acid		pK_a	base	pK_b
$HClO_4$	perchloric acid	~ -7	ClO_4^-	~ 21
HCl	hydrogen chloride	~ -3	Cl^{-}	~ 17
H_2SO_4	sulfuric acid	~ -3	HSO_4^-	~ 17
HNO_3	nitric acid	-1	NO_3^-	15
H_3O^+	hydronium ion	0	H_2O	14
H_2SO_3	sulfurous acid	1.8	HSO_3^-	12.2
HSO_4^-	bisulfate	1.9	SO_4^{2-}	12.1
H_3PO_4	phosphoric acid	2.12	$H_2PO_4^-$	11.88
$[Fe(H_2O)_6]^{3+}$	aquo ferric ion	2.10	$[Fe(H_2O)_5OH]^{2+}$	11.90
HF	hydrofluoric acid	3.2	F^{-}	10.8
CH_3COOH	acetic acid	4.7	CH_3COO^-	9.3
$[Al(H_2O)_6]^{3+}$	aquo aluminum ion	4.9	$[Al(H_2O)_5OH]^{2+}$	9.1
H_2CO_3	total dissolved $\mathrm{CO}_2{}^a$	6.3	HCO_3^-	7.7
H_2S	hydrogen sulfide	7.04	HS^{-}	6.96
$H_2PO_4^-$	dihydrogen phosphate	7.2	$H_2PO_4^{2-}$	6.8
HSO_3^-	bisulfite ion	7.21	SO_3^{2-}	6.79
HOCI	hypochlorous acid	8.0	OCl-	6.0
HCN	hydrogen cyanide	9.2	$\rm CN^-$	4.8
H_3BO_4	boric acid	9.30	$B(OH)_4^-$	4.70
NH_4^+	ammonium ion	9.25	$ m NH_3$	4.75
$Si(OH)_4$	o-silicic acid	9.50	$\rm SiO(OH)_3^-$	4.50
HCO_3^-	bicarbonate	10.33	CO_{3}^{2-}	3.67
HPO_4^{2-}	hydrogen phosphate	12.32	PO_4^{3-}	1.67
$SiO(OH)_3^-$	silicate	12.6	$SiO_{2}^{2}(OH)_{2}^{2-}$	1.4
H_2O	water ^b	14	OH-	0
HS^{-}	bisulfide c	~ 19	S^{2-}	~ -5
NH_3	ammonia	~ 23	$\rm NH_2^-$	~ -9
OH^-	hydroxide ion	~ 24	O^{2-}	~ -10

^aThe acid H₂CO₃ is only a minority species in aqueous carbon dioxide solutions, which contain mainly $CO_{2(aq)}$. The pK_a of 6.3 that is commonly given is calculated on the basis of the total CO₂ in the solution. The true pK_a of H₂CO₃ is about 3.5.

^bIf water is acting as a *solute*, as it must if the acid strength of H₂O is being compared with that of other very weak acids, then $pK_a \approx 16$ should be used. See *J. Chem. Education* 1990: 67(5) 386-388.

^cMany tables still give 14 as pK_2 for H_2S ; this is now known to be incorrect.

Table 1: pK values of acids and bases in aqueous solutions at $25 \,^{\circ}\text{C}$