ è divergente; quindi, calcolare il $\lim_{x\to\infty} e^{-x} \int_0^x e^{te^{-t}} dt$.
- 7. (Matlab) Creare uno script che produca due figure; nella prima vengono riportati i grafici delle funzioni x^n per n = 1, ... 5 e $x \in [0, 100]$; nella seconda, i grafici di e^{nx} per gli stessi n e x. Si scelga una scala opportuna in modo che tutti i grafici siano rette.

5

8. Studiare la funzione $f(x) = e^x + 2e^{-3|x|}$.

- 1. Dire se la successione $a_n = \sqrt[n]{(-1)^n n}$ è convergente, divergente o indeterminata, motivando in dettaglio il perché.
- 2. Stabilire il carattere della serie $\sum_{n=0}^{\infty} q^n \log |q|^n$ per $q \neq 0$.
- 3. Disegnare il grafico della funzione $g(x) = \max\{x, x^2\}$. Dire se è continua e se è derivabile.
- 4. Stabilire il dominio della funzione $f(x) = \sqrt{x^2 + x} x$. Calcolare i $\lim_{x \to \pm \infty} f(x)$. Dire se f ammette asintoti a $\pm \infty$.
- 5. Calcolare $\int \frac{1}{(1+x^2)^{\frac{3}{2}}} dx.$
- 6. Utilizzando il criterio del confronto asintotico provare che l'integrale generalizzato $\int_0^\infty \frac{1 e^{-x^2}}{x^2} dx$ è convergente. Quindi calcolare il suo valore.
- 7. (Matlab) Creare uno script che, utilizzando il ciclo for, disegni il grafico della funzione $f(x) = \{x\}$ nell'intervallo [0, 6].
- 8. Studiare il grafico della funzione $f(x) = \frac{x-1}{x^3}$.

12/7/2016 - Prova scritta di Analisi Matematica I - L.T. Ing. Civile e Ambientale

Non è consentita la consultazione di libri, quaderni, macchine calcolatrici. Svolgere i seguenti esercizi, riportando il maggior numero possibile di passaggi e motivazioni: non riportare il solo risultato finale. Consegnare solo questo foglio e non altri di mala copia.

- 1. Calcolare, se esiste, il $\lim_{n\to\infty} \sin\left(n\pi + \frac{1}{n}\right)$.
- 2. Stabilire il carattere della serie $\sum_{n=1}^{\infty} (1-e^{\frac{(-1)^n}{n}}).$
- 3. Provare che per ogni $x \in [0, \infty)$ esiste un unico $y \in [0, \pi/2)$ tale che sin $y + e^{-x} = 1$. Questo definisce una funzione y = y(x) definita in $[0, \infty)$; dare una espressione esplicita della funzione y e disegnarne un grafico approssimativo.
- 4. Esistono due funzioni (distinte) f e g due funzioni definite nell'intervallo [0,1], con f(0)=g(0)=f(1)=g(1)=0 e $f'(x)\leq g'(x)$ per ogni $x\in[0,1]$?
- 5. Calcolare $\int \frac{1}{x\sqrt{1-x}} dx$.
- 6. Studiare la convergenza degli integrali generalizzati $\int_0^1 \frac{1}{\log(1+x^{\alpha})} dx$ e $\int_1^{\infty} \frac{1}{\log(1+x^{\alpha})} dx$ per $\alpha > 0$.
- 7. (Matlab) Creare uno script che, utilizzando il ciclo for, disegni il grafico della funzione $f_n(x) = \frac{x}{n}$ nell'intervallo $[0, \frac{1}{n}]$, per $n = 1, \dots, 10$.

