
OLIO DI OLIVA

"Prodotto ottenuto dalla spremitura dei frutti di Olea europea (Fam. Oleaceae)"

L'OLIVA

BUCCIA (1,5-3 %):

membrana esterna ricoperta da una sostanza cerosa protettiva

POLPA (75-85 %)

NOCCIOLO (13-23 %): guscio legnoso che racchiude il seme o mandorla

COMPOSIZIONE DELL'OLIVA MATURA

- acqua 40 50 %
- olio 15 36 %
- sostanze azotate 1,5 2 %
- composti non azotati 18 24 %
- fibra grezza 5 8 %
- ceneri 1-2 %

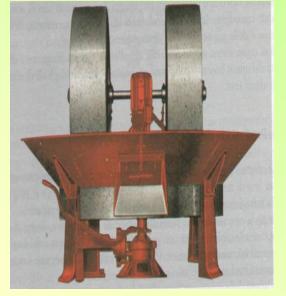
METODI DI RACCOLTA

- caduta spontanea
- pettinatura
- scrollatura delle olive
- abbacchiatura
- brucatura a mano

RACCATTATURA

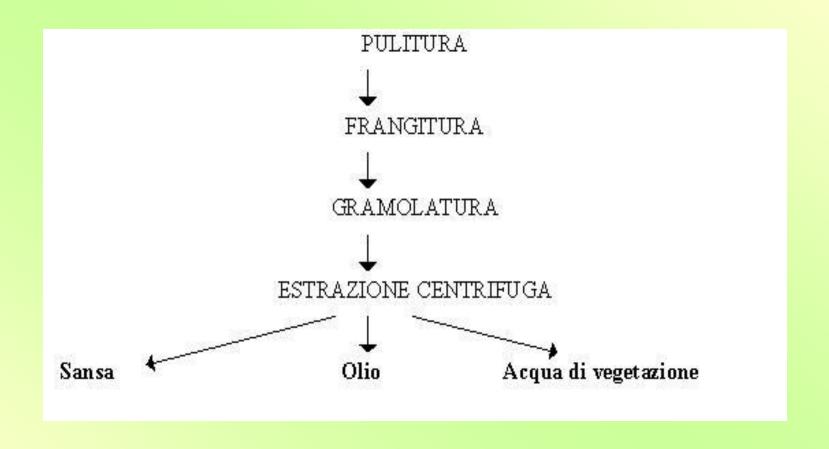
TECNICHE DI ESTRAZIONE

- PER PRESSIONE (metodo classico, discontinuo)
- PER CENTRIFUGAZIONE (metodo moderno, continuo)
- PER PERCOLAMENTO MEDIANTE FILTRAZIONE SELETTIVA

