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The state of the art

Last 2 weeks we talked about simple linear regression, that
is finding a best line through a bunch of data, and that’s
good for models where you have an output (or dependent,
Y) variable depending on one input (or explanatory, x)
variable.

But the world is a very complex place, so we may have
more explanatory variables affecting a dependent variable.

What do you do if you have got a Y that depends on two or
more explanatory (x) variables?

How can we model that?
How can we use linear algebra to find the best fit?
How we can interpret the obtained results?
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1. introduction

Examples of multiple linear regression problems:

EX 1 - REGIONAL DELIVERY SERVICES

Let’'s assume that you are a small business owner for Regional
Delivery Service, Inc. (RDS) who offers same-day delivery for
letters, packages, and other small cargo. You are able to use
Google Maps to group individual deliveries into one trip to
reduce time and fuel costs. Therefore some trips will have more
than one delivery.

As the owner, you would like to be able to estimate how long a
delivery will take based on two factors: 1) the total distance of
the trip in miles and 2) the number of deliveries that must be

made during the trip.



Examples of multiple linear regression problems:

EX 2 - CAKES TRADING COMPANY

A distributor of frozen dessert pies wants to develop a new brand. Before to do that, the general
director (GD) needs to evaluate the factors influencing the demand of frozen pies. The company
collected data about Pie sales (unit sold per week), the unit price (in §) and the investment in
advertising (in 100$). At the moment the data are collected for 15 weeks and the company would
like to estimate the total number of pies sold per week, based on two factors: 1) the unit price, and

2) the investment in advertising (made in the same week).



Example 1:

definition of data and data variables

To conduct your analysis you take a random sample of 10 past trips and record
three pieces of information for each trip: 1) total miles traveled, 2) nhumber of
deliveries, and 3) total travel time in hours.

milesTraveled, | numDeliveries, | travelTime(hrs),
(I{.I {n (¥)

Remember that in this case, you would like to be able to

_ re = =l time using both the miles traveled
o6 1 “ and number r:lf deliveries on each trip.
78 s N
1Ll & m In what way does travel time DEPEND on the first two
44 L DS measures?
77 s I
80 3 _ Travel time i1s the dependent variable and miles traveled and
66 2 P R number of deliveries are independent variables.
109 s I
76 3 [eaT
Note: Y = dependent variable; Xi = independent variables OR

Y= response variable; Xi = predictor variables OR
Y= output variable; Xi = input variables.
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Multiple regression
is an extension of

simple linear regression

I.V.

— Simple linear regression
one-to-one

...0r maoare

T Multiple regression
many-to-one

Having more independent variables complicates things a bit...

Thus we need to make new considerations:

1. introduction



New considerations (1/2)

" Adding more independent variables to a multiple regression
procedure does not mean the regression will be “better” or
offer better predictions; in fact it can make things worse. This
is called OVERFITTING.

" The addition of more independent variables creates more
relationships among them. So not only are the independent
variables potentially related to the dependent variable, they
are also potentially related to each other. When this happens,
it is called MULTICOLLINEARITY.

= The ideal is for all of the independent variables to be
correlated with the dependent variable but NOT with each
other.



New considerations (2/2)

= Because of multicollinearity and overfitting, there is a fair
amount of prep-work to do BEFORE conducting multiple
regression analysis if one is to do it properly.
Correlations
Scatter plots
Simple regressions

N g

Running the Multiple Regression is the very last step



1. introduction

Multiple regression analysis:
many relationship to deal with

Independent variables

Dependent
variable

Multiple regression

travelTime,
: many-to-one

)

Potential multicollinearity

We don’t have just 2 relationship (independents — dependent)

We may discover also the relationship between the independents: we need to check for that to
avoid the multicollinearity > we need to guarantee that they are independent to each other



1. introduction

Multiple regression analysis:
many relationship to deal with

Multiple regression
many-to-one

10 relationships to consider!

As each independent variable is added, the relationships may become very
numerous.

