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Abstract—This paper studies the innovation response of upstream tech-
nology suppliers when their downstream buyers transition from regulation
to competition. By modeling the impact of the 1990s U.S. electricity
deregulation on patenting, we find that after deregulation, the net compe-
tition effect (comprising the pure competition and the escape competition
effect) decreased innovation by 18.3% and the appropriation effect
increased innovation by 19.6%. Other deregulation factors have led to a
20.6% decline. In aggregate, after deregulation, innovation by the upstream
technology suppliers has declined by 19.3%, and upstream innovation
quality and generality have declined as well.

1. Introduction

TARTING with Schumpeter (1942), there is a line of

research arguing that innovation is best promoted in
highly concentrated industries because a monopolist has a
stronger incentive and better means to innovate than com-
petitive firms do. The “Darwinian” tradition, however,
argues that the most efficient and most innovative firms sur-
vive under competition, an argument that has been central
to the “creative destruction” literature, formalized by sev-
eral seminal papers, such as Aghion and Howitt (1992,
1996). In the standard setup of these studies, innovations
take place within the firm. Using this as the starting point,
researchers study the implications of competition on inno-
vation incentives. However, in the long tradition of the
literature on competition and innovation, the innovation
response of upstream technology suppliers to changing pro-
duct market competition faced by downstream technology
buyers remains understudied. This paper focuses on the
effect of competition on innovation in the context of this ver-
tical upstream-downstream industrial organizational struc-
ture and differs from papers that have considered the effect
of competition on innovation incentives in a horizontal
setup.'

To study this question, we use the deregulation of the
U.S. electric utility industry and the effect this had on the
innovation behavior of electric equipment manufacturers.
The technology flow in this industry is from upstream elec-
tric equipment manufacturers (EEMs), such as General
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Electric, responsible for innovating and supplying new
technology (such as furnaces and pollution control equip-
ment) to the downstream utilities that do the actual genera-
tion, transmission, and distribution of power. Overseen by
the Federal Energy Regulatory Commission (FERC) and
state regulators, each downstream utility had a service
monopoly in a particular geographical region and was sub-
ject to cost-of-service regulation that ensured that electricity
prices and returns to investment for utilities were stable and
not subject to market volatility. In addition, such regulation
implied that most costs incurred by utilities (such as in-
vestment in new technology) could be passed on to final
consumers.

During the early to mid-1990s, this regulation paradigm
underwent significant changes that were geared toward
competitive electricity markets.” In 1992, the passing of the
Energy Policy Act (EPAct) gave rise to open-access trans-
mission grids for wholesale transactions and formally intro-
duced wholesale competition, thus subjecting incumbent
utilities to price uncertainties and entry pressures.” After
the introduction of the EPAct, consumers such as municipa-
lities and large industrial customers could shop for power,
putting vertically integrated utilities, which had formerly
served all of their needs, at the risk of losing them as custo-
mers. This led to major changes in the organizational struc-
ture of the electricity industry and altered the incentives
and optimization decisions of utilities and all the entities
that did business with them (see Sanyal & Cohen, 2009,
and Cohen & Sanyal, 2007). In particular, the EEMs, which
supplied the generators, pollution control technologies, and
other equipment to the downstream utilities, were directly
affected by this change. Thus, the industrial organization of
this sector and the transition of the industry from a regu-
lated to a competitive setup make it ideal for studying inno-
vation behavior in an upstream-downstream setup.

Our investigation is motivated by the observed changes
in innovation behavior of EEMs that are coincident with

2 For studies on electricity deregulation in the United States, see Blum-
stein (1997), Borenstein and Bushnell (1999), Borenstein, Bushnell, and
Stoft (2000), Joskow (1997, 1999), Wolak (2004), Puller (2007), Sanyal
and Cohen (2009), and Cohen and Sanyal (2007).

° On the wholesale side, FERC took several steps to ensure increased
competition. It required utilities to provide a detailed account of their
transmission capacities, it expanded the range of services that the utilities
were required to provide to wholesale traders, and it made it clear that
approval of application for mergers and the IOUs’ ability to charge com-
petitive rates were subject to their filing open access transmission tariffs
with comparable service provisions. The competitive threat for utilities
comes from the “wholesale” markets where they buy and sell power for
resale at retail. Wholesale rates apply to all sales for resale. The Federal
Energy Regulatory Commission (FERC) is nominally required to set the
rates on a cost-of-service basis; however, in practice, it allows the parties
involved to choose them.
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Ficure 1.—EEM ELEcTRIC TECHNOLOGY PATENTS: 1980-2000
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deregulation and restructuring activity in the electricity
market. As figure 1 illustrates, with the introduction of the
competition that was ushered in by the EPAct which was
passed in the January 1992, there was a significant drop in
the absolute number of electric technology patents granted
to EEMs.*

This decline is even more puzzling when one observes
that this is a period when other technologies boomed. In fig-
ures Al in the appendix, we show that the number of drug
and medical patents obtained by corporations (U.S. and
non-U.S.) during our sample period increased. This increase
is also reflected in other technology classes, such as chemi-
cals and biotech. As a consequence, the share of electric
technology patents granted to EEMs declined during this
period (see figure A2). This paper explores why EEM inno-
vation declined when other technologies boomed.

Using patents as a metric for innovation, we find that for
both the equipment manufacturers and the particular elec-
tric equipment patent classes, the amount of innovation
declined after the EPAct (1992), which started the deregula-
tion process in the U.S. power industry. Thus, competition
in the downstream generation sector adversely affected the
innovation behavior of EEMs and, in aggregate, electric
technology innovation by EEMs declined by 19.3% after
deregulation. In addition, EEM patent quality has been
adversely affected, and these patents have become less gen-
eral since the establishment of the EPAct.

Before proceeding, we briefly review the work that is
most closely related to our study. The existing literature has
analyzed in considerable detail how the horizontal structure
of an industry—the number of firms, in particular—affects
incentives for process innovation.’ Conversely, the litera-

4 1In figure 1 we draw the EPAct line closer to 1991 since the act was
passed in January 1992 and the patent total correspond to December of
each year. There appears to be an increase in the innovation magnitude of
EEMs in 1999 and 2000, although the shares are nowhere near the predere-
gulation levels.

3 See, for example, Arrow (1962), Loury (1979), and, more recently,
Aghion et al. (2005) and Vives (2008) on this.
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ture has devoted much less attention to the corresponding
issue of how the vertical structure of an industry affects
innovation. A recent strand of the literature considers such
vertical structures as they pertain to the impact of vertical
integration on innovation incentives.® For our purpose, we
rule out the possibility of such vertical integration because
in the regulated electricity industry, the owners of the
upstream and downstream firms had totally different core
activities, which prevented such incentives. Another recent
paper, on a related theme, is that of Reisinger and Schnitzer
(2010). In an upstream-downstream framework with endo-
genous entry, they show that the downstream conditions
dominate overall profitability, while the upstream condi-
tions mainly affect the distribution of profits. Finally, a
related literature studies the effect of product market com-
petition on managerial incentives.” Aghion, Dewatripont,
and Rey (1999) is similar in spirit to that literature, but they
consider the effects of competition and the threat of liquida-
tion on innovation and growth in an endogenous growth
model. A few years later, Raith (2003) showed that changes
in competition affected incentives if these changes lead to
higher firm-level output, and Karuna (2007) showed that
particular industry characteristics play a major role in influ-
encing incentives.

Our paper adds to the innovation-competition literature in
important ways. It empirically models the effect of down-
stream competition on upstream innovation behavior in
situations where the technology buyer and seller are not ver-
tically integrated. This furthers our understanding of how
downstream product market competition influences the
innovation behavior of upstream technology suppliers. The
rest of this paper is organized as follows. Section II briefly
discusses the theoretical findings that serve as a backdrop to
our empirical results that help in understanding the mechan-
isms at work. Section III describes the data and empirical
methodology, and section IV discusses the results. The last
section concludes.

II. Theoretical Underpinnings

Common models of innovation and market structure can-
not adequately explain innovation behavior by EEMs since
these models focus on a horizontal organization structure
where innovation takes place within the firm. In our setup
there is a vertical organization structure where innovation is
done by upstream equipment manufacturers and bought by
downstream utilities. The innovations were bought at an
agreed-on price that was determined by the profits gener-
ated from the final product. Since the downstream utilities
were allowed to maintain a geographic monopoly, the
upstream manufacturers and the downstream utilities could

% Chen and Sappington (2010), Choi, Lee, and Stefanadis (2003), Bro-
cas (2003), Buehler, Schmutzler, and Benz (2004), and Buehler, Gartner,
and Halbheer (2006) are some papers that delve into such issues.

7 Schmidt (1997), Hart (1983), Hermalin (1992, 1994), and Scharfstein
(1988) are some papers in this vein.
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share the monopoly rents thus generated. After the introduc-
tion of the EPAct, wholesale competition was made possi-
ble in the downstream market. This had two effects. On the
one hand, the profitability of the incumbent utilities de-
clined due to increased competition with nonutility genera-
tors (often called the independent power producers, IPPs).
This affected the innovation incentive and competition in
the upstream EEM sector. On the other hand, the entry of
these IPPs in the downstream generation market created
new customers for the innovation product being sold by
upstream EEMs. We explain in detail how these changes
influenced upstream innovation.

First, in the presence of competitors (IPPs) in the down-
stream sector, the pricing of the final goods (electricity
price per megawatthour) to consumers would potentially
change by becoming more competitive compared to the
high regulated rates. This would reduce the profits of the
incumbent downstream utilities. This decline in down-
stream profitability due to competition decreased the buying
power of utilities and translated to a lower demand (from
incumbent utilities) for upstream innovation. For upstream
EEMs, this had a negative impact on the profit generated by
selling their innovation to downstream utilities. As pre-
dicted by the standard Schumpeterian model, increased
competition (in this case, among downstream utilities after
restructuring) reduces the monopoly rents that reward suc-
cessful innovators (in this case, the upstream EEMs), and
thus we expect declining downstream profits to dampen
upstream innovation.® We call this the pure competition
effect.