6

8. Studiare il grafico della funzione $f(x) = \frac{1}{(x-1)(x+2)}$.

8/9/2016

- 1. Dire se esiste il $\lim_{n\to\infty} n(1+\sin^2 n)$ e quanto vale. In caso affermativo, verificare il risultato ottenuto tramite la definizione di limite.
- 2. Studiare la convergenza della serie $\sum_{n=1}^{\infty} \arcsin\left(\frac{1}{n^{\alpha}}\right)$, per $\alpha>0$.
- 3. Trovare il punto $x_0 > 0$ in cui la retta tangente al grafico della funzione $f(x) = \sqrt{x}$ nel punto $(x_0, f(x_0))$ forma un angolo di $\pi/4$ con l'asse delle ascisse.
- 4. Calcolare il dominio delle seguenti funzioni e dire dove esse sono derivabili: $f(x) = \arcsin\left(\log\frac{x}{a}\right)$ per $a \in \mathbf{R} \setminus \{0\}$; $g(x) = \sqrt{2 + x x^2}$.
- 5. Calcolare $\int \frac{1}{\sin^2 x \cos^2 x} dx$.
- 6. Calcolare i punti di massimo e minimo della funzione $f(x) = \int_0^x \frac{\sin t}{t} dt$.
- 7. (Matlab) Sia $\{a_n\}$ la successione definita da $a_1 = 1$, $a_2 = 2$ e $a_n = a_{n-1} + \frac{1}{a_{n-2}}$. Calcolare e disegnare i primi 20 termini della successione usando un ciclo for.
- 8. Studiare la funzione $f(x) = (x+1)\log^2(x+1)$.

10/11/2016 - Prima prova parziale

- 1. Calcolare il $\lim_{n\to\infty} \frac{\sin n (-2)^n}{\cos n + (-2)^n}$.
- 2. Studiare la convergenza della serie $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{\alpha}}$ per $\alpha \in \mathbf{R}, \, \alpha > 0$.
- 3. Verificare dalla definizione di limite che $\lim_{x\to+\infty} \sinh x = +\infty$.
- 4. Sia f(x) = x + 1 e $g(x) = \sqrt{x}$. Calcolare $f \circ g \circ g \circ f$, specificandone il dominio. Disegnarne il grafico.
- 5. Sia $f: (3\pi/2, 5\pi/2) \to \mathbf{R}$ definita da $f(x) = \operatorname{tg} x$. Dire se f è invertibile; in caso affermativo, calcolarne la funzione inversa specificando dominio, immagine e grafico.
- 6. Discutere gli asintoti della funzione $f(x) = \frac{x^2 + x 2}{x 3}$. Rappresentare con un grafico.
- 7. Sia $f:(0,\infty)\to \mathbf{R}$ definita da $f(x)=\frac{x^{\alpha}(1-\cos x)}{\sin x^{\beta}}$, per $\alpha>0$, $\beta>0$. Dire per quali (α,β) la funzione f è prolungabile per continuità a 0; disegnare nel piano (α,β) l'insieme di tali coppie e scrivere il prolungamento di f.
- 8. (Matlab) Sia $f: [-2,2] \to \mathbf{R}$ la funzione definita da $f(x) = xe^x$ per $x \in [-2,0]$ e $f(x) = \sqrt{x}(x-2)$ per $x \in (0,2]$. Disegnare il grafico di f, calcolarne minimo e punto di minimo.

10/1/2017 - Seconda prova parziale

1. Dire in che sottoinsieme di \mathbf{R} è di classe C^1 la funzione $f(x) = \begin{cases} \log(1+x) & \text{se } x \geq 0, \\ |1+x|-1 & \text{se } x < 0, \end{cases}$ e disegnarne un grafico approssimativo.

7

2. Calcolare il polinomio di Taylor di ordine 3 nel punto 2 della funzione $f(x) = x \log x$.

- 3. Applicare il Teorema di Lagrange a $f(x) = \operatorname{tg}(x)$ in [0, a] con $a \in (0, \frac{\pi}{2})$, trovando un punto c = c(a). Spiegare perché le ipotesi di tale teorema sono soddisfatte; rappresentare con un disegno; calcolare $\lim_{a \to \frac{\pi}{2} c(a)} c(a)$.
- 4. Calcolare $\int e^{2x} \log(1+e^x) dx$.
- 5. Sia a>1; calcolare la media integrale della funzione $\log\left(\frac{x+1}{x}\right)$ nell'intervallo [1,a]. Detto M(a) tale valore, trovare un punto $c\in[1,a]$ in cui f(c)=M(a).
- 6. Studiare la convergenza degli integrali generalizzati (a): $\int_0^{+\infty} \frac{\log x}{1+x^2} dx \in (b): \int_{-\infty}^{+\infty} \frac{1}{x^2(x-1)^2} dx.$
- 7. (Matlab) Trovare un valore a > 0 tale che $\int_a^1 \frac{\sin x}{x^2} dx > 10$. Spiegare perché questo è possibile.
- 8. Studiare il grafico della funzione $f(x) = \arctan |x^2 1|$.

