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Preface

R is a language and environment for data analysis and graphics. It may be
considered an implementation of S, an award-winning language initially de-
veloped at Bell Laboratories since the late 1970s. The R project was initiated
by Robert Gentleman and Ross Ihaka at the University of Auckland, New
Zealand, in the early 1990s, and has been developed by an international team
since mid-1997.

Historically, econometricians have favored other computing environments,
some of which have fallen by the wayside, and also a variety of packages with
canned routines. We believe that R has great potential in econometrics, both
for research and for teaching. There are at least three reasons for this: (1) R
is mostly platform independent and runs on Microsoft Windows, the Mac
family of operating systems, and various flavors of Unix/Linux, and also on
some more exotic platforms. (2) R is free software that can be downloaded
and installed at no cost from a family of mirror sites around the globe, the
Comprehensive R Archive Network (CRAN); hence students can easily install
it on their own machines. (3) R is open-source software, so that the full source
code is available and can be inspected to understand what it really does,
learn from it, and modify and extend it. We also like to think that platform
independence and the open-source philosophy make R an ideal environment
for reproducible econometric research.

This book provides an introduction to econometric computing with R; it is
not an econometrics textbook. Preferably readers have taken an introductory
econometrics course before but not necessarily one that makes heavy use of
matrices. However, we do assume that readers are somewhat familiar with ma-
trix notation, specifically matrix representations of regression models. Thus,
we hope the book might be suitable as a “second book” for a course with
sufficient emphasis on applications and practical issues at the intermediate
or beginning graduate level. It is hoped that it will also be useful to profes-
sional economists and econometricians who wish to learn R. We cover linear
regression models for cross-section and time series data as well as the com-
mon nonlinear models of microeconometrics, such as logit, probit, and tobit
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models, as well as regression models for count data. In addition, we provide
a chapter on programming, including simulations, optimization, and an in-
troduction to Sweave()—an environment that allows integration of text and
code in a single document, thereby greatly facilitating reproducible research.
(In fact, the entire book was written using Sweave() technology.)

We feel that students should be introduced to challenging data sets as
early as possible. We therefore use a number of data sets from the data
archives of leading applied econometrics journals such as the Journal of Ap-
plied Econometrics and the Journal of Business & Economic Statistics. Some
of these have been used in recent textbooks, among them Baltagi (2002),
Davidson and MacKinnon (2004), Greene (2003), Stock and Watson (2007),
and Verbeek (2004). In addition, we provide all further data sets from Bal-
tagi (2002), Franses (1998), Greene (2003), and Stock and Watson (2007),
as well as selected data sets from additional sources, in an R package called
AER that accompanies this book. It is available from the CRAN servers at
http://CRAN.R-project.org/ and also contains all the code used in the fol-
lowing chapters. These data sets are suitable for illustrating a wide variety of
topics, among them wage equations, growth regressions, dynamic regressions
and time series models, hedonic regressions, the demand for health care, or
labor force participation, to mention a few.

In our view, applied econometrics suffers from an underuse of graphics—
one of the strengths of the R system for statistical computing and graphics.
Therefore, we decided to make liberal use of graphical displays throughout,
some of which are perhaps not well known.

The publisher asked for a compact treatment; however, the fact that R has
been mainly developed by statisticians forces us to briefly discuss a number
of statistical concepts that are not widely used among econometricians, for
historical reasons, including factors and generalized linear models, the latter
in connection with microeconometrics. We also provide a chapter on R basics
(notably data structures, graphics, and basic aspects of programming) to keep
the book self-contained.

The production of the book

The entire book was typeset by the authors using LATEX and R’s Sweave()
tools. Specifically, the final manuscript was compiled using R version 2.7.0,
AER version 0.9-0, and the most current version (as of 2008-05-28) of all other
CRAN packages that AER depends on (or suggests). The first author started
under Microsoft Windows XP Pro, but thanks to a case of theft he switched
to Mac OS X along the way. The second author used Debian GNU/Linux
throughout. Thus, we can confidently assert that the book is fully repro-
ducible, for the version given above, on the most important (single-user) plat-
forms.

http://CRAN.R-project.org/
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Settings and appearance

R is mainly run at its default settings; however, we found it convenient to
employ a few minor modifications invoked by

R> options(prompt="R> ", digits=4, show.signif.stars=FALSE)

This replaces the standard R prompt > by the more evocative R>. For compact-
ness, digits = 4 reduces the number of digits shown when printing numbers
from the default of 7. Note that this does not reduce the precision with which
these numbers are internally processed and stored. In addition, R by default
displays one to three stars to indicate the significance of p values in model sum-
maries at conventional levels. This is disabled by setting show.signif.stars
= FALSE.

Typographical conventions

We use a typewriter font for all code; additionally, function names are fol-
lowed by parentheses, as in plot(), and class names (a concept that is ex-
plained in Chapters 1 and 2) are displayed as in “lm”. Furthermore, boldface
is used for package names, as in AER.
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Introduction

This brief chapter, apart from providing two introductory examples on fitting
regression models, outlines some basic features of R, including its help facilities
and the development model. For the interested reader, the final section briefly
outlines the history of R.

1.1 An Introductory R Session

For a first impression of R’s “look and feel”, we provide an introductory R ses-
sion in which we briefly analyze two data sets. This should serve as an illustra-
tion of how basic tasks can be performed and how the operations employed are
generalized and modified for more advanced applications. We realize that not
every detail will be fully transparent at this stage, but these examples should
help to give a first impression of R’s functionality and syntax. Explanations
regarding all technical details are deferred to subsequent chapters, where more
complete analyses are provided.

Example 1: The demand for economics journals

We begin with a small data set taken from Stock and Watson (2007) that
provides information on the number of library subscriptions to economic jour-
nals in the United States of America in the year 2000. The data set, originally
collected by Bergstrom (2001), is available in package AER under the name
Journals. It can be loaded via

R> data("Journals", package = "AER")

The commands

R> dim(Journals)

[1] 180 10

R> names(Journals)

C. Kleiber, A. Zeileis, Applied Econometrics with R,
DOI: 10.1007/978-0-387-77318-6 1, © Springer Science+Business Media, LLC 2008



2 1 Introduction

[1] "title" "publisher" "society" "price"
[5] "pages" "charpp" "citations" "foundingyear"
[9] "subs" "field"

reveal that Journals is a data set with 180 observations (the journals) on
10 variables, including the number of library subscriptions (subs), the price,
the number of citations, and a qualitative variable indicating whether the
journal is published by a society or not.

Here, we are interested in the relation between the demand for economics
journals and their price. A suitable measure of the price for scientific journals
is the price per citation. A scatterplot (in logarithms), obtained via

R> plot(log(subs) ~ log(price/citations), data = Journals)

and given in Figure 1.1, clearly shows that the number of subscriptions is
decreasing with price.

The corresponding linear regression model can be easily fitted by ordinary
least squares (OLS) using the function lm() (for linear model) and the same
syntax,

R> j_lm <- lm(log(subs) ~ log(price/citations), data = Journals)

R> abline(j_lm)

The abline() command adds the least-squares line to the existing scatterplot;
see Figure 1.1.

A detailed summary of the fitted model j_lm can be obtained via

R> summary(j_lm)

Call:
lm(formula = log(subs) ~ log(price/citations),
data = Journals)

Residuals:
Min 1Q Median 3Q Max

-2.7248 -0.5361 0.0372 0.4662 1.8481

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.7662 0.0559 85.2 <2e-16
log(price/citations) -0.5331 0.0356 -15.0 <2e-16

Residual standard error: 0.75 on 178 degrees of freedom
Multiple R-squared: 0.557, Adjusted R-squared: 0.555
F-statistic: 224 on 1 and 178 DF, p-value: <2e-16

Specifically, this provides the usual summary of the coefficients (with esti-
mates, standard errors, test statistics, and p values) as well as the associated
R2, along with further information. For the journals regression, the estimated
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Fig. 1.1. Scatterplot of library subscription by price per citation (both in logs)
with least-squares line.

elasticity of the demand with respect to the price per citation is−0.5331, which
is significantly different from 0 at all conventional levels. The R2 = 0.557 of
the model is quite satisfactory for a cross-section regression.

A more detailed analysis with further information on the R commands
employed is provided in Chapter 3.

Example 2: Determinants of wages

In the preceding example, we showed how to fit a simple linear regression
model to get a flavor of R’s look and feel. The commands for carrying out
the analysis often read almost like talking plain English to the system. For
performing more complex tasks, the commands become more technical as
well—however, the basic ideas remain the same. Hence, all readers should
be able to follow the analysis and recognize many of the structures from the
previous example even if not every detail of the functions is explained here.
Again, the purpose is to provide a motivating example illustrating how easily
some more advanced tasks can be performed in R. More details, both on the
commands and the data, are provided in subsequent chapters.

The application considered here is the estimation of a wage equation in
semi-logarithmic form based on data taken from Berndt (1991). They repre-
sent a random subsample of cross-section data originating from the May 1985
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4 1 Introduction

Current Population Survey, comprising 533 observations. After loading the
data set CPS1985 from the package AER, we first rename it for convenience:

R> data("CPS1985", package = "AER")

R> cps <- CPS1985

For cps, a wage equation is estimated with log(wage) as the dependent vari-
able and education and experience (both in number of years) as regressors.
For experience, a quadratic term is included as well. First, we estimate a
multiple linear regression model by OLS (again via lm()). Then, quantile re-
gressions are fitted using the function rq() from the package quantreg. In
a sense, quantile regression is a refinement of the standard linear regression
model in that it provides a more complete view of the entire conditional distri-
bution (by way of choosing selected quantiles), not just the conditional mean.
However, our main reason for selecting this technique is that it illustrates that
R’s fitting functions for regression models typically possess virtually identical
syntax. In fact, in the case of quantile regression models, all we need to specify
in addition to the already familiar formula and data arguments is tau, the set
of quantiles that are to be modeled; in our case, this argument will be set to
0.2, 0.35, 0.5, 0.65, 0.8.

After loading the quantreg package, both models can thus be fitted as
easily as

R> library("quantreg")

R> cps_lm <- lm(log(wage) ~ experience + I(experience^2) +

+ education, data = cps)

R> cps_rq <- rq(log(wage) ~ experience + I(experience^2) +

+ education, data = cps, tau = seq(0.2, 0.8, by = 0.15))

These fitted models could now be assessed numerically, typically with a
summary() as the starting point, and we will do so in a more detailed anal-
ysis in Chapter 4. Here, we focus on graphical assessment of both models, in
particular concerning the relationship between wages and years of experience.
Therefore, we compute predictions from both models for a new data set cps2,
where education is held constant at its mean and experience varies over the
range of the original variable:

R> cps2 <- data.frame(education = mean(cps$education),

+ experience = min(cps$experience):max(cps$experience))

R> cps2 <- cbind(cps2, predict(cps_lm, newdata = cps2,

+ interval = "prediction"))

R> cps2 <- cbind(cps2,

+ predict(cps_rq, newdata = cps2, type = ""))

For both models, predictions are computed using the respective predict()
methods and binding the results as new columns to cps2. First, we visualize
the results of the quantile regressions in a scatterplot of log(wage) against
experience, adding the regression lines for all quantiles (at the mean level of
education):
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Fig. 1.2. Scatterplot of log-wage versus experience, with quantile regression fits for
varying quantiles.

R> plot(log(wage) ~ experience, data = cps)

R> for(i in 6:10) lines(cps2[,i] ~ experience,

+ data = cps2, col = "red")

To keep the code compact, all regression lines are added in a for() loop. The
resulting plot is displayed in Figure 1.2, showing that wages are highest for
individuals with around 30 years of experience. The curvature of the regression
lines is more marked at lower quartiles, whereas the relationship is much flatter
for higher quantiles. This can also be seen in Figure 1.3, obtained via

R> plot(summary(cps_rq))

which depicts the changes in the regression coefficients over varying quantiles
along with the least-squares estimates (both together with 90% confidence
intervals). This shows that both experience coefficients are eventually de-
creasing in absolute size (note that the coefficient on the quadratic term is
negative) with increasing quantile and that consequently the curve is flat-
ter for higher quantiles. The intercept also increases, while the influence of
education does not vary as much with the quantile level.

Although the size of the sample in this illustration is still quite modest by
current standards, with 533 observations many observations are hidden due to
overplotting in scatterplots such as Figure 1.2. To avoid this problem, and to
further illustrate some of R’s graphics facilities, kernel density estimates will
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Fig. 1.3. Coefficients of quantile regression for varying quantiles, with confidence
bands (gray) and least-squares estimate (red).

be used: high- versus low-density regions in the bivariate distribution can be
identified by a bivariate kernel density estimate and brought out graphically
in a so-called heatmap. In R, the bivariate kernel density estimate is provided
by bkde2D() in the package KernSmooth:

R> library("KernSmooth")

R> cps_bkde <- bkde2D(cbind(cps$experience, log(cps$wage)),

+ bandwidth = c(3.5, 0.5), gridsize = c(200, 200))

As bkde2D() does not have a formula interface (in contrast to lm() or rq()),
we extract the relevant columns from the cps data set and select suitable
bandwidths and grid sizes. The resulting 200×200 matrix of density estimates
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Fig. 1.4. Bivariate kernel density heatmap of log-wage by experience, with least-
squares fit and prediction interval.

can be visualized in a heatmap using gray levels coding the density values.
R provides image() (or contour()) to produce such displays, which can be
applied to cps_bkde as follows.

R> image(cps_bkde$x1, cps_bkde$x2, cps_bkde$fhat,

+ col = rev(gray.colors(10, gamma = 1)),

+ xlab = "experience", ylab = "log(wage)")

R> box()

R> lines(fit ~ experience, data = cps2)

R> lines(lwr ~ experience, data = cps2, lty = 2)

R> lines(upr ~ experience, data = cps2, lty = 2)

After drawing the heatmap itself, we add the regression line for the linear
model fit along with prediction intervals (see Figure 1.4). Compared with the
scatterplot in Figure 1.2, this brings out more clearly the empirical relationship
between log(wage) and experience.

This concludes our introductory R session. More details on the data sets,
models, and R functions are provided in the following chapters.
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8 1 Introduction

1.2 Getting Started

The R system for statistical computing and graphics (R Development Core
Team 2008b, http://www.R-project.org/) is an open-source software
project, released under the terms of the GNU General Public License (GPL),
Version 2. (Readers unfamiliar with open-source software may want to visit
http://www.gnu.org/.) Its source code as well as several binary versions can
be obtained, at no cost, from the Comprehensive R Archive Network (CRAN;
see http://CRAN.R-project.org/mirrors.html to find its nearest mirror
site). Binary versions are provided for 32-bit versions of Microsoft Windows,
various flavors of Linux (including Debian, Red Hat, SUSE, and Ubuntu) and
Mac OS X.

Installation

Installation of binary versions is fairly straightforward: just go to CRAN, pick
the version corresponding to your operating system, and follow the instruc-
tions provided in the corresponding readme file. For Microsoft Windows, this
amounts to downloading and running the setup executable (.exe file), which
takes the user through a standard setup manager. For Mac OS X, separate
disk image .dmg files are available for the base system as well as for a GUI
developed for this platform. For various Linux flavors, there are prepackaged
binaries (as .rpm or .deb files) that can be installed with the usual pack-
aging tools on the respective platforms. Additionally, versions of R are also
distributed in many of the standard Linux repositories, although these are not
necessarily as quickly updated to new R versions as CRAN is.

For every system, in particular those for which a binary package does not
exist, there is of course also the option to compile R from the source. On
some platforms, notably Microsoft Windows, this can be a bit cumbersome
because the required compilers are typically not part of a standard installation.
On other platforms, such as Unix or Linux, this often just amounts to the
usual configure/make/install steps. See R Development Core Team (2008d)
for detailed information on installation and administration of R.

Packages

As will be discussed in greater detail below, base R is extended by means
of packages, some of which are part of the default installation. Packages are
stored in one or more libraries (i.e., collections of packages) on the system and
can be loaded using the command library(). Typing library() without any
arguments returns a list of all currently installed packages in all libraries. In
the R world, some of these are referred to as “base” packages (contained in
the R sources); others are “recommended” packages (included in every binary
distribution). A large number of further packages, known as “contributed”
packages (currently more than 1,400), are available from the CRAN servers
(see http://CRAN.R-project.org/web/packages/), and some of these will

http://www.R-project.org/
http://www.gnu.org/
http://CRAN.R-project.org/mirrors.html
http://CRAN.R-project.org/web/packages/
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be required as we proceed. Notably, the package accompanying this book,
named AER, is needed. On a computer connected to the Internet, its instal-
lation is as simple as typing

R> install.packages("AER")

at the prompt. This installation process works on all operating systems; in
addition, Windows users may install packages by using the “Install packages
from CRAN”and Mac users by using the “Package installer”menu option and
then choosing the packages to be installed from a list. Depending on the instal-
lation, in particular on the settings of the library paths, install.packages()
by default might try to install a package in a directory where the user has
no writing permission. In such a case, one needs to specify the lib argument
or set the library paths appropriately (see R Development Core Team 2008d,
and ?library for more information). Incidentally, installing AER will down-
load several further packages on which AER depends. It is not uncommon for
packages to depend on other packages; if this is the case, the package “knows”
about it and ensures that all the functions it depends upon will become avail-
able during the installation process.

To use functions or data sets from a package, the package must be loaded.
The command is, for our package AER,

R> library("AER")

From now on, we assume that AER is always loaded. It will be necessary
to install and load further packages in later chapters, and it will always be
indicated what they are.

In view of the rapidly increasing number of contributed packages, it
has proven to be helpful to maintain a number of “CRAN task views”
that provide an overview of packages for certain tasks. Current task views
include econometrics, finance, social sciences, and Bayesian statistics. See
http://CRAN.R-project.org/web/views/ for further details.

1.3 Working with R

There is an important difference in philosophy between R and most other
econometrics packages. With many packages, an analysis will lead to a large
amount of output containing information on estimation, model diagnostics,
specification tests, etc. In R, an analysis is normally broken down into a series
of steps. Intermediate results are stored in objects, with minimal output at
each step (often none). Instead, the objects are further manipulated to obtain
the information required.

In fact, the fundamental design principle underlying R (and S) is “every-
thing is an object”. Hence, not only vectors and matrices are objects that
can be passed to and returned by functions, but also functions themselves,
and even function calls. This enables computations on the language and can
considerably facilitate programming tasks, as we will illustrate in Chapter 7.

http://CRAN.R-project.org/web/views/
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Handling objects

To see what objects are currently defined, the function objects() (or equiv-
alently ls()) can be used. By default, it lists all objects in the global envi-
ronment (i.e., the user’s workspace):

R> objects()

[1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde"
[6] "cps_lm" "cps_rq" "i" "j_lm"

which returns a character vector of length 9 telling us that there are currently
nine objects, resulting from the introductory session.

However, this cannot be the complete list of available objects, given that
some objects must already exist prior to the execution of any commands,
among them the function objects() that we just called. The reason is that
the search list, which can be queried by

R> search()

[1] ".GlobalEnv" "package:KernSmooth"
[3] "package:quantreg" "package:SparseM"
[5] "package:AER" "package:survival"
[7] "package:splines" "package:strucchange"
[9] "package:sandwich" "package:lmtest"
[11] "package:zoo" "package:car"
[13] "package:stats" "package:graphics"
[15] "package:grDevices" "package:utils"
[17] "package:datasets" "package:methods"
[19] "Autoloads" "package:base"

comprises not only the global environment ".GlobalEnv" (always at the first
position) but also several attached packages, including the base package at its
end. Calling objects("package:base") will show the names of more than a
thousand objects defined in base, including the function objects() itself.

Objects can easily be created by assigning a value to a name using the
assignment operator <-. For illustration, we create a vector x in which the
number 2 is stored:

R> x <- 2

R> objects()

[1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde"
[6] "cps_lm" "cps_rq" "i" "j_lm" "x"

x is now available in our global environment and can be removed using the
function remove() (or equivalently rm()):

R> remove(x)

R> objects()
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[1] "CPS1985" "Journals" "cps" "cps2" "cps_bkde"
[6] "cps_lm" "cps_rq" "i" "j_lm"

Calling functions

If the name of an object is typed at the prompt, it will be printed. For a
function, say foo, this means that the corresponding R source code is printed
(try, for example, objects), whereas if it is called with parentheses, as in
foo(), it is a function call. If there are no arguments to the function, or all
arguments have defaults (as is the case with objects()), then foo() is a
valid function call. Therefore, a pair of parentheses following the object name
is employed throughout this book to signal that the object discussed is a
function.

Functions often have more than one argument (in fact, there is no limit
to the number of arguments to R functions). A function call may use the
arguments in any order, provided the name of the argument is given. If names
of arguments are not given, R assumes they appear in the order of the function
definition. If an argument has a default, it may be left out in a function call.
For example, the function log() has two arguments, x and base: the first, x,
can be a scalar (actually also a vector), the logarithm of which is to be taken;
the second, base, is the base with respect to which logarithms are computed.