The second effect, which may boost innovation incen-
tives as competition increases, is called the escape competi-
tion by Aghion et al. (2001, 2005).” They argue that if
incumbent firms are allowed to innovate, then competition
may actually increase innovation in certain cases. When
there is more competition, innovation incentives depend not
so much on postinnovation rents but on the difference
between postinnovation and preinnovation rents of incum-
bent firms.' We argue that increased competition may
reduce a firm’s preinnovation rents by more than it reduces
its postinnovation rents: that is, doing nothing may be more
costly than investing in more innovation when faced with
more competition. Thus, greater competition “may increase
the incremental profits from innovating and thereby encou-
rage R&D investments aimed at ‘escaping competition’”
(Aghion et al., 2001).

We extend their logic in the context of our upstream-
downstream setup. In our setup, the downstream incumbent
utilities buy innovation from the upstream EEMs. The
effect of increased downstream competition would lead to a

8 See Dasgupta and Stiglitz (1980) and the first generation of Schumpe-
terian growth models (Aghion and Howitt, 1992, and Caballero and Jaffe,
1993).

° We thank the anonymous referee for pointing us in this direction.

10 According to the authors, this depends on whether the innovation is
done by technology laggards or leaders.
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decline in profits for incumbent utilities and hence reduce
their demand for upstream innovation. The upstream EEMs
would now have to fight harder to maintain (and or
increase) their market share.'' One potential path is to inno-
vate their way out of competition, or escape competition by
increasing innovation and becoming the market leader in
certain innovation products. Following Aghion et al.’s
(2005) logic, the drive to become the technological leader
and maintain or increase market share may drive EEMs to
innovate more when faced with shrinking downstream
demand (from incumbent utilities).

According to Aghion et al. (2005), which of these two
effects dominates depends on the industry structure—
whether the industry is leveled (firms are neck-and-neck
competitors) or whether it is unleveled (the industry has
technological leaders and laggards) and the level of compe-
tition in the industry. Their model predicts that the reduc-
tion of rents due to competition induces the neck-and-neck
competitors to innovate to escape competition, whereas the
Schumpeterian effect decreases the innovation incentives
for the laggards. If the industry composition is such that it
is characterized by a larger share of laggards, increased
competition would decrease innovation as the negative
Schumpeterian effect (the pure competition effect) would
dominate the positive escape competition effect. In the case
of the electricity industry, we expect the negative pure com-
petition effect to dominate the positive escape competition
effect, leading to a negative net competition effect. A
majority of the equipment manufacturers are small, pri-
vately owned firms, leading to an unleveled industry struc-
ture. In this case, the net effect of competition on innova-
tion should be negative; as downstream profits fall due to
competition, upstream innovation should decline as well.

The third effect is an appropriation effect, which is due to
the entry of the nonutility generation firms (the IPPs) in the
wholesale market.'? This effect arises because of the down-
stream-upstream industrial organizational structure particu-
lar to our setup. Thus, previous theoretical work on compe-
tition and innovations, where innovations occur within the
firm, has not considered this effect in their analysis. Two
related explanations comprise the aggregate appropriation
effect: a bargaining power effect related to the reaction of
downstream stream incumbent utilities and a demand-push
story based on the reaction of new downstream entrants (the
IPPs). We briefly explain these two effects.

"' The number of upstream EEMs remained fairly unchanged during
the sample period. Thus, the incentive to escape competition is not com-
ing from new competitors; rather, existing firms are fighting harder to
maintain or gain market share in the context of a shrinking profit sce-
nario.

'2 The Public Utility Regulatory Policy Act (PURPA) (1978) required
utilities to purchase power from local nonutility generators at “avoided-
cost” prices. This encouraged the growth of independent power producers
(IPPs). However, they could not sell their power to wider markets, which
limited competition. When the EPAct allowed FERC to issue wheeling
orders, the IPPs began competing with the utilities for large customers
such as municipalities.
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In the regulated regime, when there was a stable core of
downstream utilities, the upstream EEMs had little bargain-
ing power in the division of rents since they could not sell
their innovations to other competing nonutility downstream
firms. With the expansion of IPPs, EEMs could increasingly
sell their innovation to these competing firms, and this raised
their status quo payoff with the current incumbent firm. The
existence of this outside option implied that the price that
they received for their innovations from the downstream
incumbent firms would probably increase as a result of the
increase in bargaining power of the EEMs. In other words,
the share from the gains from innovations was higher com-
pared to the regulated regime.

This explanation shows how the EEMs may obtain a big-
ger share of profits from incumbent firms due to increased
bargaining power. In addition to this explanation is a
demand-side story that focuses on the new entrants, the IPPs.
With an exogenous shift in downstream demand (exogenous
from the point of view of the upstream EEMs) due to IPP
entry downstream, the size of the pie increases. These IPPs
will demand newer kinds of technology, and this demand
push will incentivize EEMs to increase their innovation
effort, since the upstream EEMs will now be able to capture
a larger share of this growing market. Thus, both the bargain-
ing power effect and the demand-push effect originate from
downstream IPP entry and will lead to increased innovation
by upstream EEMs. Both effects are captured by the aggre-
gate appropriation effect.

From this discussion, we find that there are three possible
forces driving the innovation incentives of upstream EEMs:
the negative pure competition effect, the positive escape
competition effect arising out of competition among the
upstream EEMs, and the positive appropriation effect aris-
ing out of IPP entry downstream. The structure of the elec-
tricity industry is such that the negative pure competition
effect will likely dominate the positive escape competition
effect, leading to a negative net competition effect: as com-
petition among EEMs increases, innovation would decline.
Whether the absolute value of innovations increases or
decreases as a result depends on the magnitude of the posi-
tive appropriation effect and the negative net competition
effect. We now take up this question section.

III. Data

A. Data Sources

Our primary interest is to investigate how downstream
competition affects upstream innovation. Using patents as a
metric of innovation, we empirically model how the magni-
tude and nature of innovation by EEMs change from the
regulated to the competitive regime. The number of patents,
or patent characteristics (such as quality), ¥;, is modeled as
a function of a deregulation dummy, D, cqmmen; @ dummy,
D yeatea, Tor the group that is being affected by deregulation
(electricity patent classes or the EEMs), firm, or patent class
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characteristics Char;; the appropriation effect, A,, the net
competition effect, C,, and macrocontrols M,:

Yir = (Dtr‘eatmenh Drreatedv Charit; Az‘v Ch Mr) . (1)

Thus, the primary categories of data that this paper relies
on are (a) information on patents, (b) variables measuring
the appropriation and net competition effects, and (c) firm-
level data on financial and other firm characteristics. The
patent data are from the National Bureau of Economic
Research (NBER) Patent Citations Database. We augment
this with the new patent and citation numbers from the
recent NBER patent database that contains patents applied
for from 1976 to 2006."* The data comprise application and
grant years, geographical distribution of these patents, tech-
nology classifications, number of claims per patent, back-
ward and forward citations (citations to and from a
patent),'* standardized assignee names, and assignee codes
that help in tracking assignees across years. In addition, for
publicly traded companies, it matches the unique CUSIP
identifier from the COMPUSTAT database with assignee
numbers. "’

We then identify the treated group as either electric tech-
nology patent classes or firms that can be categorized as
EEMs. First, to identify core electricity technology classes,
we cross-reference the U.S. Patent Office electricity tech-
nology classes with those in which the EEMs patent16. This
yields 42 electric technology—related patent classes.'” Sec-
ond, to classify firms as EEMs, we use the Energy Informa-
tion Administration’s (EIA) form EIA 767, which contains
exhaustive data on EEMs, including their names and the
type of technology they supply. These manufacturers fall
into three main categories: boiler manufacturers, flue gas
desulfurization unit manufacturers, and manufacturers of
low nitrogen oxide control burners. It is important to note
that there is considerable overlap in these groups. In all
three categories, 89 EEMs are identified by the EIA. Gen-
eral Electric, Babcock, and Wilcox are some of the larger
manufacturers in this group.18 In order to obtain the patents
granted to each EEM, we matched the list mentioned above
with the standardized patent assignee names from the 2006
updated NBER database. In a majority of cases, several
patent assignee names appear to belong to the same firm.
When an EEM is a publicly traded company, such as GE,
the match between multiple patent assignees and a parent

13 This latter data, however, do not contain information on the general-
ity or number of claims.

14 U.S. citation only. Since the current NBER database has 2006 appli-
cation-year patents and we use data only to 2000, we are fairly certain that
truncation is not a severe problem for the citation numbers. Additionally,
the new database has truncation corrected citations that we use in the esti-
mation.

!5 The COMPUSTAT database contains financial data on all publicly
traded companies in the United States.

16 http://www.uspto.gov/web/offices/ac/ido/oeip/taf/stelec.pdf.

17 Refer to the online appendix, table I, for details.

'8 A detailed list of the equipment manufacturers is provided in the
online appendix, table II.



PRODUCT MARKET COMPETITION AND UPSTREAM INNOVATION

firm is relatively easy to determine. The CUSIP and
assignee match from the NBER database allow us to iden-
tify all assignees that belong to a single parent. However,
not all the subsidiaries of GE, for example, are engaged in
electric technology innovation. Therefore, we exclude
obvious mismatches, such as the National Broadcasting
Corporation. Of the remaining subsidiaries, we cross-refer-
ence our list with multiple industry sources, such as
Hoovers, industry publications, and the company Web sites,
to observe whether the subsidiary is engaged in the electric
technology sector. We keep only those subsidiaries that are
directly involved in the electricity sector, and the patents
granted to these remaining subsidiaries are classified under
the firm. However, when the company is not publicly traded
and no CUSIP match exists in the NBER database, the
match between patent assignee and a parent EEM is not
straightforward. Often there are multiple similar assignee
names. In such cases, we use the industry sources men-
tioned above to match the assignee to the EEM identified in
the EIA report. After this exercise, if we are still uncertain
about the exact match, we retain all the similar assignee
names and classify them under one EEM."’

