

University of Ferrara

Stefano Bonnini & Valentina Mini

Simple Linear Regression Analysis

Lecture 3 December 14, 2018

structure of the lecture

1) Linear Regression Model: theoretical approach

2) Linear Regression Model: a step-by-step simulation analysis

3) LRM in R: practice and exercises

Introduction to Linear Regression Model

Introduction to Linear Regression Model

contents

- Linear regression model: main concepts
- **Regression coefficients:** b0 and b1 The Least Squares Method
- Interpretation of the coefficients
- How well the model is fitting data? The coefficient of determination r²
- The estimates' **standard error**
- **4 basic assumptions** for the linear Regression Model
- The significance: is the model statistically significant?
- Inference
- Exercises using R

Main targets

Use of one explanatory variable (x) to estimate a dependent variable
(y)

y = dependent variable,

x = independent or explanatory variable

- Estimate and find the meaning of the regression coefficients b₀ e b₁
- Do prevision of y values, based on x (n.b. range)
- Do evaluation of regression's assumptions respect
- Do inference (on coefficients and Y values).

- A scatter plot can be used to show the relationship between two variables
- Correlation analysis is used to measure the strength of the association (linear relationship) between two variables
 - Correlation is only concerned with strength of the relationship
 - No causal effect is implied with correlation

Examples of scatter plots

Using the scatter plot we do individuate the possible relationship between two observed variables

Absence of relation

Example of a correlation matrix

> cor(torta)								
	settimana	vendita	prezzo	pubb	pr_non.surge	pr_panna	vendita.panna	giorni.di.festa
settimana	1.00000000							
vendita	0.03360076	1.00000000						
prezzo	-0.10014845	-0.10209557	1.000000000					
pubb	0.19279946	0.19514066	-0.001526334	1.000000000				
prezzo_non.surge	-0.33221180	-0.36502135	-0.113666725	0.052860721	1.00000000			
prezzo_panna	-0.23453792	-0.05114394	0.654599388	-0.090582798	-0.01416071	1.00000000		
vendita.panna	0.05384546	0.80734983	-0.111172219	-0.033649346	-0.30566582	-0.08676635	1.00000000	
giorni.di.festa	0.09359796	-0.33030785	-0.215219045	0.025079631	0.32507725	-0.07861741	-0.12425313	1.00000000

•Correlation is only concerned with strength of the relationship

•No causal effect is implied with correlation

Simple Linear Regression Analysis: aim

- Regression analysis is used to:
 - Predict the value of a dependent variable Y based on the value of one independent variable
 - Explain the impact on the dependent variable of changes in independent (explanatory) variable X

Dependent variable: the variable we wish to predict or explain

Independent or explanatory variable: the variable used to predict or explain the dependent variable

Simple Linear Regression Analysis: only one explanatory variable (x)

 Relationship between Y and X is described by a linear function

■ Only one independent variable, X ⇒ Simple Linear Regression Model

• X \geq 2 independent variables, $X_1, ..., X_k \Rightarrow$ Multiple Linear Regression Model

Simple Linear Regression Analysis: the model

Simple Linear Regression Model (SLM)

Simple Linear Regression Analysis: graphical representation

Simple Linear Regression Analysis: the equation

The simple linear regression equation provides an estimate of the population regression line

 b_0 and b_1 are obtained by finding the values that minimize the sum of the squared differences between Y and \hat{Y} :

$$min\sum_{i}(Y_{i} - \hat{Y}_{i})^{2} = min\sum_{i}(Y_{i} - (b_{0} + b_{1}X_{i}))^{2}$$

• Suppose that we have *n* pairs of observations $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.

Deviations of the data from the estimated regression model.

• The method of least squares is used to estimate the parameters, β_0 and β_1 by minimizing the sum of the squares of the vertical deviations.

Deviations of the data from the estimated regression model.

$$L = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

The least squares estimators of β_0 and β_1 , say, $\hat{\beta}_0$ and $\hat{\beta}_1$, must satisfy

$$\frac{\partial L}{\partial \beta_0} \Big|_{\hat{\beta}_0,\hat{\beta}_1} = -2\sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right) = 0$$
$$\frac{\partial L}{\partial \beta_1} \Big|_{\hat{\beta}_0,\hat{\beta}_1} = -2\sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right) x_i = 0$$

Simplifying these two equations yields

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i}$$
$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} y_{i}x_{i}$$
(11-6)

Equations 11-6 are called the least squares normal equations. The solution to the normal equations results in the least squares estimators $\hat{\beta}_0$ and $\hat{\beta}_1$.