Thus, the following four calls are all equivalent:

R> log(16, 2)

R> log(x = 16, 2)

R> log(16, base = 2)

R> log(base = 2, x = 16)

Classes and generic functions

Every object has a class that can be queried using class(). Classes include
“data.frame” (a list or array with a certain structure, the preferred format
in which data should be held), “lm” for linear-model objects (returned when
fitting a linear regression model by ordinary least squares; see Section 1.1
above), and “matrix” (which is what the name suggests). For each class, cer-
tain methods to so-called generic functions are available; typical examples
include summary() and plot(). The result of these functions depends on the
class of the object: when provided with a numerical vector, summary() re-
turns basic summaries of an empirical distribution, such as the mean and the
median; for a vector of categorical data, it returns a frequency table; and in
the case of a linear-model object, the result is the standard regression out-
put. Similarly, plot() returns pairs of scatterplots when provided with a data
frame and returns basic diagnostic plots for a linear-model object.
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Quitting R

One exits R by using the q() function:

R> q()

R will then ask whether to save the workspace image. Answering n (no) will
exit R without saving anything, whereas answering y (yes) will save all cur-
rently defined objects in a file .RData and the command history in a file
.Rhistory, both in the working directory.

File management

To query the working directory, use getwd(), and to change it, setwd(). If
an R session is started in a directory that has .RData and/or .Rhistory files,
these will automatically be loaded. Saved workspaces from other directories
can be loaded using the function load(). Analogously, R objects can be saved
(in binary format) by save(). To query the files in a directory, dir() can be
used.

1.4 Getting Help

R is well-documented software. Help on any function may be accessed using
either ? or help(). Thus

R> ?options

R> help("options")

both open the help page for the command options(). At the bottom of
a help page, there are typically practical examples of how to use that
function. These can easily be executed with the example() function; e.g.,
example("options") or example("lm").

If the exact name of a command is not known, as will often be the
case for beginners, the functions to use are help.search() and apropos().
help.search() returns help files with aliases or concepts or titles matching a
“pattern”using fuzzy matching. Thus, if help on options settings is desired but
the exact command name, here options(), is unknown, a search for objects
containing the pattern“option”might be useful. help.search("option") will
return a (long) list of commands, data frames, etc., containing this pattern,
including an entry

options(base) Options Settings

providing the desired result. It says that there exists a command options()
in the base package that provides options settings.

Alternatively, the function apropos() lists all functions whose names in-
clude the pattern entered. As an illustration,
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R> apropos("help")

[1] "help" "help.search" "help.start"

provides a list with only three entries, including the desired command help().
Note that help.search() searches through all installed packages, whereas
apropos() just examines the objects currently in the search list.

Vignettes

On a more advanced level, there are so-called vignettes. They are PDF files
generated from integrated files containing both R code and documentation (in
LATEX format) and therefore typically contain commands that are directly ex-
ecutable, reproducing the analysis described. This book was written by using
the tools that vignettes are based on. vignette() provides a list of vignettes
in all attached packages. (The meaning of “attached” will be explained in
Section 2.5.) As an example, vignette("strucchange-intro", package =
"strucchange") opens the vignette accompanying the package strucchange.
It is co-authored by the authors of this book and deals with testing, monitor-
ing, and dating of structural changes in time series regressions. See Chapter 7
for further details on vignettes and related infrastructure.

Demos

There also exist “demos” for certain tasks. A demo is an interface to run some
demonstration R scripts. Type demo() for a list of available topics. These
include "graphics" and "lm.glm", the latter providing illustrations on linear
and generalized linear models. For beginners, running demo("graphics") is
highly recommended.

Manuals, FAQs, and publications

R also comes with a number of manuals:

• An Introduction to R
• R Data Import/Export
• R Language Definition
• Writing R Extensions
• R Installation and Administration
• R Internals

Furthermore, there are several collections of frequently asked questions
(FAQs) at http://CRAN.R-project.org/faqs.html that provide answers to
general questions about R and also about platform-specific issues on Microsoft
Windows and Mac OS X.

Moreover, there is an online newsletter named R News, launched in 2001.
It is currently published about three times per year and features, among other

http://CRAN.R-project.org/faqs.html
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things, recent developments in R (such as changes in the language or new add-
on packages), a “programmer’s niche”, and examples analyzing data with R.
See http://CRAN.R-project.org/doc/Rnews/ for further information.

For a growing number of R packages, there exist corresponding publica-
tions in the Journal of Statistical Software; see http://www.jstatsoft.org/.
This is an open-access journal that publishes articles and code snippets (as
well as book and software reviews) on the subject of statistical software and
algorithms. A special volume on Econometrics in R is currently in preparation.

Finally, there is a rapidly growing list of books on R, or on statistics using
R, at all levels, the most comprehensive perhaps being Venables and Ripley
(2002). In addition, we refer the interested reader to Dalgaard (2002) for
introductory statistics, to Murrell (2005) for R graphics, and to Faraway (2005)
for linear regression.

1.5 The Development Model

One of R’s strengths and a key feature in its success is that it is highly ex-
tensible through packages that can provide extensions to everything available
in the base system. This includes not only R code but also code in compiled
languages (such as C, C++, or FORTRAN), data sets, demo files, test suites, vi-
gnettes, or further documentation. Therefore, every R user can easily become
an R developer by submitting his or her packages to CRAN to share them
with the R community. Hence packages can actively influence the direction in
which (parts of) R will go in the future.

Unlike the CRAN packages, the base R system is maintained and developed
only by the R core team, which releases major version updates (i.e., versions
x.y.0) biannually (currently around April 1 and October 1). However, as R
is an open-source system, all users are given read access to the master SVN
repository—SVN stands for Subversion and is a version control system; see
http://subversion.tigris.org/—and can thus check out the full source
code of the development version of R.

In addition, there are several means of communication within the R user
and developer community and between the users and the core development
team. The two most important are various R mailing lists and, as described
above, CRAN packages. The R project hosts several mailing lists, including
R-help and R-devel. The former can be used to ask for help on using R, the
latter for discussing issues related to the development of R or R packages.
Furthermore, bugs can be reported and feature requests made. The posting
guide at http://www.R-project.org/posting-guide.html discusses some
good strategies for doing this effectively. In addition to these general mailing
lists, there are lists for special interest groups (SIGs), among them at least
one list that might be of interest to the reader: it is devoted to finance and
(financial) econometrics and is called R-SIG-Finance.

http://CRAN.R-project.org/doc/Rnews/
http://www.jstatsoft.org/
http://subversion.tigris.org/
http://www.R-project.org/posting-guide.html
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1.6 A Brief History of R

As noted above, the R system for statistical computing and graphics (R Devel-
opment Core Team 2008b, http://www.R-project.org/) is an open-source
software project. The story begins at Bell Laboratories (of AT&T and now
Alcatel-Lucent in New Jersey), with the S language, a system for data anal-
ysis developed by John Chambers, Rick Becker, and collaborators since the
late 1970s. Landmarks of the development of S are a series of books, referred
to by color in the S community, beginning with the “brown book” (Becker
and Chambers 1984), which features “Old S”. The basic reference for “New
S”, or S version 2, is Becker, Chambers, and Wilks (1988), the “blue book”.
For S version 3 (first-generation object-oriented programming and statistical
modeling), it is Chambers and Hastie (1992), the “white book”. The “green
book” (Chambers 1998) documents S version 4. Based on the various S ver-
sions, Insightful Corporation (formerly MathSoft and still earlier Statistical
Sciences) has provided a commercially enhanced and supported release of S,
named S-PLUS, since 1987. At its core, this includes the original S imple-
mentation, which was first exclusively licensed and finally purchased in 2004.
On March 23, 1999, the Association for Computing Machinery (ACM) named
John Chambers as the recipient of its 1998 Software System Award for de-
veloping the S system, noting that his work “will forever alter the way people
analyze, visualize, and manipulate data”.

R itself was initially developed by Robert Gentleman and Ross Ihaka at the
University of Auckland, New Zealand. An early version is described in an arti-
cle by its inventors (Ihaka and Gentleman 1996). They designed the language
to combine the strengths of two existing languages, S and Scheme (Steel and
Sussman 1975). In the words of Ihaka and Gentleman (1996), “[t]he resulting
language is very similar in appearance to S, but the underlying implementa-
tion and semantics are derived from Scheme”. The result was baptized R “in
part to acknowledge the influence of S and in part to celebrate [their] own
efforts”.

The R source code was first released under the GNU General Public Li-
cense (GPL) in 1995. Since mid-1997, there has been the R Development Core
Team, currently comprising 19 members, and their names are available upon
typing contributors() in an R session. In 1998, the Comprehensive R Archive
Network (CRAN; http://CRAN.R-project.org/) was established, which is
a family of mirror sites around the world that store identical, up-to-date ver-
sions of code and documentation for R. The first official release, R version
1.0.0, dates to 2000-02-29. It implements the S3 standard as documented by
Chambers and Hastie (1992). R version 2.0.0 was released in 2004, and the
current version of the language, R 2.7.0, may be viewed as implementing S4
(Chambers 1998) plus numerous concepts that go beyond the various S stan-
dards.

The first publication on R in the econometrics literature appears to have
been by Cribari-Neto and Zarkos (1999), a software review in the Journal

http://www.R-project.org/
http://CRAN.R-project.org/
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of Applied Econometrics entitled “R: Yet Another Econometric Programming
Environment”. It describes R version 0.63.1, still a beta version. Three years
later, in a further software review in the same journal, Racine and Hynd-
man (2002) focused on using R for teaching econometrics utilizing R 1.3.1.
To the best of our knowledge, this book is the first general introduction to
econometric computing with R.



2

Basics

R can be used at various levels. Of course, standard arithmetic is available,
and hence it can be used as a (rather sophisticated) calculator. It is also
provided with a graphical system that writes on a large variety of devices.
Furthermore, R is a full-featured programming language that can be employed
to tackle all typical tasks for which other programming languages are also
used. It connects to other languages, programs, and data bases, and also to
the operating system; users can control all these from within R.

In this chapter, we illustrate a few of the typical uses of R. Often solutions
are not unique, but in the following we avoid sophisticated shortcuts. However,
we encourage all readers to explore alternative solutions by reusing what they
have learned in other contexts.

2.1 R as a Calculator

The standard arithmetic operators +, -, *, /, and ^ are available, where
x^y yields xy. Hence

R> 1 + 1

[1] 2

R> 2^3

[1] 8

In the output, [1] indicates the position of the first element of the vector
returned by R. This is not surprising here, where all vectors are of length 1,
but it will be useful later.

The common mathematical functions, such as log(), exp(), sin(),
asin(), cos(), acos(), tan(), atan(), sign(), sqrt(), abs(), min(), and
max(), are also available. Specifically, log(x, base = a) returns the loga-
rithm of x to base a, where a defaults to exp(1). Thus

C. Kleiber, A. Zeileis, Applied Econometrics with R,
DOI: 10.1007/978-0-387-77318-6 2, © Springer Science+Business Media, LLC 2008



18 2 Basics

R> log(exp(sin(pi/4)^2) * exp(cos(pi/4)^2))

[1] 1

which also shows that pi is a built-in constant. There are further conve-
nience functions, such as log10() and log2(), but here we shall mainly use
log(). A full list of all options and related functions is available upon typing
?log, ?sin, etc. Additional functions useful in statistics and econometrics are
gamma(), beta(), and their logarithms and derivatives. See ?gamma for further
information.

Vector arithmetic

In R, the basic unit is a vector, and hence all these functions operate directly
on vectors. A vector is generated using the function c(), where c stands for
“combine” or “concatenate”. Thus

R> x <- c(1.8, 3.14, 4, 88.169, 13)

generates an object x, a vector, containing the entries 1.8, 3.14, 4, 88.169,
13. The length of a vector is available using length(); thus

R> length(x)

[1] 5

Note that names are case-sensitive; hence x and X are distinct.
The preceding statement uses the assignment operator <-, which should

be read as a single symbol (although it requires two keystrokes), an arrow
pointing to the variable to which the value is assigned. Alternatively, = may
be used at the user level, but since <- is preferred for programming, it is used
throughout this book. There is no immediately visible result, but from now
on x has as its value the vector defined above, and hence it can be used in
subsequent computations:

R> 2 * x + 3

[1] 6.60 9.28 11.00 179.34 29.00

R> 5:1 * x + 1:5

[1] 10.00 14.56 15.00 180.34 18.00

This requires an explanation. In the first statement, the scalars (i.e., vec-
tors of length 1) 2 and 3 are recycled to the length of x so that each element of
x is multiplied by 2 before 3 is added. In the second statement, x is multiplied
element-wise by the vector 1:5 (the sequence from 1 to 5; see below) and then
the vector 5:1 is added element-wise.

Mathematical functions can be applied as well; thus

R> log(x)



2.1 R as a Calculator 19

[1] 0.5878 1.1442 1.3863 4.4793 2.5649

returns a vector containing the logarithms of the original entries of x.

Subsetting vectors

It is often necessary to access subsets of vectors. This requires the operator
[, which can be used in several ways to extract elements of a vector. For
example, one can either specify which elements to include or which elements
to exclude: a vector of positive indices, such as

R> x[c(1, 4)]

[1] 1.80 88.17

specifies the elements to be extracted. Alternatively, a vector of negative in-
dices, as in

R> x[-c(2, 3, 5)]

[1] 1.80 88.17

selects all elements but those indicated, yielding the same result. In fact,
further methods are available for subsetting with [, which are explained below.

Patterned vectors

In statistics and econometrics, there are many instances where vectors with
special patterns are needed. R provides a number of functions for creating
such vectors, including

R> ones <- rep(1, 10)

R> even <- seq(from = 2, to = 20, by = 2)

R> trend <- 1981:2005

Here, ones is a vector of ones of length 10, even is a vector containing the
even numbers from 2 to 20, and trend is a vector containing the integers from
1981 to 2005.

Since the basic element is a vector, it is also possible to concatenate vectors.
Thus

R> c(ones, even)

[1] 1 1 1 1 1 1 1 1 1 1 2 4 6 8 10 12 14 16 18 20

creates a vector of length 20 consisting of the previously defined vectors ones
and even laid end to end.



20 2 Basics

2.2 Matrix Operations

A 2× 3 matrix containing the elements 1:6, by column, is generated via

R> A <- matrix(1:6, nrow = 2)

Alternatively, ncol could have been used, with matrix(1:6, ncol = 3)
yielding the same result.

Basic matrix algebra

The transpose A> of A is

R> t(A)

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

The dimensions of a matrix may be accessed using dim(), nrow(), and ncol();
hence

R> dim(A)

[1] 2 3

R> nrow(A)

[1] 2

R> ncol(A)

[1] 3

Single elements of a matrix, row or column vectors, or indeed entire sub-
matrices may be extracted by specifying the rows and columns of the matrix
from which they are selected. This uses a simple extension of the rules for
subsetting vectors. (In fact, internally, matrices are vectors with an additional
dimension attribute enabling row/column-type indexing.) Element aij of a
matrix A is extracted using A[i,j]. Entire rows or columns can be extracted
via A[i,] and A[,j], respectively, which return the corresponding row or
column vectors. This means that the dimension attribute is dropped (by de-
fault); hence subsetting will return a vector instead of a matrix if the resulting
matrix has only one column or row. Occasionally, it is necessary to extract
rows, columns, or even single elements of a matrix as a matrix. Dropping of
the dimension attribute can be switched off using A[i, j, drop = FALSE].
As an example,

R> A1 <- A[1:2, c(1, 3)]



2.2 Matrix Operations 21

selects a square matrix containing the first and third elements from each row
(note that A has only two rows in our example). Alternatively, and more
compactly, A1 could have been generated using A[, -2]. If no row number
is specified, all rows will be taken; the -2 specifies that all columns but the
second are required.

A1 is a square matrix, and if it is nonsingular it has an inverse. One way
to check for singularity is to compute the determinant using the R function
det(). Here, det(A1) equals −4; hence A1 is nonsingular. Alternatively, its
eigenvalues (and eigenvectors) are available using eigen(). Here, eigen(A1)
yields the eigenvalues 7.531 and −0.531, again showing that A1 is nonsingular.

The inverse of a matrix, if it cannot be avoided, is computed using solve():

R> solve(A1)

[,1] [,2]
[1,] -1.5 1.25
[2,] 0.5 -0.25

We can check that this is indeed the inverse of A1 by multiplying A1 with its
inverse. This requires the operator for matrix multiplication, %*%:

R> A1 %*% solve(A1)

[,1] [,2]
[1,] 1 0
[2,] 0 1

Similarly, conformable matrices are added and subtracted using the arith-
metical operators + and -. It is worth noting that for non-conformable matrices
recycling proceeds along columns. Incidentally, the operator * also works for
matrices; it returns the element-wise or Hadamard product of conformable
matrices. Further types of matrix products that are often required in econo-
metrics are the Kronecker product, available via kronecker(), and the cross
product A>B of two matrices, for which a computationally efficient algorithm
is implemented in crossprod().

In addition to the spectral decomposition computed by eigen() as men-
tioned above, R provides other frequently used matrix decompositions, includ-
ing the singular-value decomposition svd(), the QR decomposition qr(), and
the Cholesky decomposition chol().

Patterned matrices

In econometrics, there are many instances where matrices with special pat-
terns occur. R provides functions for generating matrices with such patterns.
For example, a diagonal matrix with ones on the diagonal may be created
using

R> diag(4)
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[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

which yields the 4 × 4 identity matrix. Equivalently, it can be obtained by
diag(1, 4, 4), where the 1 is recycled to the required length 4. Of course,
more general diagonal matrices are also easily obtained: diag(rep(c(1,2),
c(10, 10))) yields a diagonal matrix of size 20× 20 whose first 10 diagonal
elements are equal to 1, while the remaining ones are equal to 2. (Readers
with a basic knowledge of linear regression will note that an application could
be a pattern of heteroskedasticity.)

Apart from setting up diagonal matrices, the function diag() can also be
used for extracting the diagonal from an existing matrix; e.g., diag(A1). Ad-
ditionally, upper.tri() and lower.tri() can be used to query the positions
of upper or lower triangular elements of a matrix, respectively.

Combining matrices

It is also possible to form new matrices from existing ones. This uses the
functions rbind() and cbind(), which are similar to the function c() for
concatenating vectors; as their names suggest, they combine matrices by rows
or columns. For example, to add a column of ones to our matrix A1,

R> cbind(1, A1)

[,1] [,2] [,3]
[1,] 1 1 5
[2,] 1 2 6

can be employed, while

R> rbind(A1, diag(4, 2))

[,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 4 0
[4,] 0 4

combines A1 and diag(4, 2) by rows.

2.3 R as a Programming Language

R is a full-featured, interpreted, object-oriented programming language. Hence,
it can be used for all the tasks other programming languages are also used
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for, not only for data analysis. What makes it particularly useful for statis-
tics and econometrics is that it was designed for “programming with data”
(Chambers 1998). This has several implications for the data types employed
and the object-orientation paradigm used (see Section 2.6 for more on object
orientation).

An in-depth treatment of programming in S/R is given in Venables and
Ripley (2000). If you read German, Ligges (2007) is an excellent introduction
to programming with R. On a more advanced level, R Development Core Team
(2008f,g) provides guidance about the language definition and how extensions
to the R system can be written. The latter documents can be downloaded
from CRAN and also ship with every distribution of R.

The mode of a vector

Probably the simplest data structure in R is a vector. All elements of a vector
must be of the same type; technically, they must be of the same “mode”. The
mode of a vector x can be queried using mode(x). Here, we need vectors of
modes “numeric”, “logical”, and “character” (but there are others).

We have already seen that

R> x <- c(1.8, 3.14, 4, 88.169, 13)

creates a numerical vector, and one typical application of vectors is to store
the values of some numerical variable in a data set.

Logical and character vectors

Logical vectors may contain the logical constants TRUE and FALSE. In a fresh
session, the aliases T and F are also available for compatibility with S (which
uses these as the logical constants). However, unlike TRUE and FALSE, the
values of T and F can be changed (e.g., by using the former for signifying the
sample size in a time series context or using the latter as the variable for an
F statistic), and hence it is recommended not to rely on them but to always
use TRUE and FALSE. Like numerical vectors, logical vectors can be created
from scratch. They may also arise as the result of a logical comparison:

R> x > 3.5

[1] FALSE FALSE TRUE TRUE TRUE

Further logical operations are explained below.
Character vectors can be employed to store strings. Especially in the early

chapters of this book, we will mainly use them to assign labels or names
to certain objects such as vectors and matrices. For example, we can assign
names to the elements of x via

R> names(x) <- c("a", "b", "c", "d", "e")

R> x
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a b c d e
1.80 3.14 4.00 88.17 13.00

Alternatively, we could have used names(x) <- letters[1:5] since letters
and LETTERS are built-in vectors containing the 26 lower- and uppercase letters
of the Latin alphabet, respectively. Although we do not make much use of them
in this book, we note here that the character-manipulation facilities of R go far
beyond these simple examples, allowing, among other things, computations on
text documents or command strings.