From the data we find that of the 89 equipment manufac-
turers identified by the EIA, approximately 55% patented in
the United States during our sample period. In addition,
these firms most frequently patented in U.S. patent class
110 (Furnaces).?® Matching the EEM list to COMPUSTAT
leaves us with 15 firms, and we use this information to clas-
sify large firms in the sample. For all our samples, if a
patent assignee or firm does not patent in a given year, we
set the number of patents to O in that year.21 In the estima-
tion, we use two samples: all EEMs and those with atleast
one U.S. patent during the period 1980 to 2000. Although
the updated NBER patent database comprises grant data to
2006, we restrict our sample to 2000 to avoid truncation
issues. When the data were collected in 2007, patent
applied for from 2001 to 2006 may not have been granted
due to significant grant lags in certain technology areas.
Additionally, most patents require a significant number of
years to reach their full citation potential (Hall, Adam, &
Trajtenberg, 2001). By allowing at least six years from the
date of application, we attempt to minimize this problem.

B. Variable Construction

Dependent Variables. Our primary dependent variables
fall into two categories: measures of patenting activity and

!9 As a robustness check we have excluded these companies from the

sample, and there is no significant difference to the estimation results.
Placement of an original patent into class 110 requires the following

minimum structure or steps for operating such structure: (a) means or a step
to either convey or support solid combustible material during combustion,
(b) means or a step to supply either directly or indirectly a noncombustible
fluid to the solid combustible material, and (c) means or a step to enclose or
control the combustion reaction.

2! Web appendix table III provides the matched list of EEMs, assignee
numbers, and CUSIPs.
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citation-based patent characteristics. To measure patenting
activity, we construct the percentage of patents and patent
counts by patent technology class and patent assignee. When
the unit of observation is the patent class, the percentage of
patents per class in a given application year is constructed
by dividing the number of patents granted in each patent
class by all patents granted in the United States for that parti-
cular application year.”” When the patent assignee is the unit
observation, our sample is all electric technology classes.
Thus, the percentage of patents for each assignee is calcu-
lated as the number of electric technology patents granted to
that assignee by application year, divided by the total num-
ber of granted patents (in all electric technology classes) for
that application year. From panel A in table 1, we find that
on average, each class has 0.17% of overall patents, with the
highest patenting class having 3.3% of all patents. On aver-
age, each assignee has 0.001% of patents, with the maximum
share being 0.42% within the electric technology category
for our sample. Additionally, on average, each assignee has
only one patent in our sample, with the highest being 484
patents granted to one assignee for a given application year.
When we focus on EEMs in particular, from panel B of table
1, we find that on average, each EEM has 15.7 patents, with
the highest-innovating firm holding 590 patents.>

Next, we use citation-based measures to construct two
main patent characteristics: patent quality and generality.
The number of citations received per patent is often used as
a measure of patent quality. This form of measurement is
based on the idea that patents that make significant contri-
butions will have more citations: a greater number of other
patents will cite these patents than those that embody minor
innovations (Jaffe, Trajtenberg, & Henderson, 1993; Jaffe,
Trajtenberg, & Fogarty, 2000). However, the raw number
of citations that a patent receives every year can be mislead-
ing. First, there may be significant truncation issues for
newer patents since it takes time for a patent to get cited.
Second, a patent may receive more citations simply because
there are more patents in a given field in the following
years, or it may come from a field where it is customary to
cite frequently. The problem of truncation is minimized in
our context since we have citation data to 2006 and use
patents applied for only to 2000. Thus the year 2000 patents
have had at least six years to get cited.”* Additionally, we
use the truncation-corrected citations from the updated
NBER patent database. To solve the second problem, we
purge the truncation-corrected citations of the field effects
as suggested by Hall et al. (2001). We then create

22 For robustness, we have constructed alternative patent share mea-
sures, where the numerator is number of patents granted in each patent
class and the denominator is USPTO patents granted to all corporations or
granted to U.S. corporations.

2 The reason the maximum number varies when we the count by
assignee and by firm is that there are multiple assignee numbers under
one firm.

24 See Hall et al. (2001) for a discussion of the distribution of citations
over time.



242 THE REVIEW OF ECONOMICS AND STATISTICS

TABLE 1.—SUMMARY STATISTICS FOR TABLES 2 TO 4

A. Statistics for Tables 2 and 4 Sample: All Patent Classes (Table 2)
Observations Mean S.D. Minimum Maximum
Dependent variable
Percentage of patents per patent class 12,012 0.148 0.258 0 3.347
Number of patents per patent class 12,012 156.137 319.697 0 5,062
Regressors: Dummy variables Observations Zeros Ones
EPAct dummy (lag two years) 12,012 8580 3432
Dummy for electric equipment patent classes 12,012 11130 882
Observations Mean S.D. Minimum Maximum
Regressors: continuous variables (lag two years)
Other patent stock® 12,012 14354.22 4780.03 7648 24,411
Own patent stock 12,012 639.98 1195.90 0 19,220.93
Quality stock 12,012 9947.61 23697.23 0 426,819.8
Mean adjusted generality 12,012 1.013 0.927 0 30.262
Mean adjusted claims 12,012 0.661 0.519 0 10.533
Sample: Electric Equipment Patent Classes (Tables 2 and 4)
Observations Mean S.D. Minimum Maximum
Dependent Variables
Percent age of patents per assignee (Dependent variable table 2) 41,929 0.001 0.014 0 0.418
Number of patents per assignee (Dependent variable table 2) 41,929 1.101 15.129 0 484
Average (adjusted) quality (Dependent variable table 4) 41,929 1.074 5.636 0 297.70
Aggregate (adjusted) quality (Dependent variable table 4) 41,929 1.276 18.480 0 629.76
Average (adjusted) generality (Dependent variable table 4) 41,929 0.110 0.482 0 6.676
Dummy variables Observations Zeros Ones
EPAct dummy (lag two years) 41,929 30,991 10,938
Dummy for EEMs 41,929 38,594 3,335
Observations Mean S.D. Minimum Maximum
Continuous variables (lag two years)
Other patent stock® 41,929 59,431.1 30,832.8 38 415,685.8
Own patent stock 41,929 4.717 68.656 0 2,191.206
Quality stock 41,929 69.694 1,068.30 0 35,517.77
Mean adjusted generality 41,929 0.119 0.501 0 7.788
Mean adjusted claims 41,929 0.081 0.343 0 7.342
Variables Common to Both Sample
Observations Mean S.D. Minimum Maximum
Number of boilers (CAAA) 41,929 529.348 794.045 0 2000
U.S. total R&D stock (billions of $2000) (lag two years) 41,929 592.147 170.159 381.565 970.85
GDP (billions of $2000) (lag two years) 41,929 6,518.487 1,309.21 4,540.9 9,066.9
Statistics for Table 3
Sample: All Electric Equipment Manufacturers
Observations Mean S.D. Minimum Maximum
Dependent Variables
Number of patents 1,743 16.321 66.297 0 590
Dummy variables Observations Zeros Ones
EPAct dummy (lag two years) 1,743 1,245 498
Dummy Low NOx Burner/ Desulfurization unit Product 1,743 357 1,386
Large EEM dummy 1,743 1,260 483
Dummy for large U.S. firms 1,743 548 1,195
Observations Mean S.D. Minimum Maximum
Continuous variables
Other firms’s electric technology patent stock® 1,743 67,760.89 45,542.91 1,611.26 415,685.8
Mean adjusted quality stock (lag two years) 1,743 968.366 4,308.10 0 34,530.9
Mean adjusted generality (lag two years) 1,743 0.287 0.679 0 4.141
Mean adjusted claims (lag two years) 1,743 0.196 0.476 0 4.403
Sample: Electric Equipment Manufacturers that Have At Least One U.S. Patent
Observations Mean S.D. Minimum Maximum
Dependent variable
Number of patents 945 30.103 87.724 0 590
Dummy variables Observations Zeros Ones
EPAct dummy (lag two years) 945 675 270
Dum. Low NOx Burner/ Desulfurization unit product 945 189 756
Large EEM dummy 945 567 378
Dummy for large U.S. firms 945 212 733
Observations Mean S.D. Minimum Maximum
Continuous variables
Other firms’s electric technology patent stock® 945 67,439.06 56,189 1,611.26 415,685.8
Mean adjusted quality stock (two years) 945 1,785.92 5,726.04 0 34,530.9
Mean adjusted generality (lag two years) 945 0.527 0.848 0 4.141
Mean adjusted claims (lag two years) 945 0.358 0.596 0 4.403
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TaBLE 1.—(CONTINUED)
Both Samples
Total competition and appropriation effect (lag two years)
Utility ROA (competition effect) 1,743 0.117 0.007 0.104 0.130
Share of nonutility generation (lag two years)(appropriation effect) 1,743 0.042 0.044 0.001 0.111
Observations Mean Post-EPAct Observations Mean
Pre-EPAct
Utility ROA (Percentage) 1,079 12.04 664 10.30
Percentage of nonutility generation 1,079 2.31 664 11.24
Observations Mean S.D. Minimum Maximum
Macrovariables
Number of boilers (CAAA) 1,743 579.762 813.651 0 2,000
Energy R&D Stock (lag two year) 1,743 4.257 1.185 1.769 6.176
GDP (Billions of 2000$) (Lag two years) 1,743 6,696.848 1,229.623 5,015 9,066.9

“Calculation of this patent stock is based on patents in all other classes or patents granted to all other assignees (j,.. . .,n) in the patent technology classes assignee i patents in (all within the sample of electric equip-

ment technology patent classes).

demeaned average and total citation measures, and citation
stocks by patent class and year and by firm and year.?

We use the generality measure developed by Trajtenberg,
Jaffe, and Henderson (1997) to investigate whether firms
are investing in specific innovations. This measure is also
based on citations received by individual patents. General-
ity implies that patents from a variety of other classes cite
this particular patent, that is, it has a significant impact on a
wide variety of fields.”® With deregulation and the asso-
ciated uncertainties facing the firms, we expect EEMs to
produce more targeted and less general patents.