Simple Linear Regression Analysis: least squares estimates

Definition

The least squares estimates of the intercept and slope in the simple linear regression model are

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} \tag{11-7}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} y_{i} x_{i} - \frac{\left(\sum_{i=1}^{n} y_{i}\right) \left(\sum_{i=1}^{n} x_{i}\right)}{n}}{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}$$
(11-8)

where $\overline{y} = (1/n) \sum_{i=1}^{n} y_i$ and $\overline{x} = (1/n) \sum_{i=1}^{n} x_i$.

Simple Linear Regression Analysis: least squares estimates

- $b_0 = \hat{\beta}_0$ is the estimated mean value of Y when the value of X is zero
- b₁=β₁ is the estimated change in the mean value of Y as a result of a one-unit change in X

Ex:

- A real estate agent wishes to examine the relationship between the selling price of a house and its size (measured in square feet)
- A random sample of 10 houses is selected
 - Dependent variable (Y) = house price in \$1000s
 - Independent variable (X) = square feet

House Price in \$1000s (Y)	Square Feet (X)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

House price model: Scatter Plot

	Y	Х	$(Y-\overline{Y})$	$(X - \overline{X})$	$(Y - \hat{Y})^2$	$(X-\bar{X})^2$	$(X-\overline{X})(X)$	Y –
	245	1400	-41.5	-315	1722.25			ľ
	312	1600	25.5	-115	650.25	13225	-2932.5	
	279	1700	-7.5	-15	56.25	225	112.5	
	308	1875	21.5	160	462.25	25600	3440	
	199	1100	-87.5	-615	7656.25	378225	53812.5	
	219	1550	-67.5	-165	4556.25	27225	11137.5	
	405	2350	118.5	635	14042.25	403225	75247.5	
	324	2450	37.5	735	1406.25	540225	27562.5	
	319	1425	32.5	-290	1056.25	84100	-9425	
	255	1700	-31.5	-15	992.25	225	472.5	
sum	2865	17150	0	0	32600.5	1571500	172500	
mean	286.5	1715			3260.05	157150	17250	

$$b_1 = \hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{172500}{1571500} = 0.109768$$

 $b_0 = \hat{\beta}_0 = \bar{y} - b_1 \bar{x} = 286.5 - 0.109768 \cdot 1715 = 98.24833$

House price model: Scatter Plot and Prediction Line

Predict the price for a house with 2000 square feet:

house price = 98.25 + 0.1098 (sq.ft.)

= 98.25 + 0.1098(2000)

= 317.85

The predicted price for a house with 2000 square feet is 317.85(\$1,000s) = \$317,850

Simple Linear Regression Analysis: the total variation

Total variation is made up of two parts:

Total Sum of Squares

SS

Regression Sum of Squares Error Sum of Squares

 $SSE = \sum (Y_i - \hat{Y}_i)^2$

$$T = \sum (Y_i - \overline{Y})^2 SSR = \sum (\hat{Y}_i - \overline{Y})^2$$

where:

 \overline{Y} = Mean value of the dependent variable

 Y_i = Observed value of the dependent variable

 \hat{Y}_i = Predicted value of Y for the given X_i value

Simple Linear Regression Analysis: the coefficient of determination

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called r-squared and is denoted as r²

$$r^{2} = \frac{SSR}{SST} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

note:
$$0 \le r^2 \le 1$$

Simple Linear Regression Analysis: the coefficient of determination

How well the regressed values estimated the real/actual values

Simple Linear Regression Analysis: the coefficient of determination

Regression S		\mathbf{r}^2	==	18934.	=0.58	3082
Multiple R	0.76211		SST	32600.	5000	
R Square	0.58082		<u>۲</u>			
Adjusted R Square	0.52842	/	58	8.08%	of the variat	ion in
Standard Error 41.33032			hou	use pric	es is explai	ined by
Observations 10				-	n in square	-
				anato	in in oquaro	1001
ANOVA	df	SS	MS	F	Significance F	
Regression	1	→ <u>18934.9348</u>	18934.9348	11.0848	0.01039	
Residual	8	13665.5652	1708.1957			
Total	9	→ 32600.5000				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	98.24833	58.03348	1.69296	0.12892	-35.57720	232.07386
Square Feet	0.10977	0.03297	3.32938	0.01039	0.03374	0.18580

Simple Linear Regression Analysis: central assumptions

Assumptions of the model:

- <u>L</u>inearity
 - The relationship between X and Y is linear
- Independence of Errors
 - Error values are statistically independent
- <u>N</u>ormality of Error
 - Error values are normally distributed for any given value of X
- <u>Equal Variance</u> (also called homoscedasticity)
 - The probability distribution of the errors has constant variance

Simple Linear Regression Analysis: central assumptions

$$\mathbf{e}_{i} = \mathbf{Y}_{i} - \mathbf{\hat{Y}}_{i}$$

- The residual for observation i, e_i, is the difference between its observed and predicted value
- Check the assumptions of regression by examining the residuals
 - Examine for linearity assumption
 - Evaluate independence assumption
 - Evaluate normal distribution assumption
 - Examine for constant variance for all levels of X (homoscedasticity)
- Graphical Analysis of Residuals
 - Can plot residuals vs. X