More on subsetting

Having introduced vectors of modes numeric, character, and logical, it is useful
to revisit subsetting of vectors. By now, we have seen how to extract parts
of a vector using numerical indices, but in fact this is also possible using
characters (if there is a names attribute) or logicals (in which case the elements
corresponding to TRUE are selected). Hence, the following commands yield the
same result:

R> x[3:5]

c d e
4.00 88.17 13.00

R> x[c("c", "d", "e")]

c d e
4.00 88.17 13.00

R> x[x > 3.5]

c d e
4.00 88.17 13.00

Subsetting of matrices (and also of data frames or multidimensional arrays)
works similarly.

Lists

So far, we have only used plain vectors. We now proceed to introduce some
related data structures that are similar but contain more information.

In R, lists are generic vectors where each element can be virtually any type
of object; e.g., a vector (of arbitrary mode), a matrix, a full data frame, a
function, or again a list. Note that the latter also allows us to create recursive
data structures. Due to this flexibility, lists are the basis for most complex
objects in R; e.g., for data frames or fitted regression models (to name two
examples that will be described later).

As a simple example, we create, using the function list(), a list containing
a sample from a standard normal distribution (generated with rnorm(); see
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below) plus some markup in the form of a character string and a list containing
the population parameters.

R> mylist <- list(sample = rnorm(5),

+ family = "normal distribution",

+ parameters = list(mean = 0, sd = 1))

R> mylist

$sample
[1] 0.3771 -0.9346 2.4302 1.3195 0.4503

$family
[1] "normal distribution"

$parameters
$parameters$mean
[1] 0

$parameters$sd
[1] 1

To select certain elements from a list, the extraction operators $ or [[ can
be used. The latter is similar to [, the main difference being that it can only
select a single element. Hence, the following statements are equivalent:

R> mylist[[1]]

[1] 0.3771 -0.9346 2.4302 1.3195 0.4503

R> mylist[["sample"]]

[1] 0.3771 -0.9346 2.4302 1.3195 0.4503

R> mylist$sample

[1] 0.3771 -0.9346 2.4302 1.3195 0.4503

The third element of mylist again being a list, the extractor functions can
also be combined as in

R> mylist[[3]]$sd

[1] 1

Logical comparisons

R has a set of functions implementing standard logical comparisons as well
as a few further functions that are convenient when working with logical
values. The logical operators are <, <=, >, >=, == (for exact equality) and
!= (for inequality). Also, if expr1 and expr2 are logical expressions, then
expr1 & expr2 is their intersection (logical “and”), expr1 | expr2 is their
union (logical “or”), and !expr1 is the negation of expr1. Thus
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R> x <- c(1.8, 3.14, 4, 88.169, 13)

R> x > 3 & x <= 4

[1] FALSE TRUE TRUE FALSE FALSE

To assess for which elements of a vector a certain expression is TRUE, the
function which() can be used:

R> which(x > 3 & x <= 4)

[1] 2 3

The specialized functions which.min() and which.max() are available for
computing the position of the minimum and the maximum. In addition to
& and |, the functions all() and any() check whether all or at least some
entries of a vector are TRUE:

R> all(x > 3)

[1] FALSE

R> any(x > 3)

[1] TRUE

Some caution is needed when assessing exact equality. When applied to nu-
merical input, == does not allow for finite representation of fractions or for
rounding error; hence situations like

R> (1.5 - 0.5) == 1

[1] TRUE

R> (1.9 - 0.9) == 1

[1] FALSE

can occur due to floating-point arithmetic (Goldberg 1991). For these pur-
poses, all.equal() is preferred:

R> all.equal(1.9 - 0.9, 1)

[1] TRUE

Furthermore, the function identical() checks whether two R objects are
exactly identical.

Due to coercion, it is also possible to compute directly on logical vectors
using ordinary arithmetic. When coerced to numeric, FALSE becomes 0 and
TRUE becomes 1, as in

R> 7 + TRUE

[1] 8
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Coercion

To convert an object from one type or class to a different one, R provides a
number of coercion functions, conventionally named as.foo(), where foo is
the desired type or class; e.g., numeric, character, matrix, and data.frame
(a concept introduced in Section 2.5), among many others. They are typically
accompanied by an is.foo() function that checks whether an object is of type
or class foo. Thus

R> is.numeric(x)

[1] TRUE

R> is.character(x)

[1] FALSE

R> as.character(x)

[1] "1.8" "3.14" "4" "88.169" "13"

In certain situations, coercion is also forced automatically by R; e.g., when
the user tries to put elements of different modes into a single vector (which
can only contain elements of the same mode). Thus

R> c(1, "a")

[1] "1" "a"

Random number generation

For programming environments in statistics and econometrics, it is vital to
have good random number generators (RNGs) available, in particular to allow
the users to carry out Monte Carlo studies. The R RNG supports several
algorithms; see ?RNG for further details. Here, we outline a few important
commands.

The RNG relies on a “random seed”, which is the basis for the genera-
tion of pseudo-random numbers. By setting the seed to a specific value using
the function set.seed(), simulations can be made exactly reproducible. For
example, using the function rnorm() for generating normal random numbers,

R> set.seed(123)

R> rnorm(2)

[1] -0.5605 -0.2302

R> rnorm(2)

[1] 1.55871 0.07051

R> set.seed(123)

R> rnorm(2)
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[1] -0.5605 -0.2302

Another basic function for drawing random samples, with or without replace-
ment from a finite set of values, is sample(). The default is to draw, without
replacement, a vector of the same size as its input argument; i.e., to compute
a permutation of the input as in

R> sample(1:5)

[1] 5 1 2 3 4

R> sample(c("male", "female"), size = 5, replace = TRUE,

+ prob = c(0.2, 0.8))

[1] "female" "male" "female" "female" "female"

The second command draws a sample of size 5, with replacement, from the
values "male" and "female", which are drawn with probabilities 0.2 and 0.8,
respectively.

Above, we have already used the function rnorm() for drawing from a
normal distribution. It belongs to a broader family of functions that are all of
the form rdist(), where dist can be, for example, norm, unif, binom, pois, t,
f, chisq, corresponding to the obvious families of distributions. All of these
functions take the sample size n as their first argument along with further
arguments controlling parameters of the respective distribution. For exam-
ple, rnorm() takes mean and sd as further arguments, with 0 and 1 being
the corresponding defaults. However, these are not the only functions avail-
able for statistical distributions. Typically there also exist ddist(), pdist(),
and qdist(), which implement the density, cumulative probability distribution
function, and quantile function (inverse distribution function), respectively.

Flow control

Like most programming languages, R provides standard control structures
such as if/else statements, for loops, and while loops. All of these have in
common that an expression expr is evaluated, either conditional upon a cer-
tain condition cond (for if and while) or for a sequence of values (for for).
The expression expr itself can be either a simple expression or a compound ex-
pression; i.e., typically a set of simple expressions enclosed in braces { ... }.
Below we present a few brief examples illustrating its use; see ?Control for
further information.

An if/else statement is of the form

if(cond) {

expr1

} else {

expr2

}
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where expr1 is evaluated if cond is TRUE and expr2 otherwise. The else
branch may be omitted if empty. A simple (if not very meaningful) example
is

R> x <- c(1.8, 3.14, 4, 88.169, 13)

R> if(rnorm(1) > 0) sum(x) else mean(x)

[1] 22.02

where conditional on the value of a standard normal random number either
the sum or the mean of the vector x is computed. Note that the condition cond
can only be of length 1. However, there is also a function ifelse() offering a
vectorized version; e.g.,

R> ifelse(x > 4, sqrt(x), x^2)

[1] 3.240 9.860 16.000 9.390 3.606

This computes the square root for those values in x that are greater than 4
and the square for the remaining ones.

A for loop looks similar, but the main argument to for() is of type
variable in sequence. To illustrate its use, we recursively compute first
differences in the vector x.

R> for(i in 2:5) {

+ x[i] <- x[i] - x[i-1]

+ }

R> x[-1]

[1] 1.34 2.66 85.51 -72.51

Finally, a while loop looks quite similar. The argument to while() is a con-
dition that may change in every run of the loop so that it finally can become
FALSE, as in

R> while(sum(x) < 100) {

+ x <- 2 * x

+ }

R> x

[1] 14.40 10.72 21.28 684.07 -580.07

Writing functions

One of the features of S and R is that users naturally become developers.
Creating variables or objects and applying functions to them interactively
(either to modify them or to create other objects of interest) is part of every
R session. In doing so, typical sequences of commands often emerge that are
carried out for different sets of input values. Instead of repeating the same
steps “by hand”, they can also be easily wrapped into a function. A simple
example is
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R> cmeans <- function(X) {

+ rval <- rep(0, ncol(X))

+ for(j in 1:ncol(X)) {

+ mysum <- 0

+ for(i in 1:nrow(X)) mysum <- mysum + X[i,j]

+ rval[j] <- mysum/nrow(X)

+ }

+ return(rval)

+ }

This creates a (deliberately awkward!) function cmeans(), which takes a ma-
trix argument X and uses a double for loop to compute first the sum and then
the mean in each column. The result is stored in a vector rval (our return
value), which is returned after both loops are completed. This function can
then be easily applied to new data, as in

R> X <- matrix(1:20, ncol = 2)

R> cmeans(X)

[1] 5.5 15.5

and (not surprisingly) yields the same result as the built-in function
colMeans():

R> colMeans(X)

[1] 5.5 15.5

The function cmeans() takes only a single argument X that has no default
value. If the author of a function wants to set a default, this can be easily
achieved by defining a function with a list of name = expr pairs, where
name is the argument of the variable and expr is an expression with the
default value. If the latter is omitted, no default value is set.

In interpreted matrix-based languages such as R, loops are typically less
efficient than the corresponding vectorized computations offered by the sys-
tem. Therefore, avoiding loops by replacing them with vectorized operations
can save computation time, especially when the number of iterations in the
loop can become large. To illustrate, let us generate 2 · 106 random num-
bers from the standard normal distribution and compare the built-in function
colMeans() with our awkward function cmeans(). We employ the function
system.time(), which is useful for profiling code:

R> X <- matrix(rnorm(2*10^6), ncol = 2)

R> system.time(colMeans(X))

user system elapsed
0.004 0.000 0.005

R> system.time(cmeans(X))
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user system elapsed
5.572 0.004 5.617

Clearly, the performance of cmeans() is embarrassing, and using colMeans()
is preferred.

Vectorized calculations

As noted above, loops can be avoided using vectorized arithmetic. In the
case of cmeans(), our function calculating column-wise means of a matrix,
it would be helpful to directly compute means column by column using the
built-in function mean(). This is indeed the preferred solution. Using the tools
available to us thus far, we could proceed as follows:

R> cmeans2 <- function(X) {

+ rval <- rep(0, ncol(X))

+ for(j in 1:ncol(X)) rval[j] <- mean(X[,j])

+ return(rval)

+ }

This eliminates one of the for loops and only cycles over the columns. The
result is identical to the previous solutions, but the performance is clearly
better than that of cmeans():

R> system.time(cmeans2(X))

user system elapsed
0.072 0.008 0.080

However, the code of cmeans2() still looks a bit cumbersome with the re-
maining for loop—it can be written much more compactly using the function
apply(). This applies functions over the margins of an array and takes three
arguments: the array, the index of the margin, and the function to be evalu-
ated. In our case, the function call is

R> apply(X, 2, mean)

because we require means (using mean()) over the columns (i.e., the second
dimension) of X. The performance of apply() can sometimes be better than
a for loop; however, in many cases both approaches perform rather similarly:

R> system.time(apply(X, 2, mean))

user system elapsed
0.084 0.028 0.114

To summarize, this means that (1) element-wise computations should be
avoided if vectorized computations are available, (2) optimized solutions (if
available) typically perform better than the generic for or apply() solution,
and (3) loops can be written more compactly using the apply() function. In
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fact, this is so common in R that several variants of apply() are available,
namely lapply(), tapply(), and sapply(). The first returns a list, the second
a table, and the third tries to simplify the result to a vector or matrix where
possible. See the corresponding manual pages for more detailed information
and examples.

Reserved words

Like most programming languages, R has a number of reserved words that
provide the basic grammatical constructs of the language. Some of these have
already been introduced above, and some more follow below. An almost com-
plete list of reserved words in R is: if, else, for, in, while, repeat, break,
next, function, TRUE, FALSE, NA, NULL, Inf, NaN, ...). See ?Reserved for a
complete list. If it is attempted to use any of these as names, this results in
an error.

2.4 Formulas

Formulas are constructs used in various statistical programs for specifying
models. In R, formula objects can be used for storing symbolic descriptions
of relationships among variables, such as the ~ operator in the formation of a
formula:

R> f <- y ~ x

R> class(f)

[1] "formula"

So far, this is only a description without any concrete meaning. The result
entirely depends on the function evaluating this formula. In R, the expression
above commonly means “y is explained by x”. Such formula interfaces are
convenient for specifying, among other things, plots or regression relationships.
For example, with

R> x <- seq(from = 0, to = 10, by = 0.5)

R> y <- 2 + 3 * x + rnorm(21)

the code

R> plot(y ~ x)

R> lm(y ~ x)

Call:
lm(formula = y ~ x)

Coefficients:
(Intercept) x

2.00 3.01
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Fig. 2.1. Simple scatterplot of y vs. x.

first generates a scatterplot of y against x (see Figure 2.1) and then fits the
corresponding simple linear regression model with slope 3.01 and intercept
2.00.

For specifying regression models, the formula language is much richer than
outlined above and is based on a symbolic notation suggested by Wilkinson
and Rogers (1973) in the statistical literature. For example, when using lm(),
log(y) ~ x1 + x2 specifies a linear regression of log(y) on two regressors
x1 and x2 and an implicitly defined constant. More details on the formula
specifications of linear regression models will be given in Chapter 3.

2.5 Data Management in R

In R, a data frame corresponds to what other statistical packages call a data
matrix or a data set. Typically, it is an array consisting of a list of vectors
and/or factors of identical length, thus yielding a rectangular format where
columns correspond to variables and rows to observations.

Creation from scratch

Let us generate a simple artificial data set, with three variables named "one",
"two", "three", by using
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R> mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30)

Alternatively, mydata can be created using

R> mydata <- as.data.frame(matrix(1:30, ncol = 3))

R> names(mydata) <- c("one", "two", "three")

which first creates a matrix of size 10×3 that is subsequently coerced to a data
frame and whose variable names are finally changed to "one", "two", "three".
Note that the same syntax can be used both for querying and modifying the
names in a data frame. Furthermore, it is worth reiterating that although a
data frame can be coerced from a matrix as above, it is internally represented
as a list.

Subset selection

It is possible to access a subset of variables (i.e., columns) via [ or $, where
the latter can only extract a single variable. Hence, the second variable two
can be selected via

R> mydata$two

[1] 11 12 13 14 15 16 17 18 19 20

R> mydata[, "two"]

[1] 11 12 13 14 15 16 17 18 19 20

R> mydata[, 2]

[1] 11 12 13 14 15 16 17 18 19 20

In all cases, the object returned is a simple vector; i.e., the data frame at-
tributes are dropped (by default).

To simplify access to variables in a certain data set, it can be attach()ed.
Technically, this means that the attached data set is added to the search()
path and thus variables contained in this data set can be found when their
name is used in a command. Compare the following:

R> mean(two)

Error in mean(two) : Object "two" not found

R> attach(mydata)

R> mean(two)

[1] 15.5

R> detach(mydata)
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Data frames should be attached with care; in particular, one should pay at-
tention not to attach several data frames with the same column names or to
have a variable with identical name in the global environment, as this is likely
to generate confusion. To avoid attaching and detaching a data set for a single
command only, the function with() can be handy, as in

R> with(mydata, mean(two))

[1] 15.5

It is often necessary to work with subsets of a data frame; i.e., to use only
selected observations (= rows) and/or variables (= columns). This can again
be done via [ or, more conveniently, using the subset() command, whose
main arguments are a data frame from which the subset is to be taken and a
logical statement defining the elements to be selected. For example,

R> mydata.sub <- subset(mydata, two <= 16, select = -two)

takes all observations whose value of the second variable two does not exceed
16 (we know there are six observations with this property) and, in addition,
all variables apart from two are selected.

Import and export

To export data frames in plain text format, the function write.table() can
be employed:

R> write.table(mydata, file = "mydata.txt", col.names = TRUE)

It creates a text file mydata.txt in the current working directory. If this data
set is to be used again, in another session, it may be imported using

R> newdata <- read.table("mydata.txt", header = TRUE)

The function read.table() returns a “data.frame” object, which is then
assigned to a new object newdata. By setting col.names = TRUE, the column
names are written in the first line of mydata.txt and hence we set header =
TRUE when reading the file again. The function write.table() is quite flexible
and allows specification of the separation symbol and the decimal separator,
among other properties of the file to be written, so that various text-based
formats, including tab- or comma-separated values, can be produced. Since the
latter is a popular format for exchanging data (as it can be read and written
by many spreadsheet programs, including Microsoft Excel), the convenience
interfaces read.csv() and write.csv() are available. Similarly, read.csv2()
and write.csv2() provide export and import of semicolon-separated values,
a format that is typically used on systems employing the comma (and not the
period) as the decimal separator. In addition, there exists a more elementary
function, named scan(), for data not conforming to the matrix-like layout
required by read.table(). We refer to the respective manual pages and the“R
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Data Import/Export” manual (R Development Core Team 2008c) for further
details.

It is also possible to save the data in the R internal binary format, by
convention with extension .RData or .rda. The command

R> save(mydata, file = "mydata.rda")

saves the data in R binary format. Binary files may be loaded using

R> load("mydata.rda")

In contrast to read.table(), this does not return a single object; instead it
makes all objects stored in mydata.rda directly available within the current
environment. The advantage of using .rda files is that several R objects, in
fact several arbitrary R objects, can be stored, including functions or fitted
models, without loss of information.

All of the data sets in the package AER are supplied in this binary format
(go to the folder ~/AER/data in your R library to check). Since they are part
of a package, they are made accessible more easily using data() (which in
this case sets up the appropriate call for load()). Thus

R> data("Journals", package = "AER")

loads the Journals data frame from the AER package (stored in the file
~/AER/data/Journals.rda), the data set used in Example 1 of our introduc-
tory R session. If the package argument is omitted, all packages currently in
the search path are checked whether they provide a data set Journals.

Reading and writing foreign binary formats

R can also read and write a number of proprietary binary formats, notably
S-PLUS, SPSS, SAS, Stata, Minitab, Systat, and dBase files, using the functions
provided in the package foreign (part of a standard R installation). Most of the
commands are designed to be similar to read.table() and write.table().
For example, for Stata files, both read.dta() and write.dta() are available
and can be used to create a Stata file containing mydata

R> library("foreign")

R> write.dta(mydata, file = "mydata.dta")

and read it into R again via

R> mydata <- read.dta("mydata.dta")

See the documentation for the package foreign for further information.

Interaction with the file system and string manipulations

In the preceding paragraphs, some interaction with the file system was neces-
sary to read and write data files. R possesses a rich functionality for interacting
with external files and communicating with the operating system. This is far
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beyond the scope of this book, but we would like to provide the interested
reader with a few pointers that may serve as a basis for further reading.

Files available in a directory or folder can be queried via dir() and also
copied (using file.copy()) or deleted (using file.remove()) independent of
the operating system. For example, the Stata file created above can be deleted
again from within R via

R> file.remove("mydata.dta")

Other (potentially system-dependent) commands can be sent as strings to the
operating system using system(). See the respective manual pages for more
information and worked-out examples.

Above, we discussed how data objects (especially data frames) can be writ-
ten to files in various formats. Beyond that, one often wants to save commands
or their output to text files. One possibility to achieve this is to use sink(),
which can direct output to a file() connection to which the strings could be
written with cat(). In some situations, writeLines() is more convenient for
this. Furthermore, dump() can create text representations of R objects and
write them to a file() connection.

Sometimes, one needs to manipulate the strings before creating output. R
also provides rich and flexible functionality for this. Typical tasks include split-
ting strings (strsplit()) and/or pasting them together (paste()). For pat-
tern matching and replacing, grep() and gsub() are available, which also sup-
port regular expressions. For combining text and variable values, sprintf()
is helpful.

Factors

Factors are an extension of vectors designed for storing categorical informa-
tion. Typical econometric examples of categorical variables include gender,
union membership, or ethnicity. In many software packages, these are created
using a numerical encoding (e.g., 0 for males and 1 for females); sometimes, es-
pecially in regression settings, a single categorical variable is stored in several
such dummy variables if there are more than two categories.