The ART of doing multiple regression is deciding which independent variables
make the cut and which do not.

Some independents variables, or set of independent variables, are better at
predicting the dependent variable than other.

Some contributes nothing.



1. introduction

Multiple regression analysis:
many relationship to deal with

The ideal is for all the
INDEPENDENT VARIABLES to be correlated

with the dependent variable,
but NOT WITH EACH OTHER






2. The model

Idea: Examine the linear relationship between
1 dependent (Y) & 2 or more independent (or explanatory) variables (X))

Multiple Regression Model with k Independent Variables:

Population
Y-intercept Population slopes Random Error

/ — T \'
Y; =Py +B, X, +B, X+ + P Xy +E

14



2. The model

The coefficients of the multiple regression model

are estimated using sample data

Multiple regression equation with k independent variables:

Estimated
(or predicted) Estimated Estimated slope coefficients

=l 6 mtercept
A/

Y b +b b X +---+b X
2721



2. The model

B > T ¢ o+ o

linear parameters error

— L

error term assumed to be zero

y = by + byxq + byxy + - byxy,

by, by, by, ... b, are the estimates of 8, £, B, ... Bp

¥ = predicted value of the dependent variable

Regression Equation



2. The model

Example using numbers

/ va riag‘\

EEREE 5 =6.211+0.014x; +0.383x; — 0.607x3

mtercq!}t [ coefficients /

Estimated Multiple V = ba + b.x+ + b>Xx> + bax
Regression Equation y 0 1-+1 272 373
bo, by, by, ... b, are the estimates of 5y, 5, B2, ... By

v = predicted value of the dependent variable



2. The model

Interpreting coefficients in MLRM

A numerical example

V=27 +9x; +12x,

x, = capital investment ($1000s)
X, = marketing expenditures ($1000s)
v = predicted sales ($1000s)

In multiple regression, each coefficient is interpreted as the estimated change in y
corresponding to a one unit change in a variable, when all other variables are held

constant.

So in this example, $9000 is an estimate of the expected increase in sales 1,
corresponding to a $1000 increase in capital investment (x;) when marketing
expenditures (+.) are held constant.

Or: for each increase of 1 unit ($1000) in capital investment, we expect an increase of $9°000 in sales,
when marketing expenditures are held constant.



Using linear algebra to find the best fit




3. Using linear algebra to find the best fit

General Parametric Equation:

y=f(X)+e

Depends on Statistical Method

f(X) o Bﬂ L ﬁlxl + ﬁEXE + - +ﬁpo

9= Bo+ B X, + -+ B,X,

2

number of operations = n x(p - 1)}

|

To deal with a high number of variables and thus a high number of
operations, computer tends to perform much easily using matrixes

For n samples,\




3. Using linear algebra to find the best fit

Using matrixes:

nxi nx(p+1) (p+1) x 1 nxi
gas T Wy X v o5 K Bo €1

Y2 P €2

1 le‘l XE 2 " - "
Y3 1 X % ' B €3
y = - X 3,1 3,2 B = €=
. 1 .

L Vn - .1 Xﬂ,] Xn.z Xn,p . _ ﬁp _ B

b -
Il
o
=
+
~
)
1!
e
=



3. Using linear algebra to find the best fit

Using matrixes:

y=XpB +¢€
- V1 1 " Bo +131X1,1 + BEXLE s sl ﬁpxl,p T € ]
Y2 Bo + B1X21 + P X2 + -+ B Xy, + 6,
Y3 Bo+ P1X3, + B2 X3, + -+ ﬁpXE.p + €3
-Yn _ﬁﬂ +}Glxn.1 5 ﬁqu,z e - quXHp T Ep




3. Using linear algebra to find the best fit

Now, using this matrix form, how we can
compute the coefficients?