20/1/2017

- 1. Calcolare il $\lim_{n\to\infty} (\log_3(n+1) \log_2(n))$.
- 2. Per quali $\alpha \in \mathbf{R}$ e a > 0 converge $\sum_{n=1}^{\infty} \frac{n^{\alpha} 2^n}{(n+1)^3 a^n}$? Dire quando si riesce a calcolare la somma e, in tal caso, calcolarla.
- 3. Sia consideri la funzione f definita da $f(x) = x \log x$ per x > 0 e f(0) = 0. Disegnare un grafico approssimativo di f; dire in quali intervalli f è invertibile; calcolare dominio e immagini delle relative funzioni inverse, disegnarne i grafici; dire se il grafico di una di queste funzioni interseca il grafico di f.
- 4. Calcolare $\lim_{x \to +\infty} \frac{\sin x}{x \log x}$.
- 5. Calcolare $\int e^x \tanh(x) dx$.
- 6. Studiare la convergenza degli integrali generalizzati (a): $\int_0^\infty \frac{1}{e^x e^{-x}} \, dx; (b): \int_0^\infty \frac{\sin x}{x + x^2} \, dx.$
- 7. (Matlab) Per n = 1, ..., 10 usare un ciclo for per disegnare i grafici delle funzioni $f_n(x) = \frac{\sin x}{x}$ in [0, n] (ognuno in una diversa finestra grafica) e calcolarne l'integrale definito in quell'intervallo
- 8. Studiare il grafico della funzione $f(x) = \log(x + x^2)$.

13/2/2017

- 1. Dire per quali $\alpha > 0$ la successione $\frac{(n!)^{\frac{1}{n}}}{n^{\alpha}}$ converge a 0.
- 2. Siano $\alpha>0$ e $\beta>0$; studiare la convergenza della serie $\sum_{n=1}^{\infty}\frac{1}{(n+1)^{\alpha}-(n-1)^{\beta}}.$
- 3. Si consideri la funzione $f(x) = (2 + \sin(\frac{1}{x}))\sqrt{x}$. Dire se esistono, e in caso affermativo calcolarli, i $\lim_{x\to 0+} f(x)$ e $\lim_{x\to 0} f'(x)$; dire se f è derivabile in 0.
- 4. Dire in quali intervalli è convessa la funzione $f(x) = \int_0^x e^{\cos t} dt$.

- 5. Calcolare $\int \sqrt{1+\sqrt{x}} \, dx$.
- 6. Primo anno: Calcolare il polinomio di Taylor di grado 1 e centro e della funzione $\log x$; discutere la convergenza dell'integrale generalizzato $\int_0^3 \frac{1}{\log x 1} dx$. Secondo anno: convergenza dell'integrale generalizzato $\int_1^3 \frac{1}{\log x} dx$.
- 7. (Matlab) Dai i punti (0,0), (1,1), (2,0), (3,1), calcolare e plottare il polinomio di grado 3 passante per quei punti.
- 8. Studiare il grafico della funzione $f(x) = \sqrt{x} e^{\frac{1}{x}}$.

7/6/2017

- 1. Verificare in base alla definizione che $\lim_{n\to\infty} \frac{n^3+7n+6}{n+3} = +\infty$.
- 2. Studiare la convergenza della serie $\sum_{n=2}^{\infty} \frac{1}{\sqrt[n]{\log n}}.$
- 3. Dire per quali $\alpha \geq 0$ la funzione f definita in $[0, \infty)$ da $f(x) = x^{\alpha} \sin \frac{1}{x}$ se x > 0 e f(0) = 0 è, rispettivamente, continua, derivabile, di classe C^1 .
- 4. Calcolare una primitiva della funzione $f(x) = \frac{1}{1 + \sqrt[3]{x}}$.
- 5. Calcolare $\int_0^1 \sqrt{4-3x^2} \, dx.$
- 6. Studiare la convergenza dell'integrale generalizzato $\int_0^\infty \sqrt{x} \left(1 e^{-\frac{1}{x^2}}\right) dx$.
- 7. (Matlab) Disegnare il grafico della funzione f definita da f(x)=x se $x\in[0,1),$ $f(x)=\frac{x-1}{2}$ se $x\in[1,2),$ $f(x)=\frac{x-2}{3}$ se $x\in[2,3]$ usando un ciclo for.
- 8. Studiare il grafico della funzione $f(x) = x e^{\frac{1}{x+1}}$.