Simple Linear Regression Analysis: central assumptions

Analysis of residuals

Checking for normality:

- Examine the Histogram of the Residuals
- Construct a Normal Probability Plot of the Residuals

Checking for homoschedasticity

Does not appear to violate any regression assumptions

Simple Linear Regression Analysis: standard error of the regression slope coefficient

The standard error of the regression slope coefficient (b₁) is estimated by

$$S_{b_1} = \frac{S_{YX}}{\sqrt{SSX}} = \frac{S_{YX}}{\sqrt{\sum (X_i - \overline{X})^2}}$$

where:

$$S_{b_1}$$
 = Estimate of the standard error of the slope
 $S_{YX} = \sqrt{\frac{SSE}{n-2}}$ = Standard error of the estimate

Simple Linear Regression Analysis: inference

- t test for a population slope
 - Is there a linear relationship between X and Y?
- Null and alternative hypotheses
 - $H_0: \beta_1 = 0$ (no linear relationship)
 - H_1 : $\beta_1 \neq 0$ (linear relationship does exist)
- Test statistic

$$t_{\text{STAT}} = \frac{b_1 - \beta_1}{S_{b_1}}$$
$$d_1 f_1 = n - 2$$

where:

- b₁ = regression slope coefficient
- β_1 = hypothesized slope

$$S_{b1} = standard$$

error of the slope

Simple Linear Regression Analysis: inference

$$H_0: \beta_1 = 0$$
$$H_1: \beta_1 \neq 0$$

Software output:

Simple Linear Regression Analysis: inference

Test Statistic:
$$\mathbf{t}_{\text{STAT}} = 3.329$$

 $H_0: \beta_1 = 0$
 $H_1: \beta_1 \neq 0$

Decision: Reject H_0

There is sufficient evidence that square footage affects house price Simple Linear Regression: a step-by-step Analysis The Mini Market Company is a chain of small convenience retail shops that stocks a range of everyday items such as groceries, snack foods, confectionery, soft drinks ect.

The director is considering the possibility to open a new shop in Ferrara City Center; however before to construct the business plan, he wants understand the causal relationship of the shop size on sails volume.

For this reason the Director is asking you a technical advise.

Data sample: 14 shops, Shop's size (100 m²) and Annual sales volume (1'000 €)

The database of sampled data

Shop's ID	Shop's size (100 M ²)	Annual Sales Volume (1000 €)
1	1,7	3,7
2	1,6	3,9
3	2,8	6,7
4	5,6	9,5
5	1,3	3,4
6	2,2	5,6
7	1,3	3,7
8	1,1	2,7
9	3,2	5,5
10	1,5	2,9
11	5,2	10,7
12	4,6	7,6
13	5,8	11,8
14	3	4,1

Central question:

in the explorative phase, what we can say about the relationship between this two variables?

Step 1: Graphical representation of the correlation between 2 variables

Relationship bewteen shop's size and annual sales volumes

The scatter-plot must form a linear pattern.

Step 2: Estimating regression coefficients – b1 and b0

$$ssxy/ssx$$

$$ssxy=\sum_{1=i}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y}) = \sum_{1=i}^{n} y_{i}x_{i} - \frac{(\sum_{1=i}^{n} x_{i})(\sum_{1=i}^{n} y_{i})}{n}$$

SSX=

$$\sum_{1=i}^{n} (x_i - \bar{x})^2 = \sum_{1=i}^{n} x_i^2 - \frac{(\sum_{1=i}^{n} x_i)^2}{n}$$

$$b_{0} = \bar{Y} - b_{1}\bar{x}$$

$$\bar{Y} = \frac{\sum_{1=i}^{n} y_{i}}{n}$$

$$\bar{x} = \frac{\sum_{1=i}^{n} x_{i}}{n}$$

$$\hat{y}_{i} = b_{0} + b_{1} x_{1}$$

Step 2: Estimating regression coefficients – b1 and b0

ID negozio	M² (100) X	Sales Volume (1'000) y	X ²	Х*Ү
1	1,7	3,7	2,89	6,29
2	1,6	3,9	2,56	6,24
3	2,8	6,7	7,84	18,76
4	5,6	9,5	31,36	53,2
5	1,3	3,4	1,69	4,42
6	2,2	5,6	4,84	12,32
7	1,3	3,7	1,69	4,81
8	1,1	2,7	1,21	2,97
9	3,2	5,5	10,24	2,97 17,6
10	1,5	2,9	2,25	4,35
11	5,2	10,7	27,04	55 <i>,</i> 64
12	4,6	7,6	21,16	34,96
13	5,8	11,8	33,64	68,44
14	3	4,1	9	12,3
14	40,9	81,8	157,41	302,3
n	$\sum_{i=1}^{n} x$	$\sum_{i=1}^{n} y$	$\sum_{i=1}^{n} xx$	$\sum_{i=1}^{n} xy$