Variables capturing the effects of deregulation. To
implement the empirical model, we first need to identify
deregulation dummies, electricity technology classes, and
the EEMs that supplied technology to downstream utilities.
The deregulation dummy is 1 after the passage of the EPAct
in 1992”7 We use a two-year lag of this dummy in our
empirical specification, that is, we assume that the deregula-
tion affects the innovation behavior of EEMs with a two-
year lag.”® In the literature there is no clear theoretical or
empirical finding that allows us to pick a particular lag
structure. We use a two-year lag to allow the firms to adjust
to the new regulatory scenario. R&D is usually a long-term
strategy developed by a firm, and it may not be possible to
instantaneously change this in response to a policy change;
thus, the lag reflects this gradual response.?’ Next we con-
struct dummies that identify the electricity patent classes
and the EEMs. The EEM dummy is 1 if the company was

25 We use the declining balance formula outlined in Hall, Jaffe, & Traj-
tenberg (2005) to create the citation stocks and use a 15% depreciation
rate. 7 2

%6 Generality = 1 — > (":—”’) , where n; is the number of forward cita-

=1
tions to a patent and n,j/ is the number of citations received from patents in
class j. A detailed discussion about this variable can be found in Hall
et al. (2001).

27 Deregulation dummy = 1 if year >1992 (1993 and after).

28 L ater in the paper, we provide robustness checks for various lags.

2 A paper that investigates the efficiency effects on deregulation (Fab-
rizio, Rose, & Wolfram, 2007) does not use any lags for the deregulation
dummy since they study labor and capital efficiency of utilities, metrics
that can be changed on a shorter term compared to innovation of the
upstream firms, which are one step removed from the deregulation process.

identified as an EEM on form EIA 767.°° The electricity
patent class dummy is 1 if it is an electricity-related patent
class and there is EEM patenting activity in that class.”’

The theoretically identifiable channels through which
downstream competition may affect upstream innovation
behavior are the pure competition effect, the escape compe-
tition effect, and the appropriation effect. In the empirical
model, both the (negative) pure competition and the (posi-
tive) escape competition effect are subsumed in the net
competition effect variable, which captures the profits of
the utilities in the pre- and post- restructuring periods. We
use the average profit (return on assets) of all downstream
utilities to characterize this effect. Falling downstream prof-
its will reduce the demand for new technology, and since
profits were shared between the upstream and downstream,
declining downstream profits imply declining upstream
profits from innovation and thus reduced innovation incen-
tives (pure competition effect). However, such a reduction
in profits may spur upstream firms to innovate more (escape
competition effect) if this allows them to capture a larger
share of the declining profits. Thus the downstream utility
profits give us a net effect of both of these forces.

The appropriation effect measures the impact of new
downstream entry, and hence increased upstream bargaining
power and increased demand, on EEM innovation. Ideally,
we want to obtain the number of entrants to the generation
sector in each year and their generation capacity. However,
these data are difficult to obtain, so we use the share of gen-
eration by nonutilities as a proxy for new IPP entry.

Innovation inputs. We use several past patent charac-
teristics to capture the innovation landscape of a firm or
patent class. First, to capture aggregate knowledge stock,
we construct the lagged patent stock of other patent classes
or firms (other patent stock) to capture any spillover effects
that may exist.>> When the unit of observation is the patent

30 The EEM dummy is 1 for all the firms listed in the Web appendix,
table II.

31 The electricity patent class dummy is 1 for all the classes listed in the
Web appendix, table 1.

32 We use the declining balance formula outlined in Hall et al. (2005) to
create the citation stocks and use a 15% depreciation rate to create the
stock of innovation inputs.
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class, this variable captures the patenting activity in all other
classes. When the unit of observation is the assignee or firm
in the electric equipment classes, this stock is calculated
based on the number of patents obtained by other assignees
or firms (j,. . .,n) in the patent classes that assignee or firm i
patents within the electric technology classes. This variable
captures the innovation activity of the firm’s competitors
and shows whether there is a positive or negative spillover
when competitors increase their patenting activity.

Second, we use the firm’s own patent characteristics from
the past to capture the idea that past patents serve as knowl-
edge inputs for current patents. We construct a lagged own
quality stock using past citation stocks to indicate the qual-
ity of innovation inputs that the firm can build on. For
example, if a firm has had a very high-quality patent portfo-
lio in the past, it has a better base of knowledge to build on
than another firm with low-quality patents. Therefore, the
former will have more inventions than the latter. We also
use a lagged average generality measure to indicate the
range of past innovation. A firm with more general patents
can draw from a broader base of knowledge and may stave
off diminishing returns to innovation longer than a firm that
patents within a very narrow range of technologies. Thus,
we argue that a firm with a higher generality score should
produce more patents than another with a very narrow and
specific patent portfolio.

The average number of claims is used as a proxy for
patent breadth (Guellec, van Pottelsberghe de la Potterie, &
van Zeebroeck, 2006): the more claims a patent makes, the
more things it claims to do, giving it a bigger breadth. The
effect of this variable on patents in unclear. If past patents
have greater breadth, then numerous potential applications
may have already been covered, and this phenomenon may
lead to a lower number of current patents. Conversely, if
breadth serves as a proxy for quality, we may find the
reverse effect. When we use the patent characteristics as the
dependent variables, we include the lagged own firm patent
stock as an additional control.>® To create this stock, we
consider only the past electric equipment technology patents
for each firm. We hypothesize that a firm that has a high
electric technology patent stock also has a greater number of
inputs at its disposal and is therefore more likely to come up
with higher-quality and more general inventions.

Firm characteristics. When we restrict our estimation
sample to EEMs, we are able to construct several firm-level
variables to account for the nature of the firm. The summary
statistics for these variables are presented in panel B of
table 1. EEMs produce three main types of products: boiler
manufacturers, flue gas desulfurization manufacturers, and
low nitrogen-oxide control burners. We construct two dum-
mies based on the type of products. The multiproduct firm

3 Own firm patent stocks include only patents in the electricity classes
that are assigned to the firm. Since we argue that past patent stocks serve
as inputs to current innovation, only electricity patents are included.
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dummy is value 1 if an EEM produces more than one type
of product. It is possible that such a firm will produce a
greater number of innovations since its activities span a
greater product space.

In addition, we also include a separate dummy for EEMs
that produce burners or desulfurization units. The Clean Air
Act Amendments (CAAA) of 1990 targeted older-genera-
tion plants in need of updating their pollution control tech-
nologies. The two primary technologies that could be
adopted to meet the CAAA requirements were low nitrogen
oxide (NOx) burners and desulfurization units. Thus, this
dummy captures the effect the CAAA may have had on
these specific EEMs. In addition, we create a large EEM
dummy that captures whether the EEM is publicly traded in
the United States. This variable serves as a proxy for firm
size and R&D because we lack data for these variables.
Finally, we include a U.S. firm dummy that captures
whether the EEM is headquartered in the United States,
since our sample includes both domestic and foreign EEMS.

Macroenvironment. In all specifications, we include
three main macrocontrols: the number of boilers affected
by the CAAAs, a measure of R&D, and GDP. The CAAA
forced utilities to undertake pollution control measures, and
thus it is conceivable that as more boilers have to be in
compliance, demand for new technology will increase. We
hypothesize that this increased downstream demand will
have a positive effect on upstream innovation. This data are
from the EIA Clean Air Act Database. The GDP variable
captures the overall health of the economy and controls for
macrofluctuations; it is obtained from the Bureau of Eco-
nomic Analysis. The R&D variables are obtained from the
National Science Foundation data on science and technol-
ogy indicators and from the EIA. We use two alternate mea-
sures of R&D depending on the sample: the total R&D
expenditure stock in the United States to capture the overall
research spending in the economy and the total energy
R&D expenditure (federal and company) to capture any
spillovers that may occur between an EEM’s innovation
and overall energy R&D. All dollar figures are in real terms
(2000 dollars), and all time-varying explanatory variables
are lagged by two years.34

IV. Empirical Methodology and Results

A. Deregulation and Electricity Innovation

We begin by estimating a simple difference-in-difference
model in table 2 to test whether the regime change after
deregulation had a significant impact on the innovation
behavior of the upstream EEMs. This ensures that deregula-
tion was indeed responsible for the decline in the quantity

3 We lag the variables by two years to allay concerns about endogene-
ity issues. Later in the paper (table 3B), we present a sensitivity analysis
for different lags of the deregulation dummy.
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TABLE 2.—PATENTING IN ELECTRIC TECHNOLOGY AFTER RESTRUCTURING
All Patent Classes Electric Technology Classes
Percentage of Number of Percentage of Number of
Patents per Patents per Patents per Patents per
Sample (All Firms) Patent Class Patent Class Assignee Assignee
Dependent Variable (1) 2) 3) “4)
EPAct dummy (lag two years) —0.055%** 0.065%%*%* 0.0001 0.139%*
(0.013) (0.021) (0.0001) (0.083)
Electric equipment patent class Dummy 0.137%%%* 0.904#%*%*
(0.034) (0.058)
EPAct dummy(Lag two years) x Electric Equipment Patent Class Dummy —0.080%%** —0.082%%*
(0.015) (0.040)
EEM Dummy 0.005%* 0.506%*%*
(0.002) (0.086)
EPAct Dummy(Lag two years) x EEM Dummy —0.004%** —0.407%*
(0.0017) (0.164)
Innovation inputs (lag two years)
Other Class/Firm Patent Stock® —0.0001 %% 0.00002%*%* 0.0000001 —0.00001 %%
(0.00002) (0.00001) (0.00000002) (0.000001)
Own Patent Quality Stock (Adjusted) 0.00001%%** 0.00001%%** 0.00001%*%* 0.0001%%**
(0.000001) (0.0000002) (0.000001) (0.00001)
Mean (Adjusted) Generality 0.003 0.185%#%* 0.001%%*%* 0.319%%%*
(0.004) (0.009) (0.0004) (0.022)
Mean (Adjusted) Number of Claims 0.055%3#% 0.436%+* 0.001 % 0.323%:4*
(0.007) (0.018) (0.0002) (0.029)
Macroenvironment
Number of Clean Air Act Affected Boilers 0.0001%%*%* —0.00002 0.0000001* —0.00003
(0.00002) (0.00002) (0.00000007) (0.0001)
EEM Dummy x Number of Clean Air Act Affected Boilers —0.0001%** —0.00004* —0.000002** —0.0002%*
(0.00002) (0.00002) (0.000001) (0.0001)
Total R&D Stock (Billions of $2000) (Lag two years) 0.001#%#%* 0.004#7%* —0.000006%* 0.002%3#%*
(0.0004) (0.0003) (0.000002) (0.0008)
GDP (Billions of 2000$) (Lag two years) 0.0001%** 0.0001 0.0000003* 0.0003
(0.00004) (0.0001) (0.000002) (0.0002)
Relevant statistics
Observations 12,012 12,012 41,929 41,929
Number of patent classes/assignee 572 572 1,823 1,823
R 0.703 0.645
Chi square 2,340.52 11,301.15 1,965.90 1,784.18