In R, categorical variables should be specified as factors. As an example,
we first create a dummy-coded vector with a certain pattern and subsequently
transform it into a factor using factor():

R> g <- rep(0:1, c(2, 4))

R> g <- factor(g, levels = 0:1, labels = c("male", "female"))

R> g

[1] male male female female female female
Levels: male female

The terminology is that a factor has a set of levels, say k levels. Internally, a
k-level factor consists of two items: a vector of integers between 1 and k and a
character vector, of length k, containing strings with the corresponding labels.
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Above, we created the factor from an integer vector; alternatively, it could have
been constructed from other numerical, character, or logical vectors. Ordinal
information may also be stored in a factor by setting the argument ordered
= TRUE when calling factor().

The advantage of this approach is that R knows when a certain variable is
categorical and can choose appropriate methods automatically. For example,
the labels can be used in printed output, different summary and plotting
methods can be chosen, and contrast codings (e.g., dummy variables) can be
computed in linear regressions. Note that for these actions the ordering of the
levels can be important.

Missing values

Many data sets contain observations for which certain variables are unavail-
able. Econometric software needs ways to deal with this. In R, such missing
values are coded as NA (for “not available”). All standard computations on NA
become NA.

Special care is needed when reading data that use a different encoding. For
example, when preparing the package AER, we encountered several data sets
that employed -999 for missing values. If a file mydata.txt contains missing
values coded in this way, they may be converted to NA using the argument
na.strings when reading the file:

R> newdata <- read.table("mydata.txt", na.strings = "-999")

To query whether certain observations are NA or not, the function is.na() is
provided.

2.6 Object Orientation

Somewhat vaguely, object-oriented programming (OOP) refers to a paradigm
of programming where users/developers can create objects of a certain “class”
(that are required to have a certain structure) and then apply “methods” for
certain “generic functions” to these objects. A simple example in R is the
function summary(), which is a generic function choosing, depending on the
class of its argument, the summary method defined for this class. For example,
for the numerical vector x and the factor g used above,

R> x <- c(1.8, 3.14, 4, 88.169, 13)

R> g <- factor(rep(c(0, 1), c(2, 4)), levels = c(0, 1),

+ labels = c("male", "female"))

the summary() call yields different types of results:

R> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.80 3.14 4.00 22.00 13.00 88.20
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R> summary(g)

male female
2 4

For the numerical vector x, a five-number summary (i.e., the minimum and
maximum, the median, and the first and third quartiles) along with the mean
are reported, and for the factor g a simple frequency table is returned. This
shows that R has different summary() methods available for different types of
classes (in particular, it knows that a five-number summary is not sensible for
categorical variables). In R, every object has a class that can be queried using
the function class()

R> class(x)

[1] "numeric"

R> class(g)

[1] "factor"

which is used internally for calling the appropriate method for a generic func-
tion.

In fact, R offers several paradigms of object orientation. The base installa-
tion comes with two different OOP systems, usually called S3 (Chambers and
Hastie 1992) and S4 (Chambers 1998). The S3 system is much simpler, using
a dispatch mechanism based on a naming convention for methods. The S4 sys-
tem is more sophisticated and closer to other OOP concepts used in computer
science, but it also requires more discipline and experience. For most tasks, S3
is sufficient, and therefore it is the only OOP system (briefly) discussed here.

In S3, a generic function is defined as a function with a certain list of
arguments and then a UseMethod() call with the name of the generic function.
For example, printing the function summary() reveals its definition:

R> summary

function (object, ...)
UseMethod("summary")
<environment: namespace:base>

It takes a first required argument object plus an arbitrary number of further
arguments passed through ... to its methods. What happens if this function
is applied to an object, say of class “foo”, is that R tries to apply the function
summary.foo() if it exists. If not, it will call summary.default() if such
a default method exists (which is the case for summary()). Furthermore, R
objects can have a vector of classes (e.g., c("foo", "bar"), which means
that such objects are of class “foo” inheriting from “bar”). In this case, R first
tries to apply summary.foo(), then (if this does not exist) summary.bar(),
and then (if both do not exist) summary.default(). All methods that are
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currently defined for a generic function can be queried using methods(); e.g.,
methods(summary) will return a (long) list of methods for all sorts of different
classes. Among them is a method summary.factor(), which is used when
summary(g) is called. However, there is no summary.numeric(), and hence
summary(x) is handled by summary.default(). As it is not recommended to
call methods directly, some methods are marked as being non-visible to the
user, and these cannot (easily) be called directly. However, even for visible
methods, we stress that in most situations it is clearly preferred to use, for
example, summary(g) instead of summary.factor(g).

To illustrate how easy it is to define a class and some methods for it, let
us consider a simple example. We create an object of class “normsample” that
contains a sample from a normal distribution and then define a summary()
method that reports the empirical mean and standard deviation for this sam-
ple. First, we write a simple class creator. In principle, it could have any name,
but it is often called like the class itself:

R> normsample <- function(n, ...) {

+ rval <- rnorm(n, ...)

+ class(rval) <- "normsample"

+ return(rval)

+ }

This function takes a required argument n (the sample size) and further argu-
ments ..., which are passed on to rnorm(), the function for generating normal
random numbers. In addition to the sample size, it takes further arguments—
the mean and the standard deviation; see ?rnorm. After generation of the
vector of normal random numbers, it is assigned the class “normsample” and
then returned.

R> set.seed(123)

R> x <- normsample(10, mean = 5)

R> class(x)

[1] "normsample"

To define a summary() method, we create a function summary.normsample()
that conforms with the argument list of the generic (although ... is not used
here) and computes the sample size, the empirical mean, and the standard
deviation.

R> summary.normsample <- function(object, ...) {

+ rval <- c(length(object), mean(object), sd(object))

+ names(rval) <- c("sample size","mean","standard deviation")

+ return(rval)

+ }

Hence, calling

R> summary(x)
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sample size mean standard deviation
10.0000 5.0746 0.9538

automatically finds our new summary() method and yields the desired output.
Other generic functions with methods for most standard R classes are

print(), plot(), and str(), which print, plot, and summarize the structure
of an object, respectively.

2.7 R Graphics

It is no coincidence that early publications on S and R, such as Becker and
Chambers (1984) and Ihaka and Gentleman (1996), are entitled “S: An Inter-
active Environment for Data Analysis and Graphics” and “R: A Language for
Data Analysis and Graphics”, respectively. R indeed has powerful graphics.

Here, we briefly introduce the “conventional” graphics as implemented in
base R. R also comes with a new and even more flexible graphics engine, called
grid (see Murrell 2005), that provides the basis for an R implementation of
“trellis”-type graphics (Cleveland 1993) in the package lattice (Sarkar 2002),
but these are beyond the scope of this book. An excellent overview of R
graphics is given in Murrell (2005).

The function plot()

The basic function is the default plot() method. It is a generic function
and has methods for many objects, including data frames, time series, and
fitted linear models. Below, we describe the default plot() method, which
can create various types of scatterplots, but many of the explanations extend
to other methods as well as to other high-level plotting functions.

The scatterplot is probably the most common graphical display in statis-
tics. A scatterplot of y vs. x is available using plot(x, y). For illustration,
we again use the Journals data from our package AER, taken from Stock and
Watson (2007). As noted in Section 1.1, the data provide some information
on subscriptions to economics journals at US libraries for the year 2000. The
file contains 180 observations (the journals) on 10 variables, among them the
number of library subscriptions (subs), the library subscription price (price),
and the total number of citations for the journal (citations). These data will
reappear in Chapter 3.

Here, we are interested in the relationship between the number of subscrip-
tions and the price per citation. The following code chunk derives the required
variable citeprice and plots the number of library subscriptions against it
in logarithms:

R> data("Journals")

R> Journals$citeprice <- Journals$price/Journals$citations

R> attach(Journals)
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Fig. 2.2. Scatterplot of the journals data with ticks added.

R> plot(log(subs), log(citeprice))

R> rug(log(subs))

R> rug(log(citeprice), side = 2)

R> detach(Journals)

The function rug() adds ticks, thus visualizing the marginal distributions of
the variables, along one or both axes of an existing plot. Figure 2.2 has ticks
on both of the horizontal and vertical axes. An alternative way of specifying
plot(x, y) is to use the formula method of plot(); i.e., plot(y ~ x). This
leads to the same scatterplot but has the advantage that a data argument
can be specified. Hence we can avoid attaching and detaching the data frame:

R> plot(log(subs) ~ log(citeprice), data = Journals)

Graphical parameters

All this looks deceptively simple, but the result can be modified in numer-
ous ways. For example, plot() takes a type argument that controls whether
points (type = "p", the default), lines (type = "l"), both (type = "b"),
stair steps (type = "s"), or further types of plots are generated. The anno-
tation can be modified by changing the main title or the xlab and ylab axis
labels. See ?plot for more details.

Additionally, there are several dozen graphical parameters (see ?par for
the full list) that can be modified either by setting them with par() or by
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Table 2.1. A selective list of arguments to par().

Argument Description

axes should axes be drawn?
bg background color
cex size of a point or symbol
col color
las orientation of axis labels
lty, lwd line type and line width
main, sub title and subtitle
mar size of margins
mfcol, mfrow array defining layout for several graphs on a plot
pch plotting symbol
type types (see text)
xlab, ylab axis labels
xlim, ylim axis ranges
xlog, ylog, log logarithmic scales

supplying them to the plot() function. We cannot explain all of these here,
but we will highlight a few important parameters: col sets the color(s) and
xlim and ylim adjust the plotting ranges. If points are plotted, pch can modify
the plotting character and cex its character extension. If lines are plotted, lty
and lwd specify the line type and width, respectively. The size of labels, axis
ticks, etc., can be changed by further cex-type arguments such as cex.lab
and cex.axis. A brief list of arguments to par() is provided in Table 2.1.
This is just the tip of the iceberg, and further graphical parameters will be
introduced as we proceed.

As a simple example, readers may want to try

R> plot(log(subs) ~ log(citeprice), data = Journals, pch = 20,

+ col = "blue", ylim = c(0, 8), xlim = c(-7, 4),

+ main = "Library subscriptions")

This yields solid circles (pch = 20) instead of the default open ones, drawn
in blue, and there are wider ranges in the x and y directions; there is also a
main title.

It is also possible to add further layers to a plot. Thus, lines(), points(),
text(), and legend() add what their names suggest to an existing plot. For
example, text(-3.798, 5.846, "Econometrica", pos = 2) puts a charac-
ter string at the indicated location (i.e., to the left of the point). In regression
analyses, one often wants to add a regression line to a scatterplot. As seen in
Chapter 1, this is achieved using abline(a, b), where a is the intercept and
b is the slope.

At this point, there does not seem to be a great need for all this; however,
most users require fine control of visual displays at some point, especially when
publication-quality plots are needed. We refrain from presenting artificial
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examples toying with graphics options; instead we shall introduce variations
of the standard displays as we proceed.

Of course, there are many further plotting functions besides the default
plot() method. For example, standard statistical displays such as barplots,
pie charts, boxplots, QQ plots, or histograms are available in the functions
barplot(), pie(), boxplot(), qqplot(), and hist(). It is instructive to run
demo("graphics") to obtain an overview of R’s impressive graphics facilities.

Exporting graphics

In interactive use, graphics are typically written to a graphics window so
that they can be inspected directly. However, after completing an analysis, we
typically want to save the resulting graphics (e.g., for publication in a report,
journal article, or thesis). For users of Microsoft Windows and Microsoft Word,
a simple option is to“copy and paste”them into the Microsoft Word document.
For other programs, such as LATEX, it is preferable to export the graphic into
an external file. For this, there exist various graphics devices to which plots
can be written. Devices that are available on all platforms include the vector
formats PostScript and PDF; other devices, such as the bitmap formats PNG
and JPEG and the vector format WMF, are only available if supported by
the system (see ?Devices for further details). They all work in the same way:
first the device is opened—e.g., the PDF device is opened by the function
pdf()—then the commands creating the plot are executed, and finally the
device is closed by dev.off(). A simple example creating a plot on a PDF
device is:

R> pdf("myfile.pdf", height = 5, width = 6)

R> plot(1:20, pch = 1:20, col = 1:20, cex = 2)

R> dev.off()

This creates the PDF file myfile.pdf in the current working directory,
which contains the graphic generated by the plot() call (see Figure 2.3).
Incidentally, the plot illustrates a few of the parameters discussed above: it
shows the first 20 plotting symbols (all shown in double size) and that in R a
set of colors is also numbered. The first eight colors are black, red, green, blue,
turquoise, violet, yellow, and gray. From color nine on, this vector is simply
recycled.

Alternatively to opening, printing and closing a device, it is also possible
to print an existing plot in the graphics window to a device using dev.copy()
and dev.print(); see the corresponding manual page for more information.

Mathematical annotation of plots

A feature that particularly adds to R’s strengths when it comes to publication-
quality graphics is its ability to add mathematical annotation to plots (Murrell
and Ihaka 2000). An S expression containing a mathematical expression can
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Fig. 2.3. Scatterplot written on a PDF device.

be passed to plotting functions without being evaluated; instead it is pro-
cessed for annotation of the graph created. Readers familiar with LATEX will
have no difficulties in adapting to the syntax; for details, see ?plotmath and
demo("plotmath"). As an example, Figure 2.4 provides a plot of the density
of the standard normal distribution (provided by dnorm() in R), including its
mathematical definition

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

It is obtained via

R> curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3,

+ main = "Density of the standard normal distribution")

R> text(-5, 0.3, expression(f(x) == frac(1, sigma ~~

+ sqrt(2*pi)) ~~ e^{-frac((x - mu)^2, 2*sigma^2)}), adj = 0)

The function curve() plots the density function dnorm(), and then text()
is used to add the expression() containing the formula to the plot. This
example concludes our brief introduction to R graphics.
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Fig. 2.4. Plot of the density of the standard normal distribution, including its
mathematical expression.

2.8 Exploratory Data Analysis with R

In this section, we shall briefly illustrate some standard exploratory data anal-
ysis techniques. Readers seeking a more detailed introduction to basic statis-
tics using R are referred to Dalgaard (2002).

We reconsider the CPS1985 data taken from Berndt (1991), which were
encountered in our introductory R session when illustrating several regression
methods. After making the data available via data(), some basic information
can be queried by str():

R> data("CPS1985")

R> str(CPS1985)

'data.frame': 533 obs. of 11 variables:
$ wage : num 4.95 6.67 4.00 7.50 13.07 ...
$ education : int 9 12 12 12 13 10 12 16 12 12 ...
$ experience: int 42 1 4 17 9 27 9 11 9 17 ...
$ age : int 57 19 22 35 28 43 27 33 27 35 ...
$ ethnicity : Factor w/ 3 levels "cauc","hispanic",..: 1 1 1..
$ region : Factor w/ 2 levels "south","other": 2 2 2 2 2 ..
$ gender : Factor w/ 2 levels "male","female": 2 1 1 1 1 ..
$ occupation: Factor w/ 6 levels "worker","technical",..: 1 ..
$ sector : Factor w/ 3 levels "manufacturing",..: 1 1 3 3..
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$ union : Factor w/ 2 levels "no","yes": 1 1 1 1 2 1 1 1..
$ married : Factor w/ 2 levels "no","yes": 2 1 1 2 1 1 1 2..

This reveals that this “data.frame” object comprises 533 observations on
11 variables, including the numerical variable wage, the integer variables
education, experience, and age, and seven factors, each comprising two
to six levels.

Instead of using the list-type view that str() provides, it is often useful
to inspect the top (or the bottom) of a data frame in its rectangular repre-
sentation. For this purpose, there exist the convenience functions head() and
tail(), returning (by default) the first and last six rows, respectively. Thus

R> head(CPS1985)

wage education experience age ethnicity region gender
1 4.95 9 42 57 cauc other female
2 6.67 12 1 19 cauc other male
3 4.00 12 4 22 cauc other male
4 7.50 12 17 35 cauc other male
5 13.07 13 9 28 cauc other male
6 4.45 10 27 43 cauc south male
occupation sector union married

1 worker manufacturing no yes
2 worker manufacturing no no
3 worker other no no
4 worker other no yes
5 worker other yes no
6 worker other no no

Another useful way of gaining a quick overview of a data set is to use the
summary() method for data frames, which provides a summary for each of the
variables. As the type of the summary depends on the class of the respective
variable, we inspect the summary() methods separately for various variables
from CPS1985 below. Hence, the output of summary(CPS1985) is omitted here.

As the CPS1985 data are employed repeatedly in the following, we avoid
lengthy commands such as CPS1985$education by attaching the data set.
Also, to compactify subsequent output, we abbreviate two levels of occupation
from "technical" to "techn" and from "management" to "mgmt".

R> levels(CPS1985$occupation)[c(2, 6)] <- c("techn", "mgmt")

R> attach(CPS1985)

Now variables are accessible by their names.
We proceed by illustrating exploratory analysis of single as well as pairs of

variables, distinguishing among numerical variables, factors, and combinations
thereof. We begin with the simplest kind, a single numerical variable.
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One numerical variable

We will first look at the distribution of wages in the sample:

R> summary(wage)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 5.25 7.78 9.03 11.20 44.50

This provides Tukey’s five-number summary plus the mean wage. The mean
and median could also have been obtained using

R> mean(wage)

[1] 9.031

R> median(wage)

[1] 7.78

and fivenum() computes the five-number summary. Similarly, min() and
max() would have yielded the minimum and the maximum. Arbitrary quan-
tiles can be computed by quantile().

For measures of spread, there exist the functions

R> var(wage)

[1] 26.43

R> sd(wage)

[1] 5.141

returning the variance and the standard deviation, respectively.
Graphical summaries are also helpful. For numerical variables such as wage,

density visualizations (via histograms or kernel smoothing) and boxplots are
suitable. Boxplots will be considered below in connection with two-variable
displays. Figure 2.5, obtained via

R> hist(wage, freq = FALSE)

R> hist(log(wage), freq = FALSE)

R> lines(density(log(wage)), col = 4)

shows the densities of wage and its logarithm (that is, areas under curves
equal 1, resulting from freq = FALSE; otherwise absolute frequencies would
have been depicted). Further arguments allow for fine tuning of the selection
of the breaks in the histogram. Added to the histogram in the right panel is a
kernel density estimate obtained using density(). Clearly, the distribution of
the logarithms is less skewed than that of the raw data. Note that density()
only computes the density coordinates and does not provide a plot; hence the
estimate is added via lines().
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Fig. 2.5. Histograms of wages (left panel) and their logarithms with superimposed
density (right panel).

One categorical variable

For categorical data, it makes no sense to compute means and variances; in-
stead one needs a table indicating the frequencies with which the categories oc-
cur. If R is told that a certain variable is categorical (by making it a“factor”),
it automatically chooses an appropriate summary:

R> summary(occupation)

worker techn services office sales mgmt
155 105 83 97 38 55

This could also have been computed by table(occupation). If relative in-
stead of absolute frequencies are desired, there exists the function
prop.table():

R> tab <- table(occupation)

R> prop.table(tab)

occupation
worker techn services office sales mgmt
0.2908 0.1970 0.1557 0.1820 0.0713 0.1032

Categorical variables are typically best visualized by barplots. If majorities
are to be brought out, pie charts might also be useful. Thus

R> barplot(tab)

R> pie(tab)
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Fig. 2.6. Bar plot and pie chart of occupation.

provides Figure 2.6. Note that both functions expect the tabulated fre-
quencies as input. In addition, calling plot(occupation) is equivalent to
barplot(table(occupation)).

Two categorical variables

The relationship between two categorical variables is typically summarized by
a contingency table. This can be created either by xtabs(), a function with
a formula interface, or by table(), a function taking an arbitrary number of
variables for cross-tabulation (and not only a single one as shown above).

We consider the factors occupation and gender for illustration:

R> xtabs(~ gender + occupation, data = CPS1985)

occupation
gender worker techn services office sales mgmt
male 126 53 34 21 21 34
female 29 52 49 76 17 21

which can equivalently be created by table(gender, occupation). A simple
visualization is a mosaic plot (Hartigan and Kleiner 1981; Friendly 1994),
which can be seen as a generalization of stacked barplots. The plot given in
Figure 2.7 (also known as a “spine plot”, a certain variant of the standard
mosaic display), obtained via

R> plot(gender ~ occupation, data = CPS1985)

shows that the proportion of males and females changes considerably
over the levels of occupation. In addition to the shading that brings out the
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Fig. 2.7. Mosaic plot (spine plot) of gender versus occupation.

conditional distribution of gender given occupation, the widths of the bars
visualize the marginal distribution of occupation, indicating that there are
comparatively many workers and few salespersons.

Two numerical variables

We exemplify the exploratory analysis of the relationship between two numer-
ical variables by using wage and education.

A summary measure for two numerical variables is the correlation coeffi-
cient, implemented in the function cor(). However, the standard (Pearson)
correlation coefficient is not necessarily meaningful for positive and heavily
skewed variables such as wage. We therefore also compute a nonparametric
variant, Spearman’s %, which is available in cor() as an option.