Step 2: Estimating regression coefficients – b1 and b0

b1= SSXY/SSX= SSXY = 302.3-(40.9*81.8)/14 = 63.3271 SSX = 157- (40.9*40.9)/14 = 37.92358

= 63.3271/37.9235= 1.6699

$$b_0 = (81.8/14) - 1.6699*(40.9/14)$$

= 5.843-4.8785 =

= 0.9645

Estimated Model

Y = 0.9645+1.6699 Xi

ID	M² (100) X	€ annaul sales (1'000) y	Estimated Model
1	1,7	3,7	3.8
2	1,6	3,9	3.64
3	2,8	6,7	5.64
4	5,6	9,5	10.31
5	1,3	3,4	3.13
6	2,2	5,6	4.64
7	1,3	3,7	3.13
8	1,1	2,7	
9	3,2	5,5	
10	1,5	2,9	
11	5,2	10,7	
12	4,6	7,6	
13	5,8	11,8	
14	3	4,1	5.97
14	40,9	81,8	

b₁ - This is the SLOPE of the regression line.

Thus this is the amount that the Y variable (dependent) will change for each 1 unit change in the X variable.

So for each increase of 100 m² in the Shop's Size (X), we estimate that the annual sales (Y) will increase by 1'996,6 Euros.

bo - This is the intercept of the regression line with the y-axis.

In other words it is the value of Y if the value of X = 0.

Theoretically, in pour case when the shop's size =0, the annual sales will be 964,5€

Question: Does this interpretation make sense?

Attention to the X-values range!

If the X value is outside the range, we are not able to give a practical interpretation of bo

Before making predictions, check the data! Be sure that the range of sampled X (Xmin, Xmax) includes the value you are using for your prediction

Considering our Mini Market case:

-How much will be the Annual Shops Sales if the Shop's Size is 200 squared meters?

→ Sales (1'000)= 0.9645+1.6699*200

-How much will be the Annual Shops Sales if the Shop's Size is 100 squared meters?

 \rightarrow We cannot do the prediction because the value X=100 is outside the range of sampled X (so the relationship between the two variables could be different)

 R^2 = coefficient of determination.

It provides a measure of how well observed outcomes are replicated by the model, based on the proportion of total variation of outcomes explained by the model.

R² = <u>Regression Variability</u> Total Variability

This implies that *R2%* of the variability of the dependent variable has been accounted for, and the remaining *(1-R2)%* of the variability is still unaccounted for.

Step 6: Assessing the Model's goodness of fit

Graphical representation

Step 6: Assessing the Model's goodness of fit

 $R^{2} = SSR/SST$ $SSR = SUM \left(\left| \hat{V} - \bar{V} \right|^{2} \right)$

SST< <ssr+sse =="" sum<="" th=""><th>$(\mathbf{Y}_{i}-\overline{\mathbf{Y}})^{2}$</th></ssr+sse>	$(\mathbf{Y}_{i}-\overline{\mathbf{Y}})^{2}$
---	--

~	¥-Ÿ	(X-Ÿ)² SSR	yi-Ÿ	(yi-Ÿ)² SST
3,8	3,8-5,84= -2,04	4,16	-2,14	4,58
3,64	-2,2	4,84	-1,94	3,76
5,64	-0,2	0,04	0,86	0,79
10,31	4,47	19,98	3,66	13,39
3,13	-2,71	7,34	-2,44	5,95
4,64	-1,2	1,44	-0,24	0,06
3,13	-2,71	7,34	-2,14	4,58
2,8	-3,04	9,24	-3,14	9,86
6,3	0,46	0,21	-0,34	0,11
3,47	-2,37	5,62	-2,94	8,64
9,65	3,81	14,52	4,86	23,62
8,65	2,81	7,89	1,76	3,1
10,65	4,81	23,13	5,96	35,52
5,97	0,13	0,01	-1,74	3,03
		105,76		116,99

R²= 105.72/116.99=0.903669=0.904 → 90.4% of var accounted

Step 7: Standard Error of the Estimates

$$S_{yx} = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}}$$

In our example:

- $SSE = sum(Yi-Y)^2$
- $n=14 \rightarrow (n-2=12)$
- → Syx= 0.966

INTERPRETATION

Standard error=0.966, Thus equals to 966 Euros.

→ The mean deviation of the estimated sales value and the real one is equals to 966 Euros.

Using graphical representations, we need to check the 4 main assumptions of the Linear Regression Model

Linear Regression Mode using R