Columns 1 and 3: Random effects panel data model with standard errors clustered by patent class or patent assignee. Columns 2 and 4: Random effects panel negative binomial model. For columns 1 and 2, the
sample consists of all patents given to corporations, the unit of observation is the patent class, and the treated groups are the electric equipment patent classes. For columns 3 and 4, the sample consists of electric
equipment patents given to EEMs and a random sample of 2,000 firms, the unit of observation is the patent assignee, and the treated groups are the EEMs (electric equipment manufacturers). All specifications contain
a time trend and a constant. The sample is from 1980 to 2000. Standard errors are in parentheses. Significant at *10%, **5%, and ***1%.

“Calculation of this patent stock is based on patents in all other classes (columns 1 and 2) and patents granted to all other assignees (/.. . .,n) in the patent technology classes assignee i patents (columns 3 and 4).

and quality of innovation in the electric equipment manu-
facturing sector and that this was not just a secular down-
ward trend that had little to do with the deregulation poli-
cies:

Yit = o+ BDtreatmem + d)D treated + e(Dtreament * D treated )
] A
+ ot + Z 0,Z), + vi + &ir. (2)
J=1

In equation (2), Y, is the number of patents or the percen-
tage of patents for a given patent class or firm in a given appli-
cation year, ¢ is a time trend, and Z are other control vari-
ables.> D, oament 18 the deregulation dummy (lagged by two
years), and D,,....q captures the treated group, which is either

» Percentage of patents per patent class = (Number of patents granted
in a patent class i in year #/Total number of utility patents granted by the
USPTO)x 100. The year refers to application year. Percentage of patents
per assignee = (Number of electric equipment patents granted to an
assignee in year #/Total number of electric equipment patents granted by
the USPTO) x100. The year refers to application year.

electric equipment patent classes (compared to all other
patent classes) or the EEMs (compared to the control group,
which is a random sample of 2000 firms, selected for tract-
ability, that patent in the electric equipment classes but are
not EEMs).*® The difference-in-difference coefficient is 0.

If deregulation was responsible for a significant negative
impact on the innovation behavior of electric equipment
producers, we expect 0 to have a negative sign. For table 2,
columns 1 and 3, when the dependent variable is in percen-
tages, we use a random effect GLS model with robust and
clustered standard errors.’” However, even if we observe a
decline in the percentage of electricity patents, we cannot
fully conclude that deregulation has a negative impact on
the electric technology innovation. An alternate explanation

36 When the unit of observation is the patent class, the sample is all
patent classes. When the unit of observation is the assignee, the sample is
electric equipment patent classes.

37 See “How Much Should We Trust Differences-in-Differences Esti-
mates?” Marianne Bertrand, Esther Duflo and Sendhil Mullainathan;
Quarterly Journal of Economics, 119 (2004), 249-275 for an extensive
discussion.
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could be the case that EPAct has not had an absolute nega-
tive effect, but rather that electricity innovation is growing
more slowly compared to other technologies. Thus, the per-
centages of electric technology innovation are declining. To
investigate whether deregulation has actually decreased the
absolute number of patented innovations by EEMs, we use
number of patents in a patent class or by assignee in col-
umns 2 and 4. Since the dependent variable is in counts, we
use a random effects negative binomial model to estimate
these two specifications.

From table 2, the interaction term between the treated
group and the treatment dummy is the coefficient of inter-
est. As outlined earlier, a negative and significant coeffi-
cient implies that deregulation has adversely affected the
outcome being studied. In columns 1 and 2, the sample con-
sists of patents granted to corporations in all patent classes
between 1980 and 2000, and the dependent variables are
the percentage and number of patents granted in each patent
class in a given year.”® The treated groups are the electric
equipment patent classes. First, we find that the difference-
in-difference coefficients (—0.08) are negative and signifi-
cant in both columns, implying that the introduction of
competition in the power sector has had an adverse impact
on both, the percentage and level of patenting in the electric
equipment technologies compared to other technologies.39
Second, electric equipment classes have a higher number of
patents when compared to nonelectric equipment classes,
holding all else constant. Third, the post-1992 period has
seen a decline in the percentage of patents assigned to all
classes (column 1) while the absolute number of patents has
increased (column 2).40 The 1990s was a decade of prolific
growth in new technologies (giving rise to increasing num-
ber of new patent classes) and vigorous innovation in exist-
ing areas. This is reflected in the fact that the absolute num-
ber of patents went up in each patent class, while the share
of each patent class in total patents declined. Based on these
results, one can be fairly certain that the decrease in patent-
ing for electricity patent classes that occurs after 1992 is
because of deregulation rather than increases in patenting in
nonelectricity classes.*!

We find the same patterns from columns 3 and 4 where
we test whether the EEMs were adversely affected com-
pared to other groups within the electric equipment patent
classes.*? To create the control group, we draw a random
sample of 2,000 firms from non-EEM assignees that patent

38 All counts are by application year—out of all the patents applied for
in year f, the number granted.

% We find that deregulation was responsible for a 0.5% decline (based
on column 2) in patenting for the 42 electric technology classes.

This is the effect when the total impact is not taken into account, that
is, we do not take into account the negative interaction terms between the
EPAct dummy and the electric equipment class dummy.

41 . : s

If the decline was a result of increased patenting in other classes, then
the difference-in-difference coefficient for the level equation (column 2)
would not be negative and significant.

42 . U :

The unit of observation is the patent assignee, and the sample com-

prises the electric equipment patent classes.
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in the electric equipment classes.*> As before there are three
coefficients of interest: (a) the effect of EPAct on electric
equipment patents in general, (b) average EEM versus non-
EEM patenting activity in the electric technology classes,
and (c) the interaction between the two, that is, how EEM
electric technology patenting activity changed after EPAct.
We expect a significant interaction term since the EEMs
should be more affected after deregulation compared to
other entities that innovate in the electric equipment area.
This is because the utilities, the primary clientele of the
EEMs, were directly influenced by deregulation and experi-
enced significant changes in their competitive landscape
and profitability.

As before, the difference-in-difference coefficient (the
interaction term) shows the effect of the treatment (the pas-
sage of EPAct in 1992) on the treated (the EEMs in this
case). This interaction coefficient is negative and significant
in both columns, implying that electric technology patenting
by EEMs declined in both percentage and absolute terms
following the 1992 EPAct. When we calculate the aggregate
effect, we find that EEMs experience a 24.4% decline (based
on column 4) in patenting compared to non-EEMs. We also
find that all else equal, the passage of the EPAct has had no
impact on the percentage of patents in electric equipment
classes (column 3) while the number of electric equipment
patents granted to EEMs increased after 1992 (column 4).
Also, the percentage and numbers of EEM patents are higher
when compared to other assignees in the electric equipment
technology classes. Before investigating the channels through
which such declines occurred, we briefly discuss how the
other variables affected patenting.

We control for measures of input quality in these regres-
sions. Previous patents are often used as inputs in current
patents, and the properties of past knowledge will influence
the amount of innovation that is generated today (Popp,
2002, 2006). First, we control for the stock of patent quality
in past years in a given class.** A priori, it is difficult to
anticipate the direction of impact. One could argue that bet-
ter-quality inputs may increase current innovation. How-
ever, the reverse may be true as well: if a technology class
or firm already has patents of very high quality, the patent
space may be crowded, and it may be difficult to come up
with patentable innovations. From table 2, we find support
for the former hypothesis. We find that an increase in past
patent quality stock increases both the percentage and num-
ber of patents for each class or assignee.

Additionally, a firm’s innovation may be influenced by
that of its competitors. As discussed earlier, we use the past
patent stock of other patent classes to measure this and find
mixed results. From columns 1 and 2, we find that as the

43 Two thousand firms were selected for reasons of tractability.

4 Wwe lag the patent class characteristics by two years since these are
used as measures of past knowledge and input quality, and since the diffu-
sion of knowledge is not instantaneous, current patents would build on
patents that had been granted a couple of years earlier. However, our main
results are not sensitive to the choice of lags. Results provided on request.
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patent stock of other technology classes increases, the per-
centage of patents for an individual class falls, while the
absolute number increases. The positive effect may imply
positive spillovers and some form of unobservable innova-
tive capacity increase effect. The negative effect on the per-
centage (column 1) may imply that although there are posi-
tive spillovers, there are diminishing returns to these
spillovers. At the assignee level, we find that in electric tech-
nology classes, own firm innovation is adversely affected
(column 4) as innovation by competitors increases.

We also control for the generality and breadth of the past
patent portfolio and find that these positively influence cur-
rent innovation activities. Higher average generality implies
that patents in this class influence knowledge in a wide
range of fields, so it may be easier to build on these patents
and come up with patentable inventions in such a fertile
field. The number of claims, which measures the breadth of
the class, also has a positive impact on patenting, implying
that greater patent breadth in the past encourages current
innovation.