R> cor(log(wage), education)

[1] 0.379

R> cor(log(wage), education, method = "spearman")

[1] 0.3798

Both measures are virtually identical and indicate only a modest amount of
correlation here, see also the corresponding scatterplot in Figure 2.8:

R> plot(log(wage) ~ education)
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Fig. 2.8. Scatterplot of wages (in logs) versus education.

One numerical and one categorical variable

It is common to have both numerical and categorical variables in a data frame.
For example, here we have wage and gender, and there might be some interest
in the distribution of wage by gender. A suitable function for numerical sum-
maries is tapply(). It applies, for a numerical variable as its first argument
and a (list of) categorical variable(s) as its second argument, the function
specified as the third argument. Hence, mean wages conditional on gender are
available using

R> tapply(log(wage), gender, mean)

male female
2.165 1.935

Using similar commands, further descriptive measures or even entire sum-
maries (just replace mean by summary) may be computed.

Suitable graphical displays are parallel boxplots and quantile-quantile
(QQ) plots, as depicted in Figure 2.9. Recall that a boxplot (or “box-and-
whiskers plot”) is a coarse graphical summary of an empirical distribution.
The box indicates “hinges” (approximately the lower and upper quartiles) and
the median. The “whiskers” (lines) indicate the largest and smallest observa-
tions falling within a distance of 1.5 times the box size from the nearest hinge.
Any observations falling outside this range are shown separately and would
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Fig. 2.9. Boxplot and QQ plot of wages stratified by gender.

be considered extreme or outlying (in an approximately normal sample). Note
that there are several variants of boxplots in the literature.

The commands plot(y ~ x) and boxplot(y ~ x) both yield the same
parallel boxplot if x is a “factor”; thus

R> plot(log(wage) ~ gender)

gives the left panel of Figure 2.9. It shows that the overall shapes of both
distributions are quite similar and that males enjoy a substantial advantage,
especially in the medium range. The latter feature is also brought out by the
QQ plot (right panel) resulting from

R> mwage <- subset(CPS1985, gender == "male")$wage

R> fwage <- subset(CPS1985, gender == "female")$wage

R> qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage),

+ xaxs = "i", yaxs = "i", xlab = "male", ylab = "female")

R> abline(0, 1)

where almost all points are below the diagonal (corresponding to identical
distributions in both samples). This indicates that, for most quantiles, male
wages are typically higher than female wages.

We end this section by detaching the data:

R> detach(CPS1985)
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2.9 Exercises

1. Create a square matrix, say A, with entries aii = 2, i = 2, . . . , n − 1,
a11 = ann = 1, ai,i+1 = ai,i−1 = −1, and aij = 0 elsewhere. (Where does
this matrix occur in econometrics?)

2. “PARADE”is the Sunday newspaper magazine supplementing the Sunday
or weekend edition of some 500 daily newspapers in the United States of
America. An important yearly feature is an article providing information
on some 120–150 “randomly” selected US citizens, indicating their pro-
fession, hometown and state, and their yearly earnings. The Parade2005
data contain the 2005 version, amended by a variable indicating celebrity
status (motivated by substantial oversampling of celebrities in these data).
For the Parade2005 data:
(a) Determine the mean earnings in California. Explain the result.
(b) Determine the number of individuals residing in Idaho. (What does

this say about the data set?)
(c) Determine the mean and the median earnings of celebrities. Comment.
(d) Obtain boxplots of log(earnings) stratified by celebrity. Com-

ment.
3. For the Parade2005 data of the preceding exercise, obtain a kernel den-

sity estimate of the earnings for the full data set. It will be necessary
to transform the data to logarithms (why?). Comment on the result. Be
sure to try out some arguments to density(), in particular the plug-in
bandwidth bw.

4. Consider the CPS1988 data, taken from Bierens and Ginther (2001).
(These data will be used for estimating an earnings equation in the next
chapter.)
(a) Obtain scatterplots of the logarithm of the real wage (wage) versus

experience and versus education.
(b) In fact, education corresponds to years of schooling and therefore

takes on only a limited number of values. Transform education into
a factor and obtain parallel boxplots of wage stratified by the levels
of education. Repeat for experience.

(c) The data set contains four additional factors, ethnicity, smsa,
region, and parttime. Obtain suitable graphical displays of log(wage)
versus each of these factors.
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Linear Regression

The linear regression model, typically estimated by ordinary least squares
(OLS), is the workhorse of applied econometrics. The model is

yi = x>i β + εi, i = 1, . . . , n,

or, in matrix form,
y = Xβ + ε,

where y is an n×1 vector containing the dependent variable, xi is the (column)
vector of covariates for observation i—thus X = (x1, . . . , xn)> is the n×k re-
gressor matrix, or model matrix (whose columns contain the regressors)—and
β is a k×1 vector of regression coefficients. Furthermore, ε is the n×1 vector
of disturbances (or error terms). Assumptions on the error terms depend on
the context. For cross sections, E(ε|X) = 0 (exogeneity) and Var(ε|X) = σ2I
(conditional homoskedasticity and lack of correlation) are common. However,
for time series data, exogeneity is too strong an assumption, and it is com-
monly replaced by predeterminedness; i.e., E(εj |xi) = 0, i ≤ j. Methods for
checking these assumptions are discussed in Chapter 4.

We assume that readers are familiar with the basics of the linear regression
model, say at the level of Baltagi (2002) or Greene (2003). To fix notation, let
β̂ = (X>X)−1X>y denote the familiar OLS estimator of β. The correspond-
ing fitted values are ŷ = Xβ̂, the residuals are ε̂ = y− ŷ, and the residual sum
of squares (RSS) is ε̂>ε̂.

In R, models are typically fitted by calling a model-fitting function, in this
case lm(), with a “formula” object describing the model and a “data.frame”
object containing the variables used in the formula. Most fitting functions,
including lm(), take further arguments, providing a more detailed description
of the model or control parameters for the fitting algorithm. By subsuming
such further arguments in ..., a prototypical call looks like

fm <- lm(formula, data, ...)

C. Kleiber, A. Zeileis, Applied Econometrics with R,
DOI: 10.1007/978-0-387-77318-6 3, © Springer Science+Business Media, LLC 2008
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returning a fitted-model object, here stored in fm. This fitted model can sub-
sequently be printed, summarized, or visualized; fitted values and residuals
can be extracted or predictions on new data computed. Methods for suitable
generic functions such as summary(), residuals(), or predict(), etc., are
available for all standard models.

Many models can be seen as extensions of the linear regression model.
Analogously, the R function lm() for fitting linear models is a prototypical
fitting function–many other model fitters have similar interfaces and can be
used in virtually the same way. Hence, a good grasp of lm() and the associated
methods is essential for all subsequent chapters. Thus, this chapter begins with
simple linear regression to introduce the main fitting function and associated
generic functions. This is followed by multiple regression and partially linear
models. Some fine points of the formula notation, mainly in connection with
factors and interactions, are discussed in a starred section; it may be skipped
at first reading. The remaining sections consider special types of data, namely
time series and panel data, and also systems of linear equations.

3.1 Simple Linear Regression

We begin with a small example to provide a feel for the process. The data
set Journals is taken from Stock and Watson (2007). As noted in the pre-
ceding chapters, the data provide some information on subscriptions to eco-
nomics journals at US libraries for the year 2000. Bergstrom (2001) ar-
gues that commercial publishers are charging excessive prices for academic
journals and also suggests ways that economists can deal with this prob-
lem. We refer the interested reader to Bergstrom’s journal pricing page, cur-
rently at http://www.econ.ucsb.edu/~tedb/Journals/jpricing.html, for
further information.

The Journals data frame contains 180 observations (the journals) on 10
variables, among them the number of library subscriptions (subs), the library
subscription price (price), and the total number of citations for the journal
(citations). Here, we require only some of the variables, and hence we first
generate a smaller data frame for compactness. It contains the relevant vari-
ables as well as a transformed variable, the price per citation. The data can
be loaded, transformed, and summarized via

R> data("Journals")

R> journals <- Journals[, c("subs", "price")]

R> journals$citeprice <- Journals$price/Journals$citations

R> summary(journals)

subs price citeprice
Min. : 2 Min. : 20 Min. : 0.00522
1st Qu.: 52 1st Qu.: 134 1st Qu.: 0.46450
Median : 122 Median : 282 Median : 1.32051

http://www.econ.ucsb.edu/~tedb/Journals/jpricing.html
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Fig. 3.1. Scatterplot of the journals data with least-squares line.

Mean : 197 Mean : 418 Mean : 2.54845
3rd Qu.: 268 3rd Qu.: 541 3rd Qu.: 3.44017
Max. :1098 Max. :2120 Max. :24.45946

In view of the wide range of the variables, combined with a considerable
amount of skewness, it is useful to take logarithms.

The goal is to estimate the effect of the price per citation on the number of
library subscriptions. To explore this issue quantitatively, we will fit a linear
regression model,

log(subs)i = β1 + β2 log(citeprice)i + εi.

The primary function for this is lm(), which estimates a linear regression using
ordinary least squares (OLS). As motivated above, a linear model is fitted by
supplying a formula that describes the model plus a data frame.

Here, the formula of interest is log(subs) ~ log(citeprice); i.e.,
log(subs) explained by log(citeprice). This can be used both for plot-
ting and for model fitting:

R> plot(log(subs) ~ log(citeprice), data = journals)

R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals)

R> abline(jour_lm)

The resulting plot is shown in Figure 3.1. abline() extracts the coefficients
of the fitted model and adds the corresponding regression line to the plot.
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The right-hand side (RHS) of the formula needs only to specify the vari-
able log(citeprice) since a constant term is included by default. It may be
added explicitly using 1 + log(citeprice), which, however, does not make a
difference. Recall that operators such as + on the RHS have the special mean-
ing of the Wilkinson-Rogers notation (see Section 2.4), not their arithmetical
meaning. Further details on formulas in fitting functions are provided in the
following sections. If the argument data is specified, it gives a data frame
from which variables are selected ahead of the search path. We recommend to
always use this argument.

The function lm() returns a fitted-model object, here stored as jour_lm.
It is an object of class “lm”

R> class(jour_lm)

[1] "lm"

which is essentially a list; the names of its components can be queried via

R> names(jour_lm)

[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"

Thus, jour_lm consists of 12 components, among them coefficients,
residuals, and call (the function call), plus various quantities computed
when fitting the model, such as the rank of the model matrix. Typing
str(jour_lm) provides a more detailed view. As for any other list, all com-
ponents are directly accessible using, for example, jour_lm$rank. However,
for most tasks, there is no need to do so since generic functions are available
that extract quantities of interest. An overview of generics that have methods
for “lm” objects is given in Table 3.1.

The output from summary() is self-explanatory. For our model, we obtain

R> summary(jour_lm)

Call:
lm(formula = log(subs) ~ log(citeprice), data = journals)

Residuals:
Min 1Q Median 3Q Max

-2.7248 -0.5361 0.0372 0.4662 1.8481

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.7662 0.0559 85.2 <2e-16
log(citeprice) -0.5331 0.0356 -15.0 <2e-16
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Table 3.1. Generic functions for fitted (linear) model objects.

Function Description

print() simple printed display
summary() standard regression output

coef() (or coefficients()) extracting the regression coefficients
residuals() (or resid()) extracting residuals

fitted() (or fitted.values()) extracting fitted values
anova() comparison of nested models

predict() predictions for new data
plot() diagnostic plots

confint() confidence intervals for the regression coefficients
deviance() residual sum of squares

vcov() (estimated) variance-covariance matrix
logLik() log-likelihood (assuming normally distributed errors)

AIC() information criteria including AIC, BIC/SBC (assuming
normally distributed errors)

Residual standard error: 0.75 on 178 degrees of freedom
Multiple R-squared: 0.557, Adjusted R-squared: 0.555
F-statistic: 224 on 1 and 178 DF, p-value: <2e-16

This gives a brief numerical summary of the residuals as well as a table of
the estimated regression coefficients along with their standard errors. Here,
we obtain that the intercept of the fitted line is 4.7662, with a standard error
of 0.0559, and the estimated slope is −0.5331, with a standard error of 0.0356.
Also included are t statistics (the ratio of the coefficient estimate and its stan-
dard error) and p values corresponding to individual tests of the hypothesis
“the true coefficient equals 0”. Here, both p values are tiny, indicating that
the regressor explains a substantial part of the variation in the data and that
the intercept is significantly different from zero, at any resonable level. Also,
two versions of R2—the standard multiple R2 and Theil’s adjusted R2—tell
us that the model explains more than 50% of the variation in the data, a
reasonable amount for cross sections. Finally, the F statistic corresponds to
an F test of the hypothesis that all regressors (excluding the intercept term)
are jointly significant. Here, with just a single regressor, the p value is of
course identical to that of the t test for the coefficient of log(citeprice),
the F statistic being the squared value of the t statistic. Both indicate that
the regressor log(citeprice) is highly significant.

It is instructive to take a brief look at what the summary() method returns
for a fitted “lm” object:

R> jour_slm <- summary(jour_lm)

R> class(jour_slm)
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[1] "summary.lm"

R> names(jour_slm)

[1] "call" "terms" "residuals"
[4] "coefficients" "aliased" "sigma"
[7] "df" "r.squared" "adj.r.squared"
[10] "fstatistic" "cov.unscaled"

This indicates that the “summary.lm” object jour_slm is a list whose compo-
nents are quite similar to those of “lm” objects but now contain the summary
information; e.g., the adjusted R2 in jour_slm$adj.r.squared or the full
matrix of coefficients, standard errors, t statistics, and p values in

R> jour_slm$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7662 0.05591 85.25 2.954e-146
log(citeprice) -0.5331 0.03561 -14.97 2.564e-33

Again, a more complete overview of the information stored in jour_slm may
be obtained by calling str(jour_slm).

Analysis of variance

Some of the information provided in the summary is also available using differ-
ent extractor functions. For example, the information appearing at the bottom
can also be summarized in the form of an analysis of variance (ANOVA) table:

R> anova(jour_lm)

Analysis of Variance Table

Response: log(subs)
Df Sum Sq Mean Sq F value Pr(>F)

log(citeprice) 1 125.9 125.9 224 <2e-16
Residuals 178 100.1 0.6

The ANOVA table breaks the sum of squares about the mean (for the de-
pendent variable, here log(subs)) into two parts: a part that is accounted
for by a linear function of log(citeprice) and a part attributed to residual
variation. The total sum of squares (about the mean of log(subs)) is 225.99
(= 125.93 + 100.06). Including the regressor log(citeprice) reduced this by
125.93, yielding a residual sum of squares (RSS) equal to 100.06. For compar-
ing the reduction with the RSS, it is best to look at the column Mean Sq. The
mean square of the reduction was 125.93 (equal to the raw sum of squares
since there is only one regressor), yielding 0.56 as the mean square of the
residual. The ratio of these quantities is 224.0369, the value of the F statistic
for testing the hypothesis H0 : β2 = 0. The associated p value is tiny, again
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indicating that the regressor log(citeprice) is highly significant. Of course,
this is exactly the F test given in the summary above, which in turn is equiva-
lent to the t test, as noted before. The column Df provides degrees of freedom
(df): 1 df is attributed to the regressor log(citeprice), while 180− 2 = 178
are attributed to the residuals (two regression coefficients were estimated).

The anova() method not only can produce an ANOVA table for a single
“lm” object, but can also be used to compare several nested “lm” models using
F tests. This will be illustrated in the next section.

Point and interval estimates

To extract the estimated regression coefficients β̂, the function coef() can be
used:

R> coef(jour_lm)

(Intercept) log(citeprice)
4.7662 -0.5331

It is good practice to give a measure of error along with every estimate. One
way to do this is to provide a confidence interval. This is available via the
extractor function confint(); thus

R> confint(jour_lm, level = 0.95)

2.5 % 97.5 %
(Intercept) 4.6559 4.8765
log(citeprice) -0.6033 -0.4628

The default level is 95%, so specification of level = 0.95 was not really
needed here.

Prediction

Often a regression model is used for prediction. Recall that there are two
types of predictions: the prediction of points on the regression line and the
prediction of a new data value. The standard errors of predictions for new
data take into account both the uncertainty in the regression line and the
variation of the individual points about the line. Thus, the prediction interval
for prediction of new data is larger than that for prediction of points on the
line. The function predict() provides both types of standard errors.

For the journals data, we might be interested in the expected number of
subscriptions for a journal whose price per citation equals 2.11 (this roughly
corresponds to the value for the Journal of Applied Econometrics, a journal
that is owned by a commercial publisher and fairly expensive) or in the number
of library subscriptions itself. Both types of prediction intervals are given by
the following code:
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R> predict(jour_lm, newdata = data.frame(citeprice = 2.11),

+ interval = "confidence")

fit lwr upr
1 4.368 4.247 4.489

R> predict(jour_lm, newdata = data.frame(citeprice = 2.11),

+ interval = "prediction")

fit lwr upr
1 4.368 2.884 5.853

Of course, the point estimates (denoted fit) are identical; only the inter-
vals differ. Recall that these intervals are based on the t distribution with
178 df (residual df in our case) and are exact under the assumption of (condi-
tionally) normally distributed disturbances. By default, no intervals are com-
puted and the data used for fitting are also used as newdata, so that both
predict(jour_lm) and fitted(jour_lm) compute the fitted values ŷ.

The prediction intervals can also be used for computing and visualizing
confidence bands. In the following code chunk, we set up an auxiliary variable
lciteprice with equidistant points on the scale of log(citeprice), then
compute the corresponding prediction intervals, and finally visualize them
using plot() and lines(), which here adds the lines for the fitted values and
the confidence bands. The resulting plot is shown in Figure 3.2.

R> lciteprice <- seq(from = -6, to = 4, by = 0.25)

R> jour_pred <- predict(jour_lm, interval = "prediction",

+ newdata = data.frame(citeprice = exp(lciteprice)))

R> plot(log(subs) ~ log(citeprice), data = journals)

R> lines(jour_pred[, 1] ~ lciteprice, col = 1)

R> lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2)

R> lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2)

Plotting“lm”objects

The plot() method for class lm() provides six types of diagnostic plots, four
of which are shown by default. Figure 3.3 depicts the result for the journals
regression. We set the graphical parameter mfrow to c(2, 2) using the par()
function, creating a 2× 2 matrix of plotting areas to see all four plots simul-
taneously:

R> par(mfrow = c(2, 2))

R> plot(jour_lm)

R> par(mfrow = c(1, 1))

The first provides a graph of residuals versus fitted values, perhaps the most
familiar of all diagnostic plots for residual analysis. The second is a QQ plot
for normality. Its curvature (or rather its lack thereof) shows that the residuals
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Fig. 3.2. Scatterplot with prediction intervals for the journals data.

more or less conform with normality. Plots three and four are a scale-location
plot and a plot of standardized residuals against leverages, respectively. Their
discussion will be postponed to Chapter 4. For the moment, we just note that
plot(jour_lm) already provides some indication of the fit of the model.

In our case, there appear to be difficulties with observations “MEPiTE”,
“RoRPE”, “IO”, “BoIES”, and“Ecnmt”, corresponding to the journals MOCT-
MOST: Economic Policy in Transitional Economics, Review of Radical Polit-
ical Economics, International Organization, Bulletin of Indonesian Economic
Studies, and Econometrica, each of which is singled out in at least one of the
four plots. A closer look reveals that all these journals are not overly expen-
sive, they are unusual in that they are either heavily cited (Econometrica),
resulting in a low price per citation, or have only a few citations, resulting in
a rather high price per citation. Incidentally, all plots may be accessed indi-
vidually using, for example, plot(jour_lm, which = 2), if only the QQ plot
is desired.

Testing a linear hypothesis

The standard regression output as provided by summary() only indicates in-
dividual significance of each regressor and joint significance of all regressors in
the form of t and F statistics, respectively. Often it is necessary to test more
general hypotheses. This is possible using the function linear.hypothesis()
from the car package, the package accompanying Fox (2002). (car will
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Fig. 3.3. Diagnostic plots for the journals data.

automatically be installed when installing AER, and it will also automati-
cally be loaded when loading AER.) Recall that a linear hypothesis is of the
general form

Rβ = r, (3.1)

where β is the k× 1 vector of regression coefficients, R is a q× k matrix, and
r is a q × 1 vector. (In this section, k = 2.)

Suppose we want to test, for the journals data, the hypothesis that the
elasticity of the number of library subscriptions with respect to the price per
citation equals −0.5. Since this corresponds to the linear hypothesis H0 : β2 =
−0.5, we may proceed as follows: linear.hypothesis() requires a fitted-
model object and a specification of the linear hypothesis from (3.1). This can
be simply specified in a character vector:
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R> linear.hypothesis(jour_lm, "log(citeprice) = -0.5")

Linear hypothesis test

Hypothesis:
log(citeprice) = -0.5

Model 1: log(subs) ~ log(citeprice)
Model 2: restricted model

Res.Df RSS Df Sum of Sq F Pr(>F)
1 178 100.1
2 179 100.5 -1 -0.5 0.86 0.35

Alternatively, the hypothesis.matrix R and the rhs vector r could be
specified explicitly via linear.hypothesis(jour_lm, hypothesis.matrix
= c(0, 1), rhs = -0.5), leading to equivalent results. The output of
linear.hypothesis() is similar to that of anova(): it gives the models along
with their degrees of freedom (Df), RSS, and associated F statistic, here sug-
gesting that the elasticity of interest is not substantially different from −0.5.