10/7/2017

- 1. Calcolare, se esistono, i seguenti limiti: (a): $\lim_{n\to\infty} \frac{\log n}{n!}$, (b): $\lim_{n\to\infty} n! \sin(\frac{1}{n})$, (c): $\lim_{n\to\infty} (-1)^{n!}$.
- 2. Studiare la convergenza e, se possibile, calcolare la somma della serie $\sum_{n=2}^{\infty} \frac{\log(n+1) \log n}{\log(n+1) \log n}.$
- 3. Dire quali dei seguenti limiti esistono e quali no; in tutti i casi motivare la risposta.

(a):
$$\lim_{x \to +\infty} \frac{\sin(x^2)}{x}$$
; (b): $\lim_{x \to +\infty} \sin(x^2)$; (c): $\lim_{x \to 0} \frac{\sin(x^2)}{x^3}$.

- 4. Si consideri la funzione $f(x) = \sqrt{x} \sin \frac{1}{x}$, definita per x > 0. Dire se f può essere estesa per continuità a $[0, +\infty)$ e, in caso affermativo, se tale funzione è derivabile nel punto 0.
- 5. Calcolare $\int \frac{x}{1+\sqrt{x}} dx$.
- 6. Sia $a \in \mathbf{R}$, a > 0. Si considerino le funzioni $1 ax^2$ e ax^2 nell'intervallo [0,1] e si indichi con $b(a) \in [0,1]$ l'ascissa del punto di intersezione dei grafici. Calcolare l'area della regione di piano compresa tra i grafici delle funzioni $1 ax^2$ e ax^2 , per $x \in [0, b(a)]$.

9

- 7. (Matlab) (Si veda l'esericizio precedente) Si considerino le funzioni $1-ax^2$ e ax^2 nell'intervallo [0,1] e si indichi con b(a) l'ascissa del punto di intersezione dei grafici. Per $a=1,\ldots,5$, usare un ciclo for per disegnare i grafici di queste funzioni nell'intervallo [0,b(a)] e calcolare l'integrale della regione di piano compresa tra i loro grafici, relativa all'intervallo [0,b(a)].
- 8. Studiare il grafico della funzione $f(x) = \frac{x-1}{x^2+1}$.

18/9/2017

- 1. Studiare la convergenza delle serie (a): $\sum_{n=1}^{\infty} \frac{e^{\sin n}}{n}$, (b): $\sum_{n=1}^{\infty} \frac{e^{\sin n}}{n^2}$.
- 2. Disegnare un grafico approssimativo della funzione $f(x)=\operatorname{tg}(\frac{1}{x})$.
- 3. Dire per quali valori di a, b, c, d la funzione f è continua, per quali di classe C^1 , per quali di classe C^2 .

$$f(x) = \begin{cases} a + bx + x^3 & \text{se } x < 0, \\ c + dx + x^2 & \text{se } x \ge 0. \end{cases}$$

- 4. Si consideri la funzione $f(x) = x^2$ e il punto P = (1,0). Calcolare la retta (non orizzontale) passante per P e tangente al grafico della funzione f.
- 5. Calcolare una primitiva della funzione $f(x) = \frac{\cos x}{1 + \cos x}$.
- 6. Provare che l'integrale generalizzato $\int_0^\infty \sin x \, e^{-x} \, dx$ è convergente utilizzando i criteri di convergenza e poi calcolarlo.
- 7. (Matlab) Usare un ciclo for per risolvere l'equazione $\operatorname{tg}(x) = \frac{1}{x}$ nell'intervallo (0, 10].
- 8. Studiare il grafico della funzione $f(x) = x^3(x^2 1)$.