We also find that as the number of boilers affected by
the Clean Air Act Amendments (CAAA) increases, it
encourages innovation in general. However, electric tech-
nology classes and EEMs show decreased innovation after
CAAA. This result is counterintuitive since the CAAA
should have increased innovation by these groups. There
could be several alternative explanations for this finding.
First, instead of picking up the effect of the CAAA, this
result could reflect the effect of further restructuring activity
around 1996, when the second phase of boilers had to be
brought under compliance. Another possible explanation is
that firms had already done the research in earlier years in
anticipation of the passage of the CAAA, an argument sup-
ported by Taylor, Rubin, and Hounshell (2003). Finally, on
average, lagged R&D stock and income levels have a posi-
tive impact on innovation.

B. Channels of Influence

Next, we focus solely on the EEMs and estimate a richer
model that incorporates the appropriation and net competition
effects, and illustrates the channels through which down-
stream deregulation affected upstream innovation. Our sam-
ple consists of all EEMs, and we estimate the effect of deregu-
lation on the innovation activity of these firms by focusing on
the number of patents granted to each EEM.* Since these
patent counts are nonnegative integer numbers, we cannot use
the usual least squares approach.*® In addition, these counts

43 Table 1b in the online appendix provides a list of these companies
along with their assignee codes (from the NBER database) and patenting
rank.

46 Using OLS will yield some negative predicted values. But since the
dependent variable is nonnegative, the predicted values should also be
nonnegative for all explanatory variables. If all values of the dependent
variable were strictly positive, we could have used a log transformation.
However, since some of the values are 0, we prefer using a count data
model.
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have a disproportionate number of zeros since many of the
smaller EEMs do not patent every year and some EEMs never
patent during our sample period.*” The data-generating pro-
cess for the zero outcomes may be qualitatively different from
the process that generates the positive outcomes. Therefore,
we model such data using a zero-modified negative binomial
specification.*® The log-likelihood function for the model has
two distinct parts—one that models the zero outcomes and
another that is used for the positive counts.

In the first stage, the zero outcomes are modeled as a bin-
ary probability model (logit specification in our case) that
describes the probability of observing a zero or positive out-
come. It is shown by equation (3):

/
e~ B

Prob(Z = 1|X) = m,
e,\

(3)
where Z is the dependent variable and is either 1 or O
depending on whether the EEM has at least one patent in
the given application year. The vector explanatory variables
(X) include lagged patent stock, lagged average quality of
past patent portfolio, a dummy denoting whether the EEM
is a large firm, a dummy for multiproduct firm, a dummy
denoting a U.S. or foreign firm, lagged-energy R&D expen-
diture and GDP in the United States (in real $2000), and
year fixed effects.*”

The patent counts are then modeled using a negative
binomial function with robust standard errors that are clus-
tered by firm while factoring in the probabilities from the
first stage.”® This specification is given by

Yit =+ BDtreutmem + XAt + 8Cl + ¢i(Dtr€utmem X At)

P
+ (pi(Dtreatment X C,) + Z prhari,
P=1

2
+ Z duyMacro, + €y, (4)
M=1

where Y}, the number of granted patents for each EEM in a
given application year ¢, is regressed on the deregulation
dummy (Dyeamment)> the appropriation and net competition
effects (A, and C, respectively), and two interaction terms.’!
The appropriation effect, as explained earlier, arises due to
the greater bargaining power of EEMs and a demand push
effect, both of which originate from downstream IPP entry,

47 About 55% of the dependent variable has zero value.

48 See Greene (2002) for a discussion of the model.

49 From the estimation results, we find that EEMs that have more past
patents and better-quality past patents are more likely to innovate in the
current period. Being in a multiproduct firm or large firm increases the like-
lihood of getting a patent; however, the coefficients are not significant. U.S.
firms are less likely to patent. R&D and GDP have negligible impact.

30 Exclusion restrictions for the model imply that there must be at least
one variable that is included in the logit model that is not included in the
negative binomial part. The multiproduct firm dummy and the lagged
patent stock serve as exclusion restrictions.

5! The net competition effect subsumes the pure competition and the
escape competition effects that are discussed in section 2.
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which is measured by the share of generation by nonutilities.
The net competition effect variable captures the effect of
downstream competition on upstream innovation (through
changing the competitive conditions upstream due to down-
stream restructuring) and is measured by the average profit
(return on assets) of all downstream utilities. The interaction
terms between the treatment dummy and the appropriation
and net competition effects show how these latter variables
affect innovation behavior after deregulation. Char;, denote
a set of firm-specific controls, such as patent characteristics
for each EEM, capturing the quality of previous knowledge
that the firm can build on and the type of firm (boiler manu-
facturers, flue gas desulfurization manufacturers, low nitro-
gen oxide control burners, or a combination). Macro, denotes
the macro controls.

In table 3, panel A, columns la and 1b, the sample con-
sists of all EEMs, regardless of whether they have a patent.
In columns 2a and 2b, we restrict the sample to EEMs that
have at least one patent during our sample period, 1980—
2000. Columns la and 2a report the semielasticities for
each term, and columns 1b and 2b report the aggregate elas-
ticities (or semielasticities for dummy variables) after tak-
ing into account the interaction terms. The results are simi-
lar in sign and significance across the two samples, and we
discuss the results in columns la and b.

First, we find that after factoring in the direction and mag-
nitude of the appropriation and net competition interactions,
deregulation alone has led to a 20.6% decline in patenting
by EEMs. A possible reason could be that the downstream
utilities could not use a cost pass-through after deregulation.
During the regulated era, utilities could pass on most costs
to the final customers through the regulated rates. However,
after deregulation, with fluctuating market-based wholesale
electricity rates and mostly fixed retail rates, the utilities
could not pass all costs to the customers. This dramatically
reduced their own R&D budget and changed their technol-
ogy buying behavior, quite apart from the direct effect of
competition and declining profits. Additionally, rate-of-
return regulation distorted investment incentives and
resulted in Averch-Johnson types of distortion, where the
regulated firm went off its path of equilibrium and chose a
technology that led to overcapitalization (Granderson, 1999;
Smith, 1975; Okuguchi, 1975). The lifting of the regulation
may have corrected this distortion and reduced capital
equipment investments by utilities. These effects in turn had
an adverse influence on upstream innovation behavior.

We also find that both the appropriation effect and the
net competition effects are significant after the passage of
the EPAct but not before it. Before the EPAct, the regulated
electric industry did not behave like a profit maximizer, so
the adoption of new technology was not governed by cost-
minimization concerns. Thus, the net competition effect is
not important in explaining upstream innovation in the
regulated era. After deregulation, this effect determines in
part the innovation response of EEMs. This is a combina-
tion of two opposing effects: the pure competition effect
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that predicts a decline in innovation incentives and an
opposing escape competition effect that points to an
increase in innovation incentives with increasing competi-
tion. Our results show that for our sample period, the pure
competition effect swamps the escape competition effect,
leading to a decrease in innovation. We find that a 1%
decline in downstream profits decreases upstream innova-
tion by approximately 9.18% post-EPAct (net competition
effect). From table 1, panel B, we observe that for our sam-
ple period, profits declined on average by 2% after deregu-
lation. Thus, the net competition effect is responsible for an
18.3% decrease in innovation.

The appropriation effect, which captures how the status
quo payoff of EEMs before and after restructuring affects
innovation, is not significant before the EPAct. This is
expected because prior to 1992, there were very few new
generating companies that were entering the downstream
generation market. This changed in a significant way after
restructuring, and keeping with the predictions from the
theoretical literature, we find that the innovation increases
when EEMs have greater outside opportunities to sell their
product as new companies enter the downstream market.
Empirically, we find that a 1% increase in the appropriation
effect, as captured by the nonutility generation share, in-
creases innovation by approximately 2.2% following the
introduction of the EPAct. From panel B of table 1, we
observe that for our sample period, nonutility generation
share increased on average by 8.9% after deregulation.
Thus, the appropriation effect is responsible for a 19.6%
increase in innovation.

In addition, we find that external spillovers and the qual-
ity of innovation inputs matter (Popp, 2002, 2006). An
increase in innovation by other EEMs had a positive spil-
lover effect, and a 1% increase in electric equipment patent-
ing by other firms increased a firm’s innovation by
0.68%.>* Additionally, companies whose past patent portfo-
lios were more general also showed an increase in current
patenting. The breadth or quality of the past patent portfolio
did not affect current innovation. To account for the effect
of the CAAA of 1990, we included the interaction of the
number of boilers affected by the CAAA each year and the
dummy for firms that produced the low NOx burners and
desulfurization units. Consistent with earlier literature
(Popp, 2003), we find that the CAAA had a positive impact