3.2 Multiple Linear Regression

In economics, most regression analyses comprise more than a single regressor.
Often there are regressors of a special type, usually referred to as “dummy
variables” in econometrics, which are used for coding categorical variables.
Furthermore, it is often also necessary to transform regressors or dependent
variables. To illustrate how to deal with this in R, we consider a standard
task in labor economics, estimation of a wage equation in semilogarithmic
form. Here, we employ the CPS1988 data frame collected in the March 1988
Current Population Survey (CPS) by the US Census Bureau and analyzed
by Bierens and Ginther (2001). One reason for choosing this data set, com-
prising 28,155 observations, was to provide an “industry-strength” example
instead of the common textbook examples containing at most a few hundred
observations. These are cross-section data on males aged 18 to 70 with pos-
itive annual income greater than US$ 50 in 1992 who are not self-employed
or working without pay. Wages are deflated by the deflator of personal con-
sumption expenditures for 1992. A summary of the data set can be obtained
as usual:

R> data("CPS1988")

R> summary(CPS1988)

wage education experience ethnicity
Min. : 50 Min. : 0.0 Min. :-4.0 cauc:25923
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1st Qu.: 309 1st Qu.:12.0 1st Qu.: 8.0 afam: 2232
Median : 522 Median :12.0 Median :16.0
Mean : 604 Mean :13.1 Mean :18.2
3rd Qu.: 783 3rd Qu.:15.0 3rd Qu.:27.0
Max. :18777 Max. :18.0 Max. :63.0
smsa region parttime
no : 7223 northeast:6441 no :25631
yes:20932 midwest :6863 yes: 2524

south :8760
west :6091

Here, wage is the wage in dollars per week, education and experience
are measured in years, and ethnicity is a factor with levels Caucasian
("cauc") and African-American ("afam"). There are three further factors,
smsa, region, and parttime, indicating residence in a standard metropolitan
statistical area (SMSA), the region within the United States of America, and
whether the individual works part-time. Note that the CPS does not provide
actual work experience. It is therefore customary to compute experience as
age - education - 6 (as was done by Bierens and Ginther); this may be
considered potential experience. This quantity may become negative, which
explains the 438 observations with this property in the CPS1988 data.

The model of interest is

log(wage) = β1 + β2 experience + β3 experience
2

+β4 education + β5 ethnicity + ε (3.2)

which can be fitted in R using

R> cps_lm <- lm(log(wage) ~ experience + I(experience^2) +

+ education + ethnicity, data = CPS1988)

The formula in the lm() call takes into account the semilogarithmic form and
also specifies the squared regressor experience^2. It has to be insulated by
I() so that the operator ^ has its original arithmetic meaning (and not its
meaning as a formula operator for specifying interactions; see below). The
summary

R> summary(cps_lm)

Call:
lm(formula = log(wage) ~ experience + I(experience^2) +
education + ethnicity, data = CPS1988)

Residuals:
Min 1Q Median 3Q Max

-2.943 -0.316 0.058 0.376 4.383
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.321395 0.019174 225.4 <2e-16
experience 0.077473 0.000880 88.0 <2e-16
I(experience^2) -0.001316 0.000019 -69.3 <2e-16
education 0.085673 0.001272 67.3 <2e-16
ethnicityafam -0.243364 0.012918 -18.8 <2e-16

Residual standard error: 0.584 on 28150 degrees of freedom
Multiple R-squared: 0.335, Adjusted R-squared: 0.335
F-statistic: 3.54e+03 on 4 and 28150 DF, p-value: <2e-16

reveals that all coefficients have the expected sign, and the corresponding vari-
ables are highly significant (not surprising in a sample as large as the present
one). Specifically, according to this specification, the return on education is
8.57% per year.

Dummy variables and contrast codings

Note that the level "cauc" of ethnicity does not occur in the output, as it
is taken as the reference category. Hence, there is only one ethnicity effect,
which gives the difference in intercepts between the "afam" and the "cauc"
groups. In statistical terminology, this is called a “treatment contrast” (where
the “treatment” "afam" is compared with the reference group "cauc") and
corresponds to what is called a “dummy variable” (or “indicator variable”) for
the level "afam" in econometric jargon.

In R, (unordered) factors are automatically handled like this when they
are included in a regression model. Internally, R produces a dummy variable
for each level of a factor and resolves the resulting overspecification of the
model (if an intercept or another factor is included in the model) by applying
“contrasts”; i.e., a constraint on the underlying parameter vector. Contrasts are
attributed to each factor and can be queried and changed by contrasts().
The default for unordered factors is to use all dummy variables except the
one for the reference category ("cauc" in the example above). This is typically
what is required for fitting econometric regression models, and hence changing
the contrasts is usually not necessary.

The function I()

Some further details on the specification of regression models via Wilkinson-
Rogers type formulas in R are in order. We have already seen that the arith-
metic operator + has a different meaning in formulas: it is employed to add
regressors (main effects). Additionally, the operators :, *, /, ^ have special
meanings, all related to the specification of interaction effects (see the follow-
ing section).
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To be able to use the arithmetic operators in their original meaning in a
formula, they can be protected from the formula interpretation by insulating
them inside a function, as in log(x1 * x2). If the problem at hand does
not require a transformation, R’s I() function can be used, which returns
its argument “as is”. This was used for computing experience squared in the
regression above.

Comparison of models

With more than a single explanatory variable, it is interesting to test for
the relevance of subsets of regressors. For any two nested models, this can
be done using the function anova(), which we already encountered in the
preceding section. For example, it might be desired to test for the relevance
of the variable ethnicity; i.e., whether there is a difference in the average
log-wage (controlling for experience and education) between Caucasian and
African-American men. As we have used treatment contrasts for ethnicity,
the significance of this effect can already be read off the summary shown
above. However, to illustrate the general procedure for model comparisons,
we explicitly fit the model without ethnicity and then compare both models
using anova():

R> cps_noeth <- lm(log(wage) ~ experience + I(experience^2) +

+ education, data = CPS1988)

R> anova(cps_noeth, cps_lm)

Analysis of Variance Table

Model 1: log(wage) ~ experience + I(experience^2) + education
Model 2: log(wage) ~ experience + I(experience^2) +
education + ethnicity
Res.Df RSS Df Sum of Sq F Pr(>F)

1 28151 9720
2 28150 9599 1 121 355 <2e-16

This reveals that the effect of ethnicity is significant at any reasonable level.
The usage of anova() shown above is slightly different from the usage

we illustrated in the previous section. If several fitted models are supplied
to anova(), the associated RSS are compared (in the order in which the
models are entered). If only a single model is passed to anova(), as in the
preceding section, then it sequentially adds the terms in the order specified
by the formula (starting from the trivial model with only an intercept) and
compares the associated RSS:

R> anova(cps_lm)

Analysis of Variance Table
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Response: log(wage)
Df Sum Sq Mean Sq F value Pr(>F)

experience 1 840 840 2462 <2e-16
I(experience^2) 1 2249 2249 6597 <2e-16
education 1 1620 1620 4750 <2e-16
ethnicity 1 121 121 355 <2e-16
Residuals 28150 9599 0.34

The next to last line in this ANOVA table is equivalent to the direct compar-
ison of cps_lm and cps_noeth.

There is also a more elegant way to fit the latter model given the former.
It is not necessary to type in the model formula again. Instead, the update()
method for “lm”objects can be used. It takes as its arguments a fitted“lm”ob-
ject and the changes in the model formula relative to the original specification.
Hence

R> cps_noeth <- update(cps_lm, formula = . ~ . - ethnicity)

also yields the same fitted-model object cps_noeth, which can then be used
in anova() as shown above. The expression . ~ . - ethnicity specifies to
take the LHS and RHS in the formula (signaled by the “.”), only removing
ethnicity on the RHS.

Finally, the updating via update() and the model comparison via anova()
can be done in one step if the function waldtest() from the package lmtest
(Zeileis and Hothorn 2002) is used. The package is loaded automatically by
AER, and waldtest() can be used as in

R> waldtest(cps_lm, . ~ . - ethnicity)

Wald test

Model 1: log(wage) ~ experience + I(experience^2) +
education + ethnicity

Model 2: log(wage) ~ experience + I(experience^2) + education
Res.Df Df F Pr(>F)

1 28150
2 28151 -1 355 <2e-16

By default, this produces the same F test as anova() but does not report the
associated RSS. The reason is that waldtest() can also perform quasi-F tests
in situations where errors are potentially heteroskedastic. This is described in
more detail in Chapter 4.

3.3 Partially Linear Models

Quadratic terms in experience are common in wage equations; however, given
the size of the CPS1988 data, it may be worthwhile to model the role of this
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variable using more flexible tools. In R, this is particularly easy, and so we
briefly consider a semiparametric extension, the partially linear model

log(wage) = β1 + g(experience) + β2 education + β3 ethnicity + ε

Here, g is an unknown function to be estimated from the data, and we use
regression splines for this task (see, e.g., Hastie, Tibshirani, and Friedman
2001). In R, splines are available in the package splines (part of the base R
distribution and automatically loaded with AER). Among the many available
types, B splines are computationally convenient, and the function providing
them is bs(). It can directly be used in lm(), and so fitting the desired model
is as easy as

R> cps_plm <- lm(log(wage) ~ bs(experience, df = 5) +

+ education + ethnicity, data = CPS1988)

We omit the summary, as the coefficients on the spline basis are not easily
interpreted, and only note that the return on education for this specification
is 8.82% per year. There are a couple of possibilities for using bs(): one can
either specify the degree of the piecewise polynomial (defaulting to 3) and the
knots by hand or supply the parameter df, which selects the remaining ones.
The expression bs(experience, df = 5) thus internally generates regres-
sors, namely piecewise cubic polynomials evaluated at the observations per-
taining to experience, with the implied 5−3 = 2 interior knots evenly spaced
and therefore located at the 33.33% and 66.67% quantiles of experience.

The choice of df = 5 was made based on model selection in terms of
the Schwarz criterion (BIC). The following code considers B splines with df
ranging from 3 through 10, suggesting that df = 5 is appropriate for the data
at hand:

R> cps_bs <- lapply(3:10, function(i) lm(log(wage) ~

+ bs(experience, df = i) + education + ethnicity,

+ data = CPS1988))

R> structure(sapply(cps_bs, AIC, k = log(nrow(CPS1988))),

+ .Names = 3:10)

3 4 5 6 7 8 9 10
49205 48836 48794 48795 48801 48797 48799 48802

First, a list cps_bs of fitted linear models is constructed via lapply(), to
which extractor functions can be easily applied as in sapply(cps_bs, AIC).
The call above utilizing structure() is slightly more complicated because it
additionally sets log(n) as the penalty parameter (BIC instead of the default
AIC) and assigns intuitive names (degrees of freedom) to the resulting vector.

The cubic spline from the selected model is best compared with the classi-
cal fit from cps_lm by means of a graphical display. The following code plots
log-wage as a function of experience (for Caucasian workers with average years
of education) for the classical model with a quadratic term in experience and
for the partially linear model.
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Fig. 3.4. Partially linear model versus classical specification for the CPS1988 data.

R> cps <- data.frame(experience = -2:60, education =

+ with(CPS1988, mean(education[ethnicity == "cauc"])),

+ ethnicity = "cauc")

R> cps$yhat1 <- predict(cps_lm, newdata = cps)

R> cps$yhat2 <- predict(cps_plm, newdata = cps)

R> plot(log(wage) ~ jitter(experience, factor = 3), pch = 19,

+ col = rgb(0.5, 0.5, 0.5, alpha = 0.02), data = CPS1988)

R> lines(yhat1 ~ experience, data = cps, lty = 2)

R> lines(yhat2 ~ experience, data = cps)

R> legend("topleft", c("quadratic", "spline"), lty = c(2,1),

+ bty = "n")

Figure 3.4 indicates that both models are not too distinct for the 20–40 years
of experience range. Overall, the spline version exhibits less curvature beyond
eight years of experience. However, the most remarkable feature of the plot
appears to be the more pronounced curvature below seven years of experience
in the spline fit, which is largely missed by the traditional approach. An
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alternative approach to partially linear models is to use kernel methods, this
is implemented in the package np (Hayfield and Racine 2008).

Some further remarks on the plot are appropriate. The large number of
observations and numerous ties in experience provide a challenge in that
the standard scatterplot will result in overplotting. Here, we circumvent the
problem by (1) adding some amount of “jitter” (i.e., noise) to the regressor
experience and (2) setting the color to “semitransparent” gray. This results
in darker shades of gray for areas with more data points, thus conveying a
sense of density. This technique is also called “alpha blending” and requires
that, in addition to the color itself, a value of alpha—ranging between 0
(fully transparent) and 1 (opaque)—be specified. Various color functions in R
provide an argument alpha; e.g., the basic rgb() function implementing the
RGB (red, green, blue) color model. Selecting equal intensities for all three
color values in rgb() yields a shade of gray (which would be more conveniently
available in gray(), but this does not allow for alpha blending).

Note that alpha transparency is not available for all plotting devices in
R. Among others, it is available for windows() (typically used on Microsoft
Windows), quartz() (typically used on Mac OS X), and pdf(), provided that
the argument version is set to version = "1.4" or greater (on all platforms).
See ?rgb for further details. A somewhat simpler but less appealing solution
available on all devices is to employ the default color (i.e., black) and a tiny
plotting character such as pch = ".".

3.4 Factors, Interactions, and Weights

In labor economics, there exist many empirical studies trying to shed light
on the issue of discrimination (for example, by gender or ethnicity). These
works typically involve regressions with factors and interactions. Since the
CPS1988 data contain the factor ethnicity, we consider some more general
specifications of the basic wage equation (3.2) in order to see whether there
are aspects of parameter heterogeneity that need to be taken into account.
Of course, our example is merely an illustration of working with factors and
interactions, and we do not seriously address any discrimination issues.

Technically, we are interested in the empirical relevance of an interaction
between ethnicity and other variables in our regression model. Before doing
so for the data at hand, the most important specifications of interactions in
R are outlined in advance.

The operator : specifies an interaction effect that is, in the default contrast
coding, essentially the product of a dummy variable and a further variable
(possibly also a dummy). The operator * does the same but also includes
the corresponding main effects. The same is done by /, but it uses a nested
coding instead of the interaction coding. Finally, ^ can be used to include
all interactions up to a certain order within a group of variables. Table 3.2
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Table 3.2. Specification of interactions in formulas.

Formula Description

y ~ a + x Model without interaction: identical slopes with respect
to x but different intercepts with respect to a.

y ~ a * x Model with interaction: the term a:x gives the difference
y ~ a + x + a:x in slopes compared with the reference category.

y ~ a / x Model with interaction: produces the same fitted values
y ~ a + x %in% a as the model above but using a nested coefficient coding.

An explicit slope estimate is computed for each category
in a.

y ~ (a + b + c)^2 Model with all two-way interactions (excluding the three-
y ~ a*b*c - a:b:c way interaction).

provides a brief overview for numerical variables y, x and categorical variables
a, b, c.

Interactions

The factor ethnicity is already included in our model; however, at present it
only affects the intercept. A priori, it is not clear whether slope coefficients are
also affected; i.e., whether Caucasians and African-Americans are paid differ-
ently conditional on some further regressors. For illustration, let us consider
an interaction between ethnicity and education. In R, this is conveniently
specified as in the following call:

R> cps_int <- lm(log(wage) ~ experience + I(experience^2) +

+ education * ethnicity, data = CPS1988)

R> coeftest(cps_int)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.313059 0.019590 220.17 <2e-16
experience 0.077520 0.000880 88.06 <2e-16
I(experience^2) -0.001318 0.000019 -69.34 <2e-16
education 0.086312 0.001309 65.94 <2e-16
ethnicityafam -0.123887 0.059026 -2.10 0.036
education:ethnicityafam -0.009648 0.004651 -2.07 0.038

We see that the interaction term is statistically significant at the 5% level.
However, with a sample comprising almost 30,000 individuals, this can hardly
be taken as compelling evidence for inclusion of the term.
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Above, just the table of coefficients and associated tests is computed for
compactness. This can be done using coeftest() (instead of summary()); see
Chapter 4 for further details.

As described in Table 3.2, the term education*ethnicity specifies in-
clusion of three terms: ethnicity, education, and the interaction between
the two (internally, the product of the dummy indicating ethnicity=="afam"
and education). Specifically, education*ethnicity may be thought of as ex-
panding to 1 + education + ethnicity + education:ethnicity; the co-
efficients are, in this order, the intercept for Caucasians, the slope for educa-
tion for Caucasians, the difference in intercepts, and the difference in slopes.
Hence, the interaction term is also available without inclusion of ethnicity
and education, namely as education:ethnicity. Thus, the following call is
equivalent to the preceding one, though somewhat more clumsy:

R> cps_int <- lm(log(wage) ~ experience + I(experience^2) +

+ education + ethnicity + education:ethnicity,

+ data = CPS1988)

Separate regressions for each level

As a further variation, it may be necessary to fit separate regressions for
African-Americans and Caucasians. This could either be done by comput-
ing two separate “lm” objects using the subset argument to lm() (e.g.,
lm(formula, data, subset = ethnicity=="afam", ...) or, more conve-
niently, by using a single linear-model object in the form

R> cps_sep <- lm(log(wage) ~ ethnicity /

+ (experience + I(experience^2) + education) - 1,

+ data = CPS1988)

This model specifies that the terms within parentheses are nested within
ethnicity. Here, an intercept is not needed since it is best replaced by two
separate intercepts for the two levels of ethnicity; the term -1 removes it.
(Note, however, that the R2 is computed differently in the summary(); see
?summary.lm for details.)

For compactness, we just give the estimated coefficients for the two groups
defined by the levels of ethnicity:

R> cps_sep_cf <- matrix(coef(cps_sep), nrow = 2)

R> rownames(cps_sep_cf) <- levels(CPS1988$ethnicity)

R> colnames(cps_sep_cf) <- names(coef(cps_lm))[1:4]

R> cps_sep_cf

(Intercept) experience I(experience^2) education
cauc 4.310 0.07923 -0.0013597 0.08575
afam 4.159 0.06190 -0.0009415 0.08654
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This shows that the effects of education are similar for both groups, but
the remaining coefficients are somewhat smaller in absolute size for African-
Americans.

A comparison of the new model with the first one yields

R> anova(cps_sep, cps_lm)

Analysis of Variance Table

Model 1: log(wage) ~ ethnicity/(experience +
I(experience^2) + education) - 1

Model 2: log(wage) ~ experience + I(experience^2) +
education + ethnicity
Res.Df RSS Df Sum of Sq F Pr(>F)

1 28147 9582
2 28150 9599 -3 -17 16.5 1.1e-10

Hence, the model where ethnicity interacts with every other regressor fits
significantly better, at any reasonable level, than the model without any in-
teraction term. (But again, this is a rather large sample.)

Change of the reference category

In any regression containing an (unordered) factor, R by default uses the
first level of the factor as the reference category (whose coefficient is fixed
at zero). In CPS1988, "cauc" is the reference category for ethnicity, while
"northeast" is the reference category for region.

Bierens and Ginther (2001) employ "south" as the reference category for
region. For comparison with their article, we now change the contrast coding
of this factor, so that "south" becomes the reference category. This can be
achieved in various ways; e.g., by using contrasts() or by simply changing the
order of the levels in the factor. As the former offers far more complexity than
is needed here (but is required, for example, in statistical experimental design),
we only present a solution using the latter. We set the reference category for
region in the CPS1988 data frame using relevel() and subsequently fit a
model in which this is included:

R> CPS1988$region <- relevel(CPS1988$region, ref = "south")

R> cps_region <- lm(log(wage) ~ ethnicity + education +

+ experience + I(experience^2) + region, data = CPS1988)

R> coef(cps_region)

(Intercept) ethnicityafam education experience
4.283606 -0.225679 0.084672 0.077656

I(experience^2) regionnortheast regionmidwest regionwest
-0.001323 0.131920 0.043789 0.040327
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Weighted least squares

Cross-section regressions are often plagued by heteroskedasticity. Diagnostic
tests against this alternative will be postponed to Chapter 4, but here we
illustrate one of the remedies, weighted least squares (WLS), in an application
to the journals data considered in Section 3.1. The reason is that lm() can
also handle weights.

Readers will have noted that the upper left plot of Figure 3.3 already
indicates that heteroskedasticity is a problem with these data. A possible
solution is to specify a model of conditional heteroskedasticity, e.g.

E(ε2
i |xi, zi) = g(z>i γ),

where g, the skedastic function, is a nonlinear function that can take on only
positive values, zi is an `-vector of observations on exogenous or predetermined
variables, and γ is an `-vector of parameters.