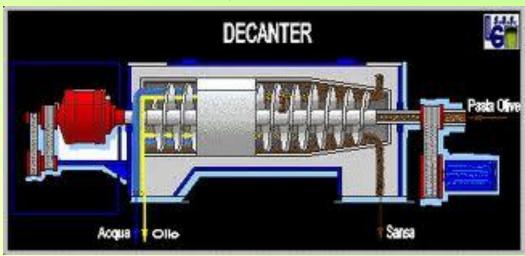

ESTRAZIONE PER PRESSIONE

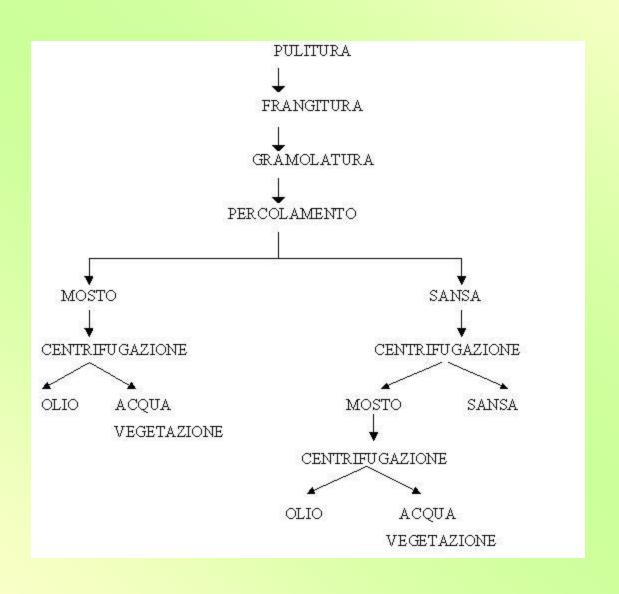
ESTRAZIONE PER PRESSIONE

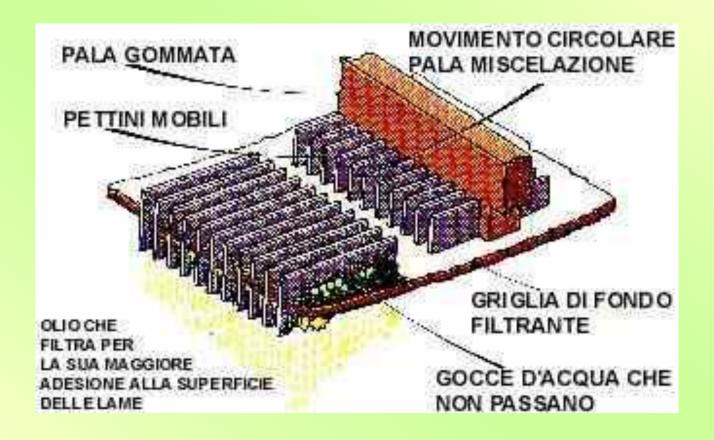
Molazza


Gramola

Pressa


ESTRAZIONE PER CENTRIFUGAZIONE


ESTRAZIONE PER CENTRIFUGAZIONE



ESTRAZIONE MEDIANTE FILTRAZIONE SELETTIVA

ESTRAZIONE MEDIANTE FILTRAZIONE SELETTIVA

Particolare di un estrattore a lamelle.

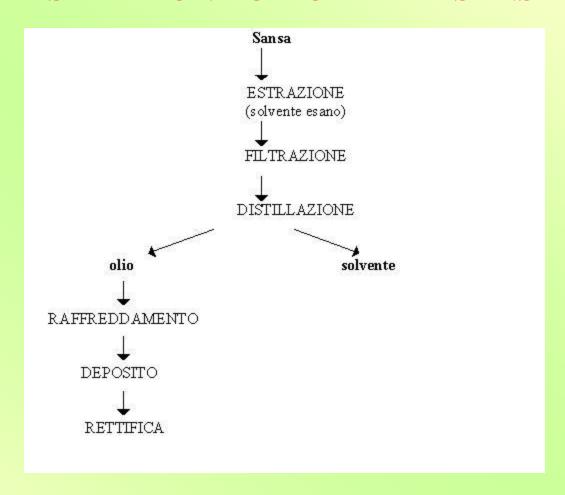
COMPOSIZIONE CHIMICA DELL'OLIO DI OLIVA

FRAZIONE SAPONIFICABILE

TRIGLICERIDI (98-99 %): semplici (≈ 55%) e misti (≈ 45%); minime quantità di mono e digliceridi. La composizione in acidi grassi varia in relazione alla varietà dell'olivo, al grado di maturazione delle drupe, al clima e al periodo della raccolta.

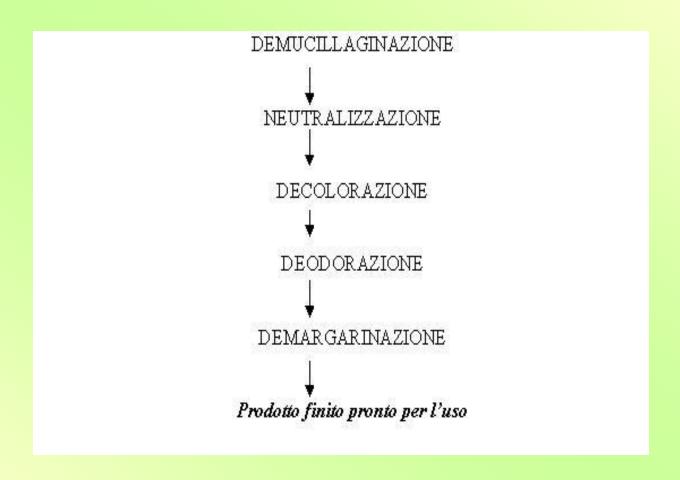
Principali acidi grassi: PALMITICO, OLEICO, LINOLEICO, LINOLEICO, LINOLENICO.