52 While this is a fairly large spillover effect, we believe there are two
possible reasons for this: a true push toward more innovation and a strate-
gic response. Both can be traced to the industrial structure of the EEM
industry. First, since this is an industry with a limited number of players
that mostly concentrate on a handful of major technologies, innovation by
competitors necessitates a strong response from every firm wishing to
maintain its market position. A second reason for observing this strong
response could be strategic patenting by firms. Following the line of rea-
soning laid out in the literature on strategic patenting (Bessen, 2004) and
patent thickets (Shapiro, 2000), one may argue that if a competitor is
increasing patenting in an oligopoly setting, other firms may take out a
greater number of patents around their own core innovations to protect
them from infringement by others and to use them as bargaining tools in
cross-licensing purposes.
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TABLE 3.—CHANNELS OF INFLUENCE
A. Base Case
Dependent Variable la 1b 2a 2b
Number of Patents for Each EEM Semielasticity® Elasticity® Semielasticity® Elasticity®
EPAct Dummy (Lag two years) —13.613%* —20.595%%* —12.205%* —18.514%**
(6.323) (6.591) (6.090) (6.380)
Net Competition Effect (Lag two years) —11.211 —8.979
(11.620) (11.126)
Appropriation Effect (Lag two years) 2.526 2.020
(4.049) (3.901)
EPAct Dummy (Lag two years)x Net Competition Effect (Lag two years) 78.456% 9.182%%#%* 70.716%* 8.276%**
(46.499) (0.343) (44.331) (0.327)
EPAct Dummy (Lag two years) x Appropriation Dummy (Lag two years) 52.520%%*%* 2.200%#%* 46.950%** 1.967%##*
(13.980) (0.610) (14.153) (0.618)
Innovation Inputs (Lag two years)
Other Firms’ Electric Technology Patent Stock * 0.00001%* 0.680%* 0.00001* 0.627*
(0.000006) (0.403) (0.000006) (0.313)
Own Firm’s Electric Technology Patent Quality Stock 0.00006 0.00007
(0.00004) (0.00005)
Mean (Adjusted) Generality for Own Firm’s Electric Technology Patents 1.679%%* 0.482%#%* 1.634%%* 0.861%#%%*
(0.342) (0.098) (0.349) (0.184)
Mean (Adjusted) Number of Claims for Own Firm’s Electric Technology Patents —0.201 —0.265
(0.429) (0.364)
Firm Characteristics
Dummy for Low NOy Burner and Desulfurization Unit Producers 0.017 0.023
(0.489) (0.490)
Number of CAAA Affected Boilers 0.00001 0.00003
(0.0002) (0.0002)
Dummy for Low NO, & Desulf. x Number of CAAA Affected Boilers 0.0004%#%* 0.014%* 0.0004*%* 0.008%**
(0.0002) (0.008) (0.0002) (0.004)
Large EEM Dummy 0.662 0.809
(0.850) (0.844)
Large EEM Dummy x EPAct Dummy (Lag two years) —0.309 —0.371
(0.878) (0.876)
Dummy for U.S. Firms —1.303* —1.303%* —1.381* —1.381%*
(0.746) (0.746) (0.780) (0.780)
Macroenvironment
Energy R&D Stock (billions of $2000) (Lag two years) 0.066 0.086
(0.084) (0.089)
GDP (Billions of $2000) (Lag two years) 0.0002 0.0003
(0.0004) (0.0004)
Observations (Number of firms) 1743 (83) 945 (45)
Chi square 822.26 1,085.54
B. Robustness to Lags: Dependent Variable: Number of Patents for Each EEM
1 2 3
Lags of EPAct Dummy No Lag One Year Three Years
EPAct Dummy —13.032%%* —14.201%* —17.146
(6.204) (6.082) (11.970)
Net Competition Effect —8.102 —11.813 —7.867
(13.083) (13.653) (12.132)
Appropriation Effect 4.689 2.794 —14.139
(3.915) (3.662) (24.617)
EPAct Dummy x Net Competition Effect 74.645% 82.097* 67.257*
(45.176) (44.530) (42.248)
EPAct Dummy X Appropriation Dummy 43.524%%* 53.917%%* 56.404%*
(14.137) (12.306) (31.183)
Innovation Inputs (Lag two years)
Other Firms’ Electric Technology Patent Stock * 0.00001* 0.00001%* 0.00001%*
(0.000006) (0.000006) (0.000006)
Own Firm’s Electric Technology Patent Quality Stock 0.00006 0.00006 0.0001*
(0.00004) (0.00004) (0.00004)
Mean (Adjusted) Generality for Own Firm’s Electric Technology Patents 1.686%#* 1.687%%%* 1.631%#%#%*
(0.333) (0.339) (0.356)
Mean (Adjusted) Number of Claims for Own Firm’s Electric Technology Patents —-0.224 —0.196 —0.164
(0.416) (0.446) (0.410)
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TaBLE 3.—(CONTINUED)

Firm Characteristics

Dummy for Low NOx Burner and Desulfurization Unit Producers

Number of CAAA Affected Boilers

Dummy for Low NOx and Desulfurization x Number of CAAA Affected Boilers

Large EEM Dummy
Large EEM Dummy x EPAct Dummy (Lag two years)
Dummy for U.S. firms

Macroenvironment
Energy R&D stock (billions of $2000) (Lag two years)

GDP (billions of $2000) (lag two years)

Observations (number of firms)
Chi square

~0.030 0.021 0.003
(0.499) (0.496) (0.493)
—0.000001 —0.00001 0.003
(0.0002) (0.0002) (0.004)
0.001 %% 0.001 %% 0.0004%55*
(0.0002) (0.0002) (0.0002)
0.503 0.642 0.787
(0.845) (0.859) (0.893)
0.039 —0.229 —0.691
(0.695) (0.750) (1.016)
—1.189% —1.274% —1.439%
(0.693) (0.693) (0.814)
—0.082 ~0.070 0.026
(0.088) (0.086) (0.088)
—0.001 0.0002 0.00002
(0.001) (0.001) (0.001)
1,743 (83) 1,743 (83) 1,743 (83)
822.26 777.99 823.12

Note to part A: Zero-inflated negative binomial model (inflation model: logit). Contains a constant and a time trend. Sample: 1980-2000. Columns la and 1b: all EEMs; columns 2a and 2b: EEMs that have at least
one patent during the sample period. Robust and clustered (by firm) standard errors are in parentheses. Significant at *10%, **5%, and ***1% respectively.
“Stock based on the number of patents obtained by other firms (j,. . .,n) in the patent classes that firm i patents in.

®Columns 1a and 2a (semielasticities): d(Iny)/dx.

“Columns 1b and 2b: elasticities for significant variables. EPAct dummy(Columns 1b and 2b): aggregate semielasticities calculated taking into account the direction and magnitude of the interaction terms.
Note to part B: Zero-inflated negative binomial model (inflation model: logit). Specification is the same as table 3A and contains a constant and a time trend. Range: 1980—2000. Robust and clustered (by firm)

standard errors are in parentheses. Significant at *10%, **5%, and ***1%.

“This stock is calculated based on the number of patents obtained by other firms (j,. . .,n) in the patent classes that firm / patents in. Columns 1—3 show results for the specification when the EPAct dummy, and the
net competition and appropriation variables are used as contemporaneous variables, with one- and two-year lags.

on innovation for these particular EEMs. Finally, we find
that the size of the EEM has no impact on patenting, while
U.S.-based EEMs appear to be less innovative than their
foreign counterparts.”® The R&D and GDP variables are
not significant in any specification.

In the results discussed above (table 3, panel A), we
lagged the deregulation dummy by two years. We assume
that this is the time it takes to adjust a firm’s innovation
strategy to reflect the new market conditions, especially
since the EPAct was the first deregulation policy instituted
in the U.S. electricity market and firms would have little
prior experience in negotiating the new market structure.
However, since theory does not provide us with a concrete
answer about the length of time it takes such market dereg-
ulation to affect upstream innovation, we provide in panel
B of table 3, sensitivity analysis to different lags of the
deregulation dummy. From columns 1 and 2, we find that
using the deregulation status for the current year (column 1)
or using a one-year lag (column 2) provides results that are
very similar to those presented in table 3, panel A. How-
ever, the results in column 3 are somewhat different. The
EPAct dummy does not influence upstream innovation
when it is lagged by three years, suggesting that its influ-
ence decays over time. The coefficients for the appropria-
tion and net competition effects are still significant and of
the same sign, although the magnitude is smaller.

33 While interpreting this result, it is important to remember that this
may be the result of a selection effect. Non-U.S. firms that patent in the
United States would probably be the top innovators in their countries,
while for domestic firms, even the least innovative may still apply for a
U.S. patent due to low entry barriers.

C. Patent Characteristics

Guided by the discussion from the theoretical literature,
so far we have focused solely on the magnitude of innova-
tions. However, we believe that studying the effect of regu-
latory changes on patent characteristics is an important
empirical question, since patent numbers do not allow us to
draw conclusions about the changing nature of innovation.
With the introduction of competition in the downstream
power sector, EEMs may face greater pressure to shorten
their innovation cycle, and this would adversely affect both
the quality and generality of their innovations. They would
build on narrow previous knowledge and not explore other
fields. This may lead to a decline in the average quality, and
generality would also decline since these patents would
embody very narrow technology. In addition, the effect of
deregulation may be the same for two firms in terms of
patent numbers, but one may suffer a greater or lesser qual-
ity decline or may have a less general technology portfolio
after deregulation.54 To capture these changes in quality
and generality, we use the difference-in-difference model
outlined in equation (2).

% For example, firm A has 25 patents with an average of ten citations
per patent before deregulation. The firm has 15 patents, each with an aver-
age of five citations, after deregulation. Firm B also has 25 patents before
deregulation and 15 patents after. However, it has five citations per patent
on average prederegulation and three citations per patent on average after
deregulation. If we focus solely on the number of patents, the effect of
deregulation is the same for both firms. Clearly, this is not the case.
Before deregulation firm A is producing innovations of greater quality
than firm B. However, after deregulation, firm A suffers a greater quality
decline than does firm B.
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We use two metrics to measure patent quality, the aver-
age and the aggregate adjusted quality of a firm’s patent
portfolio, since neither one alone may be sufficient to cap-
ture true innovation quality.”> In an environment where
EEMs are getting fewer patents than in previous years, total
citations to a firm’s portfolio of patents may fall simply
because the number of patents obtained by the EEM is
declining or because there are fewer citing patents in the
electric technology class. Thus, a decline in total number of
citations may not be a true indicator of quality decline.
Mean quality, however, may be a better metric. This would
fall if and only if the rate of decline in citations is greater
than the rate of decline in the number of patents. Hence, we
use both measures to assess the effect of deregulation on
the patent quality of EEMs.

Quality, as explained earlier, is measured by the number
of backward citations (a count variable) received by a
patent But to make these citation counts a true measure of
patent quality and make them comparable across technolo-
gies and time, we purge these of technology and year
effects, that is, demean these using patent field and year
fixed effects. Additionally, we use the means and stocks of
these variables (by firm). These two modifications turn the
count variable into a continuous variable The adjusted gen-
erality measure is a continuous variable for the same rea-
son. When measured in levels, all of the above variables are
bounded by 0 on the lower end of the distribution. Hence, a
panel tobit model that accounts for the truncation would be
appropriate. However, this does not allow one to correct
errors for clustering and heteroskedasticity. Therefore, we
use a random effects GLS model with clustered and robust
standard errors when estimating the average quality and
generality speciﬁcations.56 We have conducted several
robustness checks using a random effect tobit model and a
censored normal, and the results are stable across all speci-
fications. For the aggregate quality equation, there is a
strong autocorrelation component in the data, and correct-
ing the errors for AR(1) is necessary; hence, we use a linear
AR(1) panel data model in this case.