We use exactly the same principle we used for LRM:
minimizing the least square,
but for this time using matrixes



3. Using linear algebra to find the best fit

y=Xp+e
-E!" _Jr"]_-r}?ql-_ F}"l_ Fj:?l‘-q
e, V> — V5 J2 Y2
€3 Y3 — Y3 Y3 Y3 .
e = . —— . = . — ) = y—}'
| €, h}r"—ﬁd L ¥n - hj-':ﬂ

n
RSS = Zef ——P RSS =eTe

=1



3. Using linear algebra to find the best fit

RSS = eTe
RSS = (y — )" (y — 9)
RSS = (y — XB)' (v — XB)

— (vT — BTXT\(v — XR
RSS = (¥y' —B"X" )(y — XB) The aim of the Least

L 2s _ Square method is to
RSS=y'y—y'XB —BX"y + BTX"XB :I— find out the Beta
values that minimize
this RSS (Error)



3. Using linear algebra to find the best fit

) Rss=y'y—y'XB - BX'y + FTX'XP

Matrix Differentiation = s
W 5(RSS) 8(y"y—y"XB—BX"y+BTX"XPB) i

X =mXx1matrix

A=nxmmatrix; A L x 5B 5B
8y 5(y"y) S(y'XB) O(BX"y) S(BTX"XB) _
y=4 - —=0 e T I — =0
dx _ op i 5B 5B
y=Ax—-E=‘q 0—y'X—-X"Y)T"+28"XTX =0
Ox | _ .
0-y'X-y'X+ ZﬁTXTX =
=xA - ﬁ = AT
s Sx

2BTXTX = 2y"X ATXTX = y'X

oy =
y= X Ax = E =2xTA AT — y'}'x(x?’x)-—l ﬁ — (Xfx)—lx?'},




3. Using linear algebra to find the best fit

Matrix Approach

We wish to find the vector of least squares
estimators that minimizes:

n

L= De =¢€e=(y— XB)(y — XB)

i=]

The resulting least squares estimate 1s

B=(X'X)" X"y

y=XB=XX'X)"1Xy

e=y—-y=y—-XX'X)"X'y=
I -Xx(X'X)"1Xx']y

27



3. Using linear algebra to find the best fit

 The least squares function 1s given by

f M

k 2
[ = Z E.-: — z (11.1' o i—)’ll _ ; BJ,.'.T,:J,')

i=1 i=1

* The least squares estimates must satisfy

9 I R k )
.{_ = _2 E (_1',.' - E’u = z Bj""-.",f') =i
B Bobor ... B i=1 j=1 "
and
9l 1 . K . "
T_ —= _2 ; (_1}' e Br] e 2 BJ,"l”J-l” = ﬂ l.l' — ]‘ E., e om J'r'f
B BB By i=l =1/

28



3. Using linear algebra to find the best fit

* The least squares normal Equations are

" " n "
nBo+ B Doxy TR Oxn o+ D = Dy
i=] i=l i=| i=]

i

n n A n

0 E: : 3 2 5 S 8 -

BII < Xy T B| Zl X [ B_‘? z X1 X;2 RS Bﬁ; E XX — i1 Vi
1= I i=1 i=| i

= M ” n . n i n n
B[] El Xik + B| zl XXz T B; Z X1 X:0 et B,!; E ‘ui 2 X1 Vi
&= = i=| i=l i=|

 The solution to the normal Equations are the least
squares estimators of the regression coefficients.

29



Graphical representation




4. Graphical representation

Two variable model

Y =b, +b,X, +b,X,




A case study guides our first interpretation
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5. A case study guides our first interpretation

e Adistributor of frozen dessert pies wants to

evaluate factors thought to influence
demand

— Dependent variable: Pie sales (units per week)

— Independent variables:{Price (in S)
Advertising (5100’s)

e Data are collected for 15 weeks




Pie Price | Advertising
Week | Sales (%) ($100s)
1 350 5.50 3.3
2 460 7.50 3.3
3 350 8.00 3.0
4 430 8.00 4.5
5 350 6.80 3.0
6 380 7.50 4.0
7 430 4.50 3.0
8 470 6.40 3.7
9 450 7.00 3.5
10 490 5.00 4.0
11 340 7.20 3.5
12 300 7.90 3.2
13 440 5.90 4.0
14 450 5.00 3.5
15 300 7.00 2.7