Here, we illustrate the fitting of some popular specifications using the price
per citation as the variable zi. Recall that assuming E(ε2

i |xi, zi) = σ2z2
i leads

to a regression of yi/zi on 1/zi and xi/zi. This means that the fitting criterion
changes from

∑n
i=1(yi − β1 − β2xi)2 to

∑n
i=1 z−2

i (yi − β1 − β2xi)2, i.e., each
term is now weighted by z−2

i . The solutions β̂1, β̂2 of the new minimization
problem are called the weighted least squares (WLS) estimates, a special case
of generalized least squares (GLS). In R, this model is fitted using

R> jour_wls1 <- lm(log(subs) ~ log(citeprice), data = journals,

+ weights = 1/citeprice^2)

Note that the weights are entered as they appear in the new fitting criterion.
Similarly,

R> jour_wls2 <- lm(log(subs) ~ log(citeprice), data = journals,

+ weights = 1/citeprice)

yields a regression with weights of the form 1/zi. Figure 3.5 provides the OLS
regression line along with the lines corresponding to the two WLS specifica-
tions:

R> plot(log(subs) ~ log(citeprice), data = journals)

R> abline(jour_lm)

R> abline(jour_wls1, lwd = 2, lty = 2)

R> abline(jour_wls2, lwd = 2, lty = 3)

R> legend("bottomleft", c("OLS", "WLS1", "WLS2"),

+ lty = 1:3, lwd = 2, bty = "n")

More often than not, we are not sure as to which form of the skedastic
function to use and would prefer to estimate it from the data. This leads to
feasible generalized least squares (FGLS).

In our case, the starting point could be
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Fig. 3.5. Scatterplot of the journals data with least-squares (solid) and weighted
least-squares (dashed and dotted) lines.

E(ε2
i |xi) = σ2xγ2

i = exp(γ1 + γ2 log xi),

which we estimate by regressing the logarithm of the squared residuals from
the OLS regression on the logarithm of citeprice and a constant. In the
second step, we use the fitted values of this auxiliary regression as the weights
in the model of interest:

R> auxreg <- lm(log(residuals(jour_lm)^2) ~ log(citeprice),

+ data = journals)

R> jour_fgls1 <- lm(log(subs) ~ log(citeprice),

+ weights = 1/exp(fitted(auxreg)), data = journals)

It is possible to iterate further, yielding a second variant of the FGLS ap-
proach. A compact solution makes use of a while loop:

R> gamma2i <- coef(auxreg)[2]

R> gamma2 <- 0

R> while(abs((gamma2i - gamma2)/gamma2) > 1e-7) {

+ gamma2 <- gamma2i

+ fglsi <- lm(log(subs) ~ log(citeprice), data = journals,

+ weights = 1/citeprice^gamma2)

+ gamma2i <- coef(lm(log(residuals(fglsi)^2) ~

+ log(citeprice), data = journals))[2]
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Fig. 3.6. Scatterplot of the journals data with OLS (solid) and iterated FGLS
(dashed) lines.

+ }

R> jour_fgls2 <- lm(log(subs) ~ log(citeprice), data = journals,

+ weights = 1/citeprice^gamma2)

This loop specifies that, as long as the relative change of the slope coefficient
γ2 exceeds 10−7 in absolute value, the iteration is continued; that is, a new
set of coefficients for the skedastic function is computed utilizing the residuals
from a WLS regression that employs the skedastic function estimated in the
preceding step. The final estimate of the skedastic function resulting from the
while loop is then used in a further WLS regression, whose coefficients are
referred to as iterated FGLS estimates. This approach yields

R> coef(jour_fgls2)

(Intercept) log(citeprice)
4.7758 -0.5008

and the parameter gamma2 of the transformation equals 0.2538, quite distinct
from our first attempts using a predetermined skedastic function.

Figure 3.6 provides the OLS regression line along with the line correspond-
ing to the iterated FGLS estimator. We see that the iterated FGLS solution
is more similar to the OLS solution than to the various WLS specifications
considered before.
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3.5 Linear Regression with Time Series Data

In econometrics, time series regressions are often fitted by OLS. Hence, in
principle, they can be fitted like any other linear regression model using lm()
if the data set is held in a “data.frame”. However, this is typically not the
case for time series data, which are more conveniently stored in one of R’s
time series classes. An example is “ts”, which holds its data in a vector or
matrix plus some time series attributes (start, end, frequency). More detailed
information on time series analysis in R is provided in Chapter 6. Here, it suf-
fices to note that using lm() with “ts” series has two drawbacks: (1) for fitted
values or residuals, the time series properties are by default not preserved,
and (2) lags or differences cannot directly be specified in the model formula.

These problems can be tackled in different ways. The simplest solution is to
do the additional computations “by hand”; i.e., to compute lags or differences
before calling lm(). Alternatively, the package dynlm (Zeileis 2008) provides
the function dynlm(), which tries to overcome the problems described above.1

It allows for formulas such as d(y) ~ L(d(y)) + L(x, 4), here describing a
regression of the first differences of a variable y on its first difference lagged
by one period and on the fourth lag of a variable x; i.e., yi − yi−1 = β1 +
β2 (yi−1−yi−2)+β3 xi−4 +εi. This is an autoregressive distributed lag (ADL)
model.

As an illustration, we will follow Greene (2003, Chapter 8) and consider dif-
ferent forms for a consumption function based on quarterly US macroeconomic
data from 1950(1) through 2000(4) as provided in the data set USMacroG, a
“ts”time series. For such objects, there exists a plot() method, here employed
for visualizing disposable income dpi and consumption (in billion USD) via

R> data("USMacroG")

R> plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1),

+ plot.type = "single", ylab = "")

R> legend("topleft", legend = c("income", "consumption"),

+ lty = c(3, 1), bty = "n")

The result is shown in Figure 3.7. Greene (2003) considers two models,

consumptioni = β1 + β2 dpii + β3 dpii−1 + εi

consumptioni = β1 + β2 dpii + β3 consumptioni−1 + εi.

In the former model, a distributed lag model, consumption responds to
changes in income only over two periods, while in the latter specification,
an autoregressive distributed lag model, the effects of income changes per-
sist due to the autoregressive specification. The models can be fitted to the
USMacroG data by dynlm() as follows:
1 A different approach that also works for modeling functions other than lm() is

implemented in the package dyn (Grothendieck 2005).



80 3 Linear Regression

Fig. 3.7. Time series plot of the US consumption and income series (in billion
USD).

R> library("dynlm")

R> cons_lm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG)

R> cons_lm2 <- dynlm(consumption ~ dpi + L(consumption),

+ data = USMacroG)

The corresponding summaries are of the same type as for “lm” objects. In
addition, the sampling period used is reported at the beginning of the output:

R> summary(cons_lm1)

Time series regression with "ts" data:
Start = 1950(2), End = 2000(4)

Call:
dynlm(formula = consumption ~ dpi + L(dpi),
data = USMacroG)

Residuals:
Min 1Q Median 3Q Max

-190.02 -56.68 1.58 49.91 323.94

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Time
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(Intercept) -81.0796 14.5081 -5.59 7.4e-08
dpi 0.8912 0.2063 4.32 2.4e-05
L(dpi) 0.0309 0.2075 0.15 0.88

Residual standard error: 87.6 on 200 degrees of freedom
Multiple R-squared: 0.996, Adjusted R-squared: 0.996
F-statistic: 2.79e+04 on 2 and 200 DF, p-value: <2e-16

The second model fits the data slightly better. Here only lagged consumption
but not income is significant:

R> summary(cons_lm2)

Time series regression with "ts" data:
Start = 1950(2), End = 2000(4)

Call:
dynlm(formula = consumption ~ dpi + L(consumption),
data = USMacroG)

Residuals:
Min 1Q Median 3Q Max

-101.30 -9.67 1.14 12.69 45.32

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.53522 3.84517 0.14 0.89
dpi -0.00406 0.01663 -0.24 0.81
L(consumption) 1.01311 0.01816 55.79 <2e-16

Residual standard error: 21.5 on 200 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 4.63e+05 on 2 and 200 DF, p-value: <2e-16

The RSS of the first model can be obtained with
deviance(cons_lm1) and equals 1534001.49, and the RSS of the second
model, computed by deviance(cons_lm2), equals 92644.15. To visualize these
two fitted models, we employ time series plots of fitted values and residuals
(see Figure 3.8) showing that the series of the residuals of cons_lm1 is some-
what U-shaped, while that of cons_lm2 is closer to zero. To produce this plot,
the following code was used:

R> plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1),

+ fitted(cons_lm2), 0, residuals(cons_lm1),

+ residuals(cons_lm2)), screens = rep(1:2, c(3, 3)),

+ lty = rep(1:3, 2), ylab = c("Fitted values", "Residuals"),

+ xlab = "Time", main = "")
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Fig. 3.8. Fitted models for US consumption.

R> legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"),

+ lty = 1:3, bty = "n")

This is somewhat complicated at first sight, but the components are rather
easy to understand: first, we merge() the original series with the fitted values
from both models, a zero line and the residuals of both models. The merged
series is plotted subsequently on two screens with different line types and some
more annotation. Before merging, the original series (of class “ts”) is coerced
to class “zoo” from the package zoo via as.zoo(), a generalization of “ts”
with a slightly more flexible plot() method. The class “zoo” is discussed in
more detail in Chapter 6.

Encompassing test

To discriminate between these two competing nonnested models, we consider
an encompassing test. Alternative methods to perform this task are also
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available; we consider the J test and the Cox test (see Davidson and MacKin-
non 1981, 2004) in an exercise. All of these tests implement slightly different
approaches to testing the same null hypotheses.

The encompassing approach to comparing two nonnested models is to
transform the problem into a situation we can already deal with: comparing
nested models. The idea is to fit the encompassing model comprising all regres-
sors from both competing models, in our case the autoregressive distributed
lag (ADL) model

R> cons_lmE <- dynlm(consumption ~ dpi + L(dpi) +

+ L(consumption), data = USMacroG)

and then to compare each of the two nonnested models with the encompassing
model. Now if one of the models is not significantly worse than the encompass-
ing model while the other is, this test would favor the former model over the
latter. As illustrated in the previous sections, nested models can be compared
with anova(), and we can even carry out both tests of interest in one go:

R> anova(cons_lm1, cons_lmE, cons_lm2)

Analysis of Variance Table

Model 1: consumption ~ dpi + L(dpi)
Model 2: consumption ~ dpi + L(dpi) + L(consumption)
Model 3: consumption ~ dpi + L(consumption)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 200 1534001
2 199 73550 1 1460451 3951.4 < 2e-16
3 200 92644 -1 -19094 51.7 1.3e-11

The first F test compares the model cons_lm1 with the encompassing model
cons_lmE, and the second F test compares cons_lmE and cons_lm2. Both
models perform significantly worse compared with the encompassing model,
although the F statistic is much smaller for cons_lm2.

Instead of computing the encompassing model by hand and then calling
anova(), the function encomptest() from the lmtest package can be used.
This simplifies the call to

R> encomptest(cons_lm1, cons_lm2)

Encompassing test

Model 1: consumption ~ dpi + L(dpi)
Model 2: consumption ~ dpi + L(consumption)
Model E: consumption ~ dpi + L(dpi) + L(consumption)

Res.Df Df F Pr(>F)
M1 vs. ME 199 -1 3951.4 < 2e-16
M2 vs. ME 199 -1 51.7 1.3e-11
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and leads to equivalent output. Internally, encomptest() relies on the
waldtest() function mentioned above.

3.6 Linear Regression with Panel Data

There has been considerable interest in panel data econometrics over the last
two decades, and hence it is almost mandatory to include a brief discussion of
some common specifications in R. The package plm (Croissant and Millo 2008)
contains the relevant fitting functions and methods. For the methodological
background, we refer to Baltagi (2005).

Static linear models

For illustrating the basic fixed- and random-effects methods, we use the well-
known Grunfeld data (Grunfeld 1958) comprising 20 annual observations on
the three variables real gross investment (invest), real value of the firm
(value), and real value of the capital stock (capital) for 11 large US firms
for the years 1935–1954. Originally employed in a study of the determinants of
corporate investment in a University of Chicago Ph.D. thesis, these data have
been a textbook classic since the 1970s. The accompanying package AER pro-
vides the full data set comprising all 11 firms, and the documentation contains
further details on alternative versions and errors therein.

The main difference between cross-sectional data and panel data is that
panel data have an internal structure, indexed by a two-dimensional array,
which must be communicated to the fitting function. We refer to the cross-
sectional objects as “individuals” and the time identifier as “time”.

We use a subset of three firms for illustration and, utilizing plm.data(),
tell R that the individuals are called "firm", whereas the time identifier is
called "year":

R> data("Grunfeld", package = "AER")

R> library("plm")

R> gr <- subset(Grunfeld, firm %in% c("General Electric",

+ "General Motors", "IBM"))

R> pgr <- plm.data(gr, index = c("firm", "year"))

Instead of setting up a structured data frame pgr in advance, this could also be
specified on the fly in calls to plm() simply by supplying index = c("firm",
"year"). For later use, plain OLS on the pooled data is available using

R> gr_pool <- plm(invest ~ value + capital, data = pgr,

+ model = "pooling")

The basic one-way panel regression is

investit = β1valueit + β2capitalit + αi + νit, (3.3)
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where i = 1, . . . , n, t = 1, . . . , T , and the αi denote the individual-specific
effects.

A fixed-effects version is estimated by running OLS on a within-transformed
model:

R> gr_fe <- plm(invest ~ value + capital, data = pgr,

+ model = "within")

R> summary(gr_fe)

Oneway (individual) effect Within Model

Call:
plm(formula = invest ~ value + capital, data = pgr,
model = "within")

Balanced Panel: n=3, T=20, N=60

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-167.00 -26.10 2.09 26.80 202.00

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

value 0.1049 0.0163 6.42 1.3e-10
capital 0.3453 0.0244 14.16 < 2e-16

Total Sum of Squares: 1890000
Residual Sum of Squares: 244000
Multiple R-Squared: 0.871
F-statistic: 185.407 on 55 and 2 DF, p-value: 0.00538

The summary provides a tabulation of observations per firm, here indicating
that the data are balanced, as well as the usual regression output with coef-
ficients (excluding the fixed effects) and associated standard errors and some
measures of goodness of fit. A two-way model could have been estimated upon
setting effect = "twoways". If fixed effects need to be inspected, a fixef()
method and an associated summary() method are available.

It is of interest to check whether the fixed effects are really needed. This
is done by comparing the fixed effects and the pooled OLS fits by means of
pFtest() and yields

R> pFtest(gr_fe, gr_pool)

F test for effects

data: invest ~ value + capital
F = 56.82, df1 = 2, df2 = 55, p-value = 4.148e-14
alternative hypothesis: significant effects
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indicating that there is substantial interfirm variation.
It is also possible to fit a random-effects version of (3.3) using the same

fitting function upon setting model = "random" and selecting a method for
estimating the variance components. Recall that a random-effects estimator is
essentially an FGLS estimator, utilizing OLS after “quasi-demeaning” all vari-
ables, where the precise form of the quasi-demeaning transformation depends
on the random.method selected. Four methods are available: Swamy-Arora,
Amemiya, Wallace-Hussain, and Nerlove (see, e.g., Baltagi 2005, for further
information on these estimators). The default is random.method = "swar"
(for Swamy-Arora), and for illustration we use random.method = "walhus"
(for Wallace-Hussain) and obtain

R> gr_re <- plm(invest ~ value + capital, data = pgr,

+ model = "random", random.method = "walhus")

R> summary(gr_re)

Oneway (individual) effect Random Effect Model
(Wallace-Hussain's transformation)

Call:
plm(formula = invest ~ value + capital, data = pgr,
model = "random", random.method = "walhus")

Balanced Panel: n=3, T=20, N=60

Effects:
var std.dev share

idiosyncratic 4389.3 66.3 0.35
individual 8079.7 89.9 0.65
theta: 0.837

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-187.00 -32.90 6.96 31.40 210.00

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

(intercept) -109.9766 61.7014 -1.78 0.075
value 0.1043 0.0150 6.95 3.6e-12
capital 0.3448 0.0245 14.06 < 2e-16

Total Sum of Squares: 1990000
Residual Sum of Squares: 258000
Multiple R-Squared: 0.87
F-statistic: 191.545 on 57 and 2 DF, p-value: 0.00521
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A comparison of the regression coefficients shows that fixed- and random-
effects methods yield rather similar results for these data.

As was the case with the fixed-effects regression, it is of interest to check
whether the random effects are really needed. Several versions of a Lagrange
multiplier test for this task are available in plmtest(), defaulting to the test
proposed by Honda (1985). Here it yields

R> plmtest(gr_pool)

Lagrange Multiplier Test - (Honda)

data: invest ~ value + capital
normal = 15.47, p-value < 2.2e-16
alternative hypothesis: significant effects

This test also suggests that some form of parameter heterogeneity must be
taken into account.

Random-effects methods are more efficient than the fixed-effects estima-
tor under more restrictive assumptions, namely exogeneity of the individual
effects. It is therefore important to test for endogeneity, and the standard ap-
proach employs a Hausman test. The relevant function phtest() requires two
panel regression objects, in our case yielding

R> phtest(gr_re, gr_fe)

Hausman Test

data: invest ~ value + capital
chisq = 0.0404, df = 2, p-value = 0.98
alternative hypothesis: one model is inconsistent

In line with the rather similar estimates presented above, endogeneity does
not appear to be a problem here.

plm contains methods for further types of static panel data models, no-
tably the Hausman-Taylor model (Hausman and Taylor 1981) and varying
coefficient models. We consider the Hausman-Taylor estimator in an exercise.

Dynamic linear models

To conclude this section, we present a more advanced example, the dynamic
panel data model

yit =
p∑

j=1

%jyi,t−j + x>itβ + uit, uit = αi + βt + νit, (3.4)

estimated by the method of Arellano and Bond (1991). Recall that their esti-
mator is a generalized method of moments (GMM) estimator utilizing lagged
endogenous regressors after a first-differences transformation. plm comes with
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the original Arellano-Bond data (EmplUK) dealing with determinants of em-
ployment (emp) in a panel of 140 UK firms for the years 1976–1984. The data
are unbalanced, with seven to nine observations per firm.

To simplify the exposition, we first set up a static formula containing the
relevant variables average annual wage per employee (wage), the book value of
gross fixed assets (capital), and an index of value-added output at constant
factor cost (output), all in logarithms:

R> data("EmplUK", package = "plm")

R> form <- log(emp) ~ log(wage) + log(capital) + log(output)

The function providing the Arellano-Bond estimator is pgmm(), and it takes as
its first argument a so-called dynformula, this being a static model equation,
as given above, augmented with a list of integers containing the number of
lags for each variable. The dynamic employment equation from Arellano and
Bond (1991) is now estimated as follows:

R> empl_ab <- pgmm(dynformula(form, list(2, 1, 0, 1)),

+ data = EmplUK, index = c("firm", "year"),

+ effect = "twoways", model = "twosteps",

+ gmm.inst = ~ log(emp), lag.gmm = list(c(2, 99)))

Hence, this is a dynamic model with p = 2 lagged endogenous terms (compare
this with Equation (3.4)) in which both log(wage) and log(output) occur up
to lag 1, while for log(capital) only the contemporaneous term is included.
A model containing time as well as firm-specific effects is specified, the instru-
ments are lagged terms of the dependent variable log(emp), and the lags used
are given by the argument lag.gmm = list(c(2, 99)), indicating that all
lags beyond lag 1 are to be used as instruments. This results in

R> summary(empl_ab)

Twoways effects Two steps model

Call:
pgmm(formula = log(emp) ~ lag(log(emp), 1) + lag(log(emp),
2) + log(wage) + lag(log(wage), 1) + log(capital) +
log(output) + lag(log(output), 1), data = EmplUK,
effect = "twoways", model = "twosteps",
gmm.inst = ~log(emp), lag.gmm = list(c(2, 99)),
index = c("firm", "year"))

Unbalanced Panel: n=140, T=7-9, N=1031

Number of Observations Used: 611
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Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.619000 -0.049500 -0.000457 -0.000184 0.053400 0.641000

Coefficients
Estimate Std. Error z-value Pr(>|z|)

lag(log(emp), 1) 0.4742 0.0853 5.56 2.7e-08
lag(log(emp), 2) -0.0530 0.0273 -1.94 0.05222
log(wage) -0.5132 0.0493 -10.40 < 2e-16
lag(log(wage), 1) 0.2246 0.0801 2.81 0.00502
log(capital) 0.2927 0.0395 7.42 1.2e-13
log(output) 0.6098 0.1085 5.62 1.9e-08
lag(log(output), 1) -0.4464 0.1248 -3.58 0.00035

Sargan Test: chisq(25) = 30.11 (p.value=0.22)
Autocorrelation test (1): normal = -2.428 (p.value=0.0076)
Autocorrelation test (2): normal = -0.3325 (p.value=0.37)
Wald test for coefficients: chisq(7) = 372 (p.value=<2e-16)
Wald test for time dummies: chisq(6) = 26.90 (p.value=0.000151)

suggesting that autoregressive dynamics are important for these data. The
tests at the bottom of the output indicate that the model is not fully satis-
factory, but we refrain from presenting Arellano and Bond’s preferred specifi-
cation, which in addition treats wages and capital as endogenous.