Results are presented in table 4 where the sample consists
of electric equipment patent classes only. The unit of obser-
vation is the patent assignee, the treated groups are the
EEMs (electric equipment manufacturers), and the control
group is a random sample of 2,000 firms that patent in the
electric equipment classes but are not EEMs.>” The depen-
dent variables are the average (adjusted) quality, aggregate
(adjusted) quality, and average (adjusted) generality by

35 Average adjusted quality is measured by the mean number of cita-
tions (purged of year and field effects) that each firm or assignee receives.
Aggregate adjusted quality is the total number of citations (purged of year
and field effects) that each firm or assignee receives. When we purge the
citations of year and field effects, this in essence controls for technology
and year fixed effects.

%6 The error can be disaggregated into two components: v;, the random
disturbance that varies by firm but not over time (v; ~ N(0, 62)), and &,
is the idiosyncratic error component (g;, ~ N(0, Gﬁ ).

57 We selected a random sample of 2,000 firms for tractability.
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patent assignee. We find that the difference-in-difference
coefficient is strongly negative and significant for all three
columns, implying that both quality and patent generality
declined sharply after 1992. Thus, after deregulation, patents
generated by EEMs became less general and of lower qual-
ity, alluding to the fact that equipment manufacturers may be
concentrating on a narrow set of innovations.>®

There may be alternative explanations for these findings,
however. One possible explanation is that of declining pro-
ductivity. Focusing on energy patents from 1974 to 1980,
Popp (2002) shows that the productivity of new innovations
tends to decline over time, and thus newer innovations add
less to the existing knowledge stock than old ones. This
leads to a decline in the quality of knowledge stocks, and in
turn such diminishing returns affect future patent quality.
Following this line of reasoning, it can be argued that for
EEMs, there were diminishing returns to innovation for the
electric equipment classes that manifest themselves around
the same time as EPAct took effect, and hence the observed
decline in quality and generality. However, such a decline
would have been more gradual for the entire electric
technology class than that observed in the data. Addition-
ally, the comparison with the random sample of firms who
also patent in the electric equipment class but suffer no
such decline concurrent with the passage of the EPAct
may imply that at least part of this decline was due to
deregulation.

We also find that past patent stock has a positive effect
on the quality and generality of current patents: firms that
have a bigger portfolio of past patents tend to produce bet-
ter quality and more general patents in the current period
(columns 1-3), while there is a negative externality as other
competitor’s increase their innovation activity (columns 1
and 3). The breadth of the patent portfolio also has a posi-
tive impact on both average quality and average generality.
In addition, firms with more general and broader past patent
portfolios have greater average quality. Also firms with
better-quality past patents produce more general innovation,
and firms whose innovation spans a greater technological
area tend to produce more quality patents.

Our control for the CAAA is negative and significant,
implying that after the CAAA, aggregate patent quality and
generality have suffered. In addition, in column 2, the inter-
action between the EEM dummy and the CAAA term is
negative and significant, implying that aggregate EEM
patent quality suffered after CAAA. However, we do not
believe that this is the effect of the CAAA. Rather, this may
be the effect of the accelerated deregulation policies pursued
by states after 1996 that coincided with the second compli-
ance phase of the CAAA. The effects of the aggregate R&D
stock and GDP are mixed. The main finding of table 4 is the
decline in patent quality and generality after 1992.

8 However, on average, EEM patent quality and generality are higher
than other patents in the electric technology category.
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TABLE 4.—PATENT CHARACTERISTICS

Electricity Patent Classes

Average Aggregate Average
(Adjusted) (Adjusted) (Adjusted)
Sample (by Patent Assignee) Quality Quality Generality
Dependent Variable (1) 2) 3)
EPAct Dummy (lag two years) 0.009 0.171* —0.004
(0.014) (0.095) (0.014)
EEM Dummy 0.044%#* 2.165%%%* 0.076%**
(0.019) 0.413) (0.024)
EPAct Dummy (Lag two years) x EEM Dummy —0.095%%*%* —0.875%%%* —0.139%%*
(0.032) (0.314) (0.050)
Innovation inputs (lag two years)
Other Firm’s Electric Technology Patent Stock * —0.000003 *** 0.00003%*%*%* —0.00001***
(0.000001) (0.000004) (0.000001)
Own Firm’s Electric Technology Patent Stock 0.0017%#%*%* 0.213%%#% 0.0027%#*
(0.0001) (0.001) (0.0005)
Own Firm’s Electric Technology Patent Quality Stock (Adjusted) —0.0001*
(0.00004)
Mean (Adjusted) Generality for Own Firm’s Electric Technology Patents 0.035%%#%* 0.0004
(0.010) (0.040)
Mean (Adjusted) number of Claims for Own Firm’s Electric Technology Patents 0.112%%%* 0.116%* 0.204 %%
(0.019) (0.060) (0.021)
Macroenvironment
Number of Clean Air Act Affected Boilers 0.00001 —0.0001* —0.00002%*
(0.00001) (0.00006) (0.00001)
EEM Dummy x Number of Clean Air Act Affected Boilers 0.00001 —0.0004%*%* 0.00001
(0.00002) (0.0002) (0.00003)
R&D Stock (Billions of $2000) (Lag two years) —0.0002 —0.0006 —0.0003%**
(0.0001) (0.001) (0.0001)
GDP (Billions of 2000$) (Lag two years) —0.00001 —0.0005%** —0.00001
(0.00002) (0.0002) (0.00002)
Relevant statistics
Observations 41,929 41,929 41,929
Number of assignees 1,823 1,823 1,823
R 0.435 0.861 0.730
Wald statistic (chi square) 299.54 2916.11 559.14

In columns 1 and 3, estimation is done using a random effects GLS model with robust and clustered standard errors. In column 2, we use a random effects AR(1) panel data model. Average quality is measured by
the average number of citations (adjusted for year and field effects) received by an assignee in each year. The aggregate quality is measured by the total number of citations (adjusted for year and field effects)
received by the assignee in a given year. Aggregate quality stock is calculated by a declining balance formula using unadjusted citations. All specifications contain a year trend and a constant. The sample consists of
electric equipment patents given to EEMs and a random sample of 2,000 firms, the unit of observation is the patent assignee, and the treated groups are the EEMs (electric equipment manufacturers). The sample is

from 1980-2000. Coefficients are marginal effects. Significant at *10%, **5%, and ***1%.

“This stock is calculated based on the number of patents obtained by other assignees (j,. . .,n) in the patent classes that assignee i patents in.

V. Conclusion

Deregulation has dramatically changed the landscape of
the U.S. electric utility industry by introducing competition
in the generation sector. Product market competition from
nonutilities (such as the independent power producers) has
made utilities more conscious of their bottom line. This
shift has had an effect on their technology buying behavior,
which in turn has affected the innovation behavior of the
electric equipment manufacturers. This paper models the
effect of such downstream competition on upstream innova-
tion behavior in situations where the technology buyer and
seller are not vertically integrated.

The theoretical literature proposes three opposing effects
of deregulation: the pure competition, escape competition,
and the appropriation effect. The pure competition effect
measures the difference in marginal profits of each down-
stream firm due to the upstream innovation. Postderegula-
tion, the value added (to utilities) due to new technology
adoption decreases because of the competition that utilities
face. This decline in value added decreases the demand for

new technology, which in turn has a negative effect on the
innovation incentive for the upstream firms. However,
the escape competition effect is positive and is driven by the
effect of competition on pre- and postinnovation profits.
This effect spurs firms to innovate more in order to gain
advantage over their competitors, that is, to escape competi-
tion. In the empirical model, these two effects are subsumed
in the net competition effect, which is measured by the aver-
age profit of the downstream utilities. In addition, the appro-
priation effect has a positive effect on innovation. Increased
participation of nonutilities in the wholesale market
increases the EEM customer base, thus increasing their
status quo bargaining power and the price for their innova-
tions and positively affecting innovation. The relative
strength of these effects determines the overall effect of
downstream product market competition on upstream inno-
vation.

The empirical results show that for the electricity indus-
try, deregulating the downstream sector has adversely
affected the innovation behavior of EEMs during our sam-
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ple period. First, using difference-in-difference models, we
show that restructuring the power sector has had an adverse
impact on patenting in the electric equipment patent classes
when compared with other patent classes. In addition,
patenting by EEMs declined after the passage of the EPAct
when compared to other firms in the electric equipment
technology sector. Next, we model the channels through
which such a decline may have occurred. We find that
deregulation alone has led to a 20.6% decline in patenting
by EEMs. We also find that both the appropriation effect
and the net competition effect are significant after the intro-
duction of the EPAct but not before. Following the passage
of the EPAct, the total competition effect has led to an
18.3% decline in innovation that has been offset by an
increase of 19.6% due to the appropriation effect.

In addition, the innovation environment of a firm matters,
and the quality, breadth, and generality of past innovation
inputs positively influence current patenting. The CAAA
has had a positive impact on innovation for firms that man-
ufacture low NOx burners and gas desulfurization units,
and large firms have higher patents. We take the empirical
model further by investigating the impact of deregulation
on innovation characteristics. The introduction of down-
stream competition has degraded the quality of upstream
innovation and has made it more specific and less general.

This paper contributes to the innovation competition lit-
erature by developing an empirical framework that models
upstream innovation behavior as a function of downstream
competitive forces. The results have implications for all
industries with a similar organizational structure and may
help in furthering our understanding of innovation incen-
tives in complex markets. In addition, by modeling both the
magnitude and attributes of innovation, it provides a com-
prehensive account of the innovation response of upstream
technology—producing firms when their downstream buyers
are subject to product market competition.
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