Un olio di oliva di buona qualità dovrebbe presentare:


- l'acido oleico non dovrebbe essere inferiore al 73%
- l'acido linoleico non dovrebbe superare il 10%
- il rapporto oleico/linoleico ≥ 7.

COMPOSIZIONE CHIMICA DELL'OLIO DI OLIVA

FRAZIONE INSAPONIFICABILE


- Idrocarburi, tra cui lo squalene (0,3-0,6 g %)
- Fitosteroli, in particolare β-sitosterolo, campesterolo, stigmasterolo, sia liberi sia esterificati
- vitamine liposolubili, il β-carotene o provitamina A (3-37 g %) e i tocoferoli con azione antiossidante
- pigmenti, clorofilla e i caroteni
- alcoli alifatici superiori esterificati ad acidi grassi (cere) e alcoli triterpenici
- polifenoli, 2-3% rappresentati prevalentemente da glucosidi ed esteri, anch'essi ad azione antiossidante.

ESTRAZIONE OLIO DALLE SANSE

La composizione dell'olio di sansa è simile a quella dell'olio di oliva; aumenta la percentuale di acido linoleico (9,5 - 15,5 %) ed è presente acido elaidinico in quantità inferiori allo 0,2 % (isomero *trans* dell'acido oleico).

RETTIFICA DEGLI OLI

RETTIFICA DEGLI OLI

- DEMUCILLAGINAZIONE: serve ad eliminare le sostanze insolubili (mucillagini, fosfolipidi, resine, zuccheri, sostanze proteiche). Le componenti idrosolubili possono essere allontanate mediante aggiunta di acqua e successiva centrifugazione, mentre le non idrosolubili vengono allontanate mediante aggiunta di acido solforico o citrico a 60 80 C per 5 30' seguita da centrifugazione.
- NEUTRALIZZAZIONE: serve ad allontanare gli acidi grassi liberi

Neutralizzazione con alcali: Trattamento con NaOH a 60 - 80 C e successivi lavaggi con acqua a 90 C fino ad assenza di reazione alcalina.

Disacidificazione con solvente: si utilizzano solventi volatili in cui si scioglie la frazione oleosa per separarla da quella saponosa.

Neutralizzazione per distillazione: Distillazione a caldo sotto vuoto spinto. E' usata per gli oli che necessitano anche di deodorazione. I costi sono elevati.

RETTIFICA DEGLI OLI

- DECOLORAZIONE: serve ad allontanare pigmenti, prodotti di ossidazione, tracce di sapone e composti solforati. Può essere effettuata con metodi chimici (KMnO₄, K₂Cr₂O₇, aria ozonizzata, raggi UV) o con metodi fisici (bentonite, terre decoloranti, carboni attivi).
- DEODORAZIONE: allontanamento delle sostanze volatili che conferiscono odore sgradevole (acidi grassi liberi, intermedi dell'ossidazione dei grassi, idrocarburi insaturi, proteine) mediante distillazione in corrente di vapore sotto vuoto spinto e a temperatura elevata (200 C).
- DEMARGARINAZIONE: serve ad allontanare i trigliceridi ad alto punto di fusione. L'olio è lentamente raffreddato fino alla temperatura "limite di demargarinazione", mantenuto per circa 12-24 h e filtrato.

CLASSIFICAZIONE DEGLI OLI

OLIO DI OLIVA VERGINE: "oli ottenuti dall'oliva meccanicamente o con altri processi fisici, in condizioni termiche tali da non alterarli e che non hanno subito nessun trattamento tranne il lavaggio, la decantazione, la centrifugazione la filtrazione".