5. A case study guides our first interpretation

Multiple regression equation:

N
Sales = b, + b, (Price)

+ b, (Advertising)




5. A case study guides our first interpretation

Regression Statistics

b, =-24.975: sales will decrease,

b, = 74.131: sales will increase,

Multiple R 0.72213 on average, by 24.975 pies per on average, by 74.131 pies per
week for each $1 increase in week for each $100 increase in

R Square 0.52148 selling price, net of the effects of  advertising, net of the effects of
Adjusted R Square 0.44172 changes due to advertising changes due to price
Standard Error 47.46341
Observations 15 ,Sales =306.526-24.975(Price) + 74.131(Advertising)
ANOVA df / SS MS F Significance F
Regression 2 29460.027 14730.013 6.53861 0.01201
Residual 12 27033.306 2252.776
Total 14 56493.333

Coefficients ﬁtandard Error t Stat P-value Lower 95% Upper 95%
Intercept 306.52619 / 114.25389 2.68285 0.01993 57.58835 555.46404
Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392
Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888

35




5. A case study guides our first interpretation

Predict sales for a week in which the selling price is
$5.50 and advertising is S350:

Sales = 306.526 - 24.975(Price)+ 74.131(Advertising)
= 306.526 - 24.975(5.50)+ 74.131(3.5)
— 428.62 “

Note that Advertising is in
Predicted sales is $100’s, so S350 means that

428.62 pies 3o




5. A case study guides our first interpretation

* Reports the proportion of total variation in Y
explained by all X variables taken together

2 _ SSR regression sum of squares
SST total sum of squares




5. A case study guides our first interpretation

Regression Statistics
Multiple R 0.72213 2 SSR . 294600 . 52148
/ r - - = =
R Square 0.52148 SST 56493.3
Adjusted R Square 0.44172 o 4. . . .
J d 52.1% of the variation in pie sales is

Standard Error 47.46341 . . g . .

explained by the variation in price and
Observations 15 . .

advertising
ANOVA df SS / mMS F Significance F
Regression 2 29460.027 14730.013 6.53861 0.01201
Residual 12 27033.306 2252.776
Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404
Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392
Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888




5. A case study guides our first interpretation

(continued)

* Shows the proportion of variation in Y explained by all X
variables adjusted for the number of X variables used
and sample size

[ ~1
rto=1—-|(1-r’ "
& ( )n—k—l

a
(where n = sample size, k = number of independent variables)

— Penalize excessive use of unimportant independent
variables

— Smaller than r?
— Useful in comparing among models

39



5. A case study guides our first interpretation

F Test for Overall Significance of the Model

Shows if there is a linear relationship between all
of the X variables considered together and Y

Use F-test statistic

Hypotheses:

Ho: B; =B, =-=B,=0 (no linear relationship)

H;: atleastone B, #0 (atleast one independent
variable affects Y)




41

 Test statistic:

5. A case study guides our first interpretation

Ferar =

SSR
MSR |
MSE  SSE
n—k—1

where F¢ ., has numerator d.f. =k and

denominator d.f. = (n—k - 1)



5. A case study guides our first interpretation

(continued)
Regression Statistics
Multiple R 0.72213
R Square 0.52148 F _ MSR _ 147300 _ 6 5386
: STAT = = = 0.
Adjusted R Square 0.44172 MSE 2252 .8
E 47.46341 .
Standard Error 63 With 2 and 12 degrees of )
Observations 15 freedom P-value for
the F Test
ANOVA df / SS MS F / Significance F /
Regression 2 29460.027 14730.013 6.53861 0.01201
Residual 12 27033.306 2252.776
Total 14 56493.333
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404
Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392
Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888
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5. A case study guides our first interpretation

Errors (residuals) from the regression model:

e, = (Y~ Y)

Assumptions:

Independence of errors

— Error values are statistically independent

Normality of errors

— Error values are normally distributed for any given set of X values

Equal Variance (also called Homoscedasticity)
— The probability distribution of the errors has constant variance



5. A case study guides our first interpretation

* These residual plots are used in multiple

44

regression:

A

— Residuals vs. Y,

— Residuals vs. X,

— Residuals vs. X,

— Residuals vs. time (if time series data)

Use the residual plots to check for violations of
regression assumptions
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5. A case study guides our first interpretation

e Use t tests of individual variable slopes

* Shows if there is a linear relationship between
the variable X; and Y holding constant the
effects of other X variables

Hypotheses:

— Hg: B; = 0 (no linear relationship)

—H,: B; # 0 (linear relationship does exist

between X; and Y)




5. A case study guides our first interpretation

(continued)

Ho: B; = 0 (no linear relationship)

Hy: B; # 0 (linear relationship does exist

between X; and Y)
Test Statistic:
[ Y (df =n-k-1)
STAT S
bj

46



5. A case study guides our first interpretation

(continued)

Regression Statistics

t Stat for Price is ty;,; =-2.306, with p-

Multiple R 0.72213
R Square 0.52148 value .0398
Adjusted R Square 0.44172
Standard Error 47.46341 t Stat for AdvertiSing is tSTAT - 2.855, with
Observations 15 p'Value .0145
3

ANOVA df SS MS F Significance F
Regression 2 29460.027 14730.013 6.53861 0.01201
Residual 12 27033.306 2252.776
Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404
Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37392
Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 130.70888
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5. A case study guides our first interpretation

Multicollinearity (also collinearity) occurs when two or more
explanatory variables of the multiple regression model are highly
correlated

In the presence of multicollinearity the coefficients estimates
can change with high variability as a consequence of small
changes in the data (low efficiency).

Perfect multicollinearity = X matrix is singular and cannot be
inverted = least square estimates cannot be computed

48



5. A case study guides our first interpretation

One way to detect multicollinearity is by computing the variance inflaction factors

VIF(B,) = 2k

a=m 7

Rjz: coefficient of determination of the regression of X; on all the other explanatory
variables

A VIF greater than or equal to 5 indicates
a multicollinearity problem

In the presence of multicollinearity one or more explanatory variables
should be removed by the model

Example: VIF(Price)=VIF(Advertising)= 1/(1-R,?)= 1/(1-0.0009264%) = 1
Price and Advertising are almost uncorrelated = absence of collinearity
49



5. A case study guides our first interpretation

Regression analysis general procedure

* Specification of the multiple regression
model

* Test the significance of the multiple
regression model

* Test the significance of the regression
coefficents

* Discuss adjusted r?

* Use residual plots to check model
assumptions



Exercises using R




In class exercise

Open R
Using the dataset “torta”, perform a MLRM

Central question:

Are the total sales affected by price and
advertising?

Note:
Price is expressed in S
Advertise is expressed in 1005



R exercises

Problem 1 - Passito

* Perform a multiple regression analysis for
predicting LIKE_PAS as function of
LIKE_ AROMA, LIKE_ SWEET, LIKE_ ALCOHOL
and LIKE_TASTE

* Predict the value of LIKE_PAS when
LIKE. AROMA=LIKE_ ALCOHOL=5

LIKE_TASTE=LIKE_SWEET=6



R exercises
Problem 2 - Hotel

* Perform a multiple regression analysis for
predicting Price as function of Cleanliness and
Courtesy

* Predict the value of Price when
Cleanliness=80 and Courtesy=40



R exercises
Problem 3 - Mall

* Perform a multiple regression analysis for
predicting Product_assortment as function of
Temp_Level, Brightness, Salesman and
Music_volume

* Predict the value of Product assortment

when Temp_Level=-50, Brightness=20,
Salesman=30 and Music_volume=-70



R exercises
Problem 4 - Students

* Perform a multiple regression analysis for
predicting Econometrics as function of
Statistics and Mathematics

Predict the value of Econometrics when
Statistics=8 and Mathematics=7