In base all'acidità espressa in acido oleico si suddividono in :

- OLIO DI OLIVA EXTRAVERGINE: gusto assolutamente perfetto e acidità libera non superiore a 0,8%.
- OLIO DI OLIVA VERGINE: gusto perfetto e acidità libera non superiore a 2 %.
- OLIO DI OLIVA VERGINE LAMPANTE: gusto imperfetto e acidità libera superiore a 2 %.

OLIO DI OLIVA: Miscela di olio di oliva ottenuto dal taglio di olio di oliva raffinato con olio di oliva vergine diverso dal lampante; acidità non superiore all'1%.

OLIO DI SANSA DI OLIVA: olio ottenuto dal taglio di olio di sansa di oliva raffinato e di olio di oliva vergine diverso dal lampante; acidità non superiore all'1%.

ANALISI DEGLI OLI

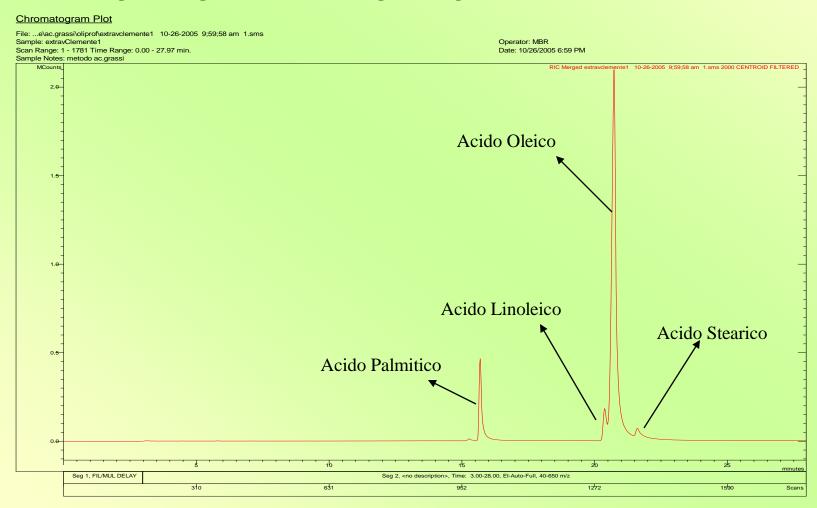
Le analisi a carico degli oli di oliva possono avere tre diversi scopi:

- verificarne la genuinità e la classificazione
- appurarne la qualità
- evidenziarne le rispondenze alle disposizioni particolari per i prodotti tipici

DETERMINAZIONE DELL'ACIDITA'

Evidenzia lo stato di conservazione e serve per classificarlo. L'olio è disciolto in alcol/etere (1:2) e titolato con KOH 0,5 N, indicatore fenolftaleina. L'acidità è espressa in g % di acido oleico.

DETERMINAZIONE DELLA RANCIDITA' (Saggio di Kreiss)

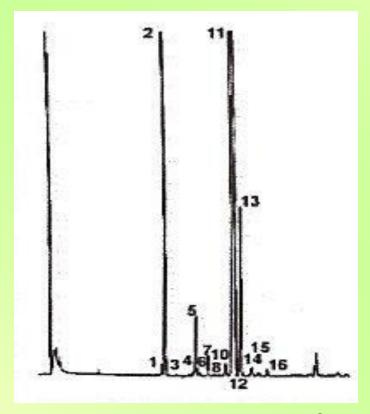

Determinazione qualitativa con fluoroglucina: le aldeidi in soluzione acida per HCl concentrato e in presenza di fluoroglucina allo 0,1% danno reazione rosa o rossa. Evidenzia l'irrancidimento avanzato di un olio, ma non rileva i prodotti primari dell'ossidazione.

RICERCA DI DIENI E TRIENI (metodo spettrofotometrico)

ANALISI DEGLI OLI

ANALISI DELLA SOSTANZA GRASSA (saponificabile)

Gascromatografia degli esteri metilici degli acidi grassi



ANALISI DEGLI OLI

ANALISI DELLA FRAZIONE STEROLICA

Rappresenta una ulteriore e più sicura conferma della genuinità dell'olio di oliva.

Gascromatografia degli steroli. Il β-sitosterolo non deve essere inferiore al 94 %

Profilo degli steroli in un olio di oliva grezzo. Picco 11: β-sitosterolo.