Note that, due to constructing lags and taking first differences, three cross
sections are lost; hence the estimation period is 1979–1984 and only 611 ob-
servations are effectively available for estimation.

3.7 Systems of Linear Equations

Systems of regression equations have been a hallmark of econometrics for sev-
eral decades. Standard examples include seemingly unrelated regressions and
various macroeconomic simultaneous equation models. The package systemfit
(Henningsen and Hamann 2007) can estimate a number of multiple-equation
models. As an example, we present a seemingly unrelated regression (SUR)
model (Zellner 1962) for the Grunfeld data. As noted by Greene (2003, p. 329,
fn. 39), “[a]lthough admittedly not current, these data are unusually cooper-
ative for illustrating the different aspects of estimating systems of regression
equations”. Unlike the panel data models considered in the preceding section,
which permit only individual-specific intercepts, the SUR model also allows
for individual-specific slopes. (As regards terminology, the “individuals” of the
preceding section will now be referred to as “equations”.) The model assumes
contemporaneous correlation across equations, and thus joint estimation of all
parameters is, in general, more efficient than OLS on each equation.
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The main fitting function is systemfit(). When fitting a SUR model,
it requires a “plm.data” object containing the information on the internal
structure of the data. This is set up as in the preceding section utilizing
plm.data() (to save space we only consider two firms):

R> library("systemfit")

R> gr2 <- subset(Grunfeld, firm %in% c("Chrysler", "IBM"))

R> pgr2 <- plm.data(gr2, c("firm", "year"))

The main arguments to systemfit() are a formula, a data set, and a method
(defaulting to "OLS"). Here we need method = "SUR":

R> gr_sur <- systemfit(invest ~ value + capital,

+ method = "SUR", data = pgr2)

R> summary(gr_sur, residCov = FALSE, equations = FALSE)

systemfit results
method: SUR

N DF SSR detRCov OLS-R2 McElroy-R2
system 40 34 4114 11022 0.929 0.927

N DF SSR MSE RMSE R2 Adj R2
Chrysler 20 17 3002 176.6 13.29 0.913 0.903
IBM 20 17 1112 65.4 8.09 0.952 0.946

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Chrysler_(Intercept) -5.7031 13.2774 -0.43 0.67293
Chrysler_value 0.0780 0.0196 3.98 0.00096
Chrysler_capital 0.3115 0.0287 10.85 4.6e-09
IBM_(Intercept) -8.0908 4.5216 -1.79 0.09139
IBM_value 0.1272 0.0306 4.16 0.00066
IBM_capital 0.0966 0.0983 0.98 0.33951

Thus, summary() provides the standard regression results for each equation
in a compact layout as well as some measures of overall fit. For compactness,
we suppressed parts of the rather voluminous default output. Readers may
want to run this example with summary(gr_sur) to obtain more detailed
information, including between-equation correlations.

The output indicates again that there is substantial variation among the
firms, and thus a single-equation model for the pooled data is not appropriate.

In addition to SUR models, systemfit can estimate linear simultaneous-
equations models by several methods (two-stage least squares, three-stage
least squares, and variants thereof), and there is also a fitting function for
certain nonlinear specifications.
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3.8 Exercises

1. This exercise is taken from Faraway (2005, p. 23). Generate some artificial
data by
x <- 1:20

y <- x + rnorm(20)

Fit a polynomial in x for predicting y. Compute β̂ in two ways—by lm()
and by using the direct calculation β̂ = (X>X)−1X>y. At what degree
of polynomial does the direct calculation method fail? (Note the need for
the I() function in fitting the polynomial; e.g., in lm(y ~ x + I(x^2)).)
(Lesson: Never use the textbook formula β̂ = (X>X)−1X>y for compu-
tations!)

2. Estimate a hedonic regression for the HousePrices data taken from Anglin
and Gençay (1996), which contain prices of houses sold in the city of
Windsor, Canada, during July, August, and September 1987. These data
are also used in the textbook by Verbeek (2004).
(a) Fit a multiple linear regression model to the logarithm of the price,

using all remaining variables as regressors. Experiment with models
containing lot size, number of bathrooms, number of bedrooms, and
stories in logarithms and in levels, respectively. Which model do you
prefer?

(b) What is the expected price of a two-story house of 4,700 sq. ft. with
three bedrooms, two bathrooms, a driveway, no recreational room, a
full finished basement, without gas heating or air conditioning, and
two-car garage, that is not located in a preferred area? Report also a
prediction interval.

(c) In order to determine whether the logarithmic transformation of the
dependent variable is really appropriate, a Box-Cox transformation
might be helpful. Use the function boxcox() from the package MASS.
What do you conclude?

3. Consider the PSID1982 data from Cornwell and Rupert (1988) and dis-
cussed further in Baltagi (2002).
(a) Regress the logarithm of the wage on all available regressors plus ex-

perience squared.
(b) Does gender interact with education and/or experience?

4. Section 3.5 considered two competing models for US consumption utiliz-
ing an encompassing test. Different approaches to comparing nonnested
models are the J test suggested by Davidson and MacKinnon (1981) and
the Cox test. Both are available in the package lmtest in the functions
jtest() and coxtest(). For the methodological background, we refer to
Greene (2003, Chapter 8) and Davidson and MacKinnon (2004).
(a) Test cons_lm1 vs. cons_lm2 using the J test.
(b) Test cons_lm1 vs. cons_lm2 using the Cox test.
Do all tests lead to similar conclusions?
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5. Use the PSID1982 data and consider the following two nonnested models
(compare with Baltagi 2002, p. 230):

M1 : log(wage) = β0 + β1education + β2experience + β3experience
2

+β4weeks + β5married + β6gender

+β7ethnicity + β8union + ε

M2 : log(wage) = β0 + β1education + β2experience + β3experience
2

+β4weeks + β5occupation + β6south

+β7smsa + β8industry + ν

(a) Compute the J tests for M1 vs. M2 and M2 vs. M1, respectively.
(b) Both M1 and M2 can be artificially nested within a larger model. Use

an F test for M1 versus this augmented model. Repeat for M2 versus
the augmented model. What do you conclude?

6. The estimator of Hausman and Taylor (1981) is appropriate when only
some of the individual effects in a panel regression are endogenous. Employ
this estimator on a wage equation for the PSID1982 data using all 12
regressors appearing in the preceding exercise. Note that you will have to
enter all exogenous variables as instruments for themselves.
(a) Consider the regressors experience, experience^2, occupation,

industry, union, and education as endogenous (as do Cornwell and
Rupert 1988).

(b) Consider the regressors experience, experience^2, weeks, married,
union, and education as endogenous (as do Baltagi and Khanti-Akom
1990; Baltagi 2005, Table 7.4).

(c) Which estimates do you consider more plausible?
7. The function gls() from the package nlme will fit one of the classical

econometric regression models, the linear regression model yi = x>i β + εi

with AR(1) disturbances, εi = φεi−1 + νi, where νi ∼ (0, σ2
ν) i.i.d. and

|φ| < 1, albeit by maximum likelihood, not by least-squares techniques.
Select one of the firms from the Grunfeld data and estimate this model.
What is the amount of first-order autocorrelation?

8. Find a way of estimating the SUR model from Section 3.7 using the plm
package.

9. The function ivreg() from package AER will fit instrumental vari-
able (IV) regressions. Using the USConsump1993 data taken from Baltagi
(2002), estimate the simple Keynesian consumption function

expendituret = β0 + β1incomet + εt

(a) by OLS.
(b) by IV. The only available instrument is investment, given by the

identity expenditure + investment = income.
(c) Compare both sets of estimates using a Hausman test, thus replicating

Baltagi (2002, Section 11.7). What do you conclude?
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Diagnostics and Alternative Methods of
Regression

The techniques presented in the preceding chapter tell only part of the story
of regression analysis. On the one hand, all of the estimates, tests, and other
summaries are computed as if the model and its assumptions were correct, but
on the other, there exist various regression methods apart from OLS, some of
which are more appropriate in certain applications.

Here, we discuss several approaches to validating linear regression models:

• A popular approach (on occasion somewhat misleading) compares various
statistics computed for the full data set with those obtained from deleting
single observations. This is known as regression diagnostics.

• In econometrics, diagnostic tests have played a prominent role since about
1980. The most important alternative hypotheses are heteroskedasticity,
autocorrelation, and misspecification of the functional form.

• Also, the impenetrable disturbance structures typically present in obser-
vational data have led to the development of “robust” covariance matrix
estimators, a number of which have become available during the last 20
years.

This chapter provides a brief introduction to all three approaches. It turns
out that graphical techniques are often quite effective at revealing structure
that one may not have suspected.

Furthermore, resistant (in the sense of resistance to outliers and unusual
observations) regression techniques are often quite helpful, although such
methods do not appear to be as widely known among econometricians as
they deserve to be. We also include a brief introduction to quantile regression,
a method that has been receiving increasing interest in applied econometrics,
especially in labor economics.

C. Kleiber, A. Zeileis, Applied Econometrics with R,
DOI: 10.1007/978-0-387-77318-6 4, © Springer Science+Business Media, LLC 2008
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4.1 Regression Diagnostics

There is extensive literature on examining the fit of linear regression models,
mostly under the label “regression diagnostics”. The goal is to find points that
are not fitted as well as they should be or have undue influence on the fitting
of the model. The techniques associated with Belsley, Kuh, and Welsch (1980)
based on deletion of observations are widely available in statistical software
packages, and R is no exception.

This topic provides an excellent opportunity to further illustrate some
basic aspects of R programming, showing that variations on available functions
or plots are easily constructed with just a few lines of code. For illustration,
we consider the PublicSchools data from the sandwich package, taken from
Greene (1993). They provide, for the 50 states of the United States of America
and for Washington, DC, per capita Expenditure on public schools and per
capita Income by state, all for the year 1979:

R> data("PublicSchools")

R> summary(PublicSchools)

Expenditure Income
Min. :259 Min. : 5736
1st Qu.:315 1st Qu.: 6670
Median :354 Median : 7597
Mean :373 Mean : 7608
3rd Qu.:426 3rd Qu.: 8286
Max. :821 Max. :10851
NA's : 1

We first omit the incomplete observations using na.omit()—this affects only
Wisconsin, where Expenditure is not available. Subsequently, we generate a
scatterplot with a fitted linear model, in which three observations are high-
lighted:

R> ps <- na.omit(PublicSchools)

R> ps$Income <- ps$Income / 10000

R> plot(Expenditure ~ Income, data = ps, ylim = c(230, 830))

R> ps_lm <- lm(Expenditure ~ Income, data = ps)

R> abline(ps_lm)

R> id <- c(2, 24, 48)

R> text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE)

The resulting plot in Figure 4.1 shows that there is a positive relationship
between expenditure and income; however, Alaska seems to be a dominant
observation in that it is far away from the bulk of the data. Two further
observations, Washington, DC, and Mississippi, also appear to deserve a closer
look. Visual inspection suggests that the OLS regression line is somewhat
tilted. We will pursue this issue below.
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Fig. 4.1. Per capita expenditure on public schools versus per capita income.

The basic tool for examining the fit is the residuals, and we have already
seen that plot() applied to an “lm” object yields several diagnostic plots.
Figure 4.2, resulting from

R> plot(ps_lm, which = 1:6)

depicts all six types (currently) available. The default is which = c(1:3,5);
i.e., only four are shown.

Specifically, the first plot depicts residuals versus fitted values. It is useful
for checking the assumption E(ε|X) = 0, and it brings out systematic varia-
tions in the residuals that suggest that the model is incomplete. The tests and
confidence intervals used in summary(ps_lm) are based on the assumption of
i.i.d. normal errors. The residuals can be assessed for normality using a QQ
plot comparing the residuals to “ideal” normal observations. It plots the or-
dered residuals against Φ−1 (i/(n + 1)), i = 1, . . . , n, where Φ−1 is the quantile
function of the standard normal distribution. The third plot, a scale-location
plot, depicts

√
|r̂i| (for the standardized residuals ri; see below for details)

against ŷi. It is useful for checking the assumption that errors are identically
distributed, in particular that the variance is homogeneous, Var(ε|X) = σ2I.
The remaining three plots display several combinations of standardized residu-
als, leverage, and Cook’s distance—these diagnostic measures will be discussed
in more detail below.

Thus, Figure 4.2 demonstrates that Alaska stands out in all plots: it has a
large residual (top left), and it therefore appears in the upper tail of the
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Fig. 4.2. Diagnostic plots for the public schools regression.
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empirical distribution of the residuals (top right), it casts doubt on the as-
sumption of homogeneous variances (middle left), it corresponds to an ex-
traordinarily large Cook’s distance (middle and bottom right), and it has the
highest leverage (bottom left and right). There are further observations singled
out, but none of these are as dominant as Alaska. Clearly, these observations
deserve a closer look. To further explore the fit of our model, we briefly review
regression diagnostics for linear models.

Leverage and standardized residuals

Recall that least-squares residuals are not independent and that they do
not have the same variance. Specifically, if Var(ε|X) = σ2I, their variance-
covariance matrix is Var(ε̂|X) = σ2(I−H), where H = X(X>X)−1X> is the
“hat matrix”.

Basic diagnostics are the diagonal elements hii of H, which in R are pro-
vided by the generic function hatvalues(). Since Var(ε̂i|X) = σ2(1 − hii),
observations with large values of hii will have small values of Var(ε̂i|X), and
hence residuals for such observations tend to be close to zero. Therefore, hii

is said to measure the leverage of the observation i. The trace of H is k (the
number of regressors), and “large” is commonly taken to mean greater than
two or three times the average element on the diagonal of H, k/n. Note that
the value of hii depends only on X and not on y, and hence leverages contain
only partial information about a point. This implies that there are two kinds
of high-leverage points: “bad leverage points” and “good leverage points”. The
former correspond to observations with large hii and unusual yi; such observa-
tions can have a dramatic impact on the fit of a model. The latter correspond
to observations with large hii and typical yi; such observations are beneficial
because they improve the precision of the estimates.

Figure 4.3, obtained via

R> ps_hat <- hatvalues(ps_lm)

R> plot(ps_hat)

R> abline(h = c(1, 3) * mean(ps_hat), col = 2)

R> id <- which(ps_hat > 3 * mean(ps_hat))

R> text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE)

depicts the diagonal elements of the hat matrix for the PublicSchools data.
Var(ε̂i|X) = σ2(1− hii) also suggests the use of

ri =
ε̂i

σ̂
√

1− hii

.

The ri are the standardized residuals, available via rstandard() in R. (They
are referred to as internally studentized residuals by some authors. This should
not be confused with the (externally) studentized residuals defined below.) If
the model assumptions are correct, Var(ri|X) = 1 and Cor(ri, rj |X) tends to
be small.
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Fig. 4.3. Diagonal elements of the hat matrix for the public schools data, with
their mean and three times their mean as horizontal lines.

Deletion diagnostics

To detect unusual observations, Belsley et al. (1980) propose to compute var-
ious leave-one-out (or deletion) diagnostics. Thus, one excludes point i and
computes, for example, the estimates β̂(i) and σ̂(i), where the subscript (i) de-
notes that observation i has been excluded. Similarly, ŷ(i) = Xβ̂(i) denotes the
vector of predictions of the yi utilizing β̂(i). Any observation whose removal
from the data would cause a large change in the fit is considered “influential”.
It may or may not have large leverage and may or may not be an outlier, but
it will tend to have at least one of these properties.

Following Belsley et al. (1980), basic quantities are

DFFIT i = yi − ŷi,(i),

DFBETA = β̂ − β̂(i),

COVRATIO i =
det(σ̂2

(i)(X
>
(i)X(i))−1)

det(σ̂2(X>X)−1)
,

D2
i =

(ŷ − ŷ(i))>(ŷ − ŷ(i))
kσ̂2

.

Here, DFFIT measures the change in the fitted values, while DFBETA mea-
sures the changes in the coefficients. COVRATIO considers the change in the
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estimate of the OLS covariance matrix, while the D2
i , the Cook’s distances (al-

ready encountered in the diagnostic plots in Figure 4.2), are especially popular
because they reduce the information to a single value for each observation.
Appropriately scaled versions of the first two quantities are called DFFITS
and DFBETAS .

All these objects are available in the corresponding R functions dffit(),
dffits(), dfbeta(), dfbetas(), covratio(), and cooks.distance(). In
addition, the function rstudent() provides the (externally) studentized resid-
uals

ti =
ε̂i

σ̂(i)

√
1− hii

alluded to above.

The function influence.measures()

Fortunately, it is not necessary to compute all the preceding quantities
separately (although this is possible). R provides the convenience function
influence.measures(), which simultaneously calls dfbetas(), dffits(),
covratio(), and cooks.distance(), returning a rectangular array of these
diagnostics. In addition, it highlights observations that are unusual for at
least one of the influence measures. Since the common influence measures are
functions of ri and/or hii, which ones to choose is often a matter of taste.
Since

R> influence.measures(ps_lm)

provides a rectangular array of size 50× 6, we do not show the result. Instead
we briefly consider selected aspects.

With two regressors and 50 observations, the average diagonal element of
the hat matrix is 0.04. The points with leverage higher than three times the
mean leverage can be obtained via

R> which(ps_hat > 3 * mean(ps_hat))

Alaska Washington DC
2 48

This highlights Alaska and Washington, DC; for Alaska, the leverage is even
larger than five times the mean (see Figure 4.3).

If the observations that are (potentially) influential according to at least
one criterion are desired, use

R> summary(influence.measures(ps_lm))

Potentially influential observations of
lm(formula = Expenditure ~ Income, data = ps) :
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Fig. 4.4. Least-squares line with (solid) and without (dashed) Alaska, Mississippi,
and Washington, DC.

dfb.1_ dfb.Incm dffit cov.r cook.d hat
Alaska -2.39_* 2.52_* 2.65_* 0.55_* 2.31_* 0.21_*
Mississippi 0.07 -0.07 0.08 1.14_* 0.00 0.08
Washington DC 0.66 -0.71 -0.77_* 1.01 0.28 0.13_*

This again points us to Alaska and Washington, DC, and in addition Missis-
sippi, which had been highlighted in Figure 4.1. It is noteworthy that Alaska
stands out by any measure of influence. From Figure 4.4, resulting from

R> plot(Expenditure ~ Income, data = ps, ylim = c(230, 830))

R> abline(ps_lm)

R> id <- which(apply(influence.measures(ps_lm)$is.inf, 1, any))

R> text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE)

R> ps_noinf <- lm(Expenditure ~ Income, data = ps[-id,])

R> abline(ps_noinf, lty = 2)

it is clear that this observation is a bad leverage point. To some extent, this
is also true for Washington, DC, but here the situation is not nearly as bad
as in the case of Alaska. The plot also depicts the least-squares line excluding
the three influential points, and it is obvious that it provides a much better
summary of the data.
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4.2 Diagnostic Tests

A more formal approach to validating regression models is diagnostic testing.
Many cross-section regressions are plagued by heteroskedasticity. Similarly,
regression models for time series data should be tested for residual autocor-
relation. The package lmtest (Zeileis and Hothorn 2002), originally inspired
by the methods discussed in Krämer and Sonnberger (1986), provides a num-
ber of tests for both alternatives plus further tests for misspecification of the
functional form. A discussion of the underlying theory is provided in Baltagi
(2002), Davidson and MacKinnon (2004), and Greene (2003), to mention a
few sources. We proceed to the practical aspects of these procedures and refer
the reader to these sources for the background formalities.

Almost all of the tests discussed below return an object of class “htest”
(standing for hypothesis test), containing the value of the test statistic, the
corresponding p value, additional parameters such as degrees of freedom
(where appropriate), the name of the tested model, and perhaps the method
used if there are several variants of the test.

For cross-section regressions, we return to the Journals data used in the
preceding chapter. As before, we set up a reduced data set journals that
also contains the age of the journals (for the year 2000, when the data were
collected).

R> data("Journals")

R> journals <- Journals[, c("subs", "price")]

R> journals$citeprice <- Journals$price/Journals$citations

R> journals$age <- 2000 - Journals$foundingyear

As before, we consider a simple model that explains the logarithm of the
number of library subscriptions for a journal by the logarithm of the price per
citation.

R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals)

For a scatterplot of the data and the fitted model, we refer to Figure 3.1.

Testing for heteroskedasticity

For cross-section regressions, the assumption Var(εi|xi) = σ2 is typically in
doubt. A popular test for checking this assumption is the Breusch-Pagan test
(Breusch and Pagan 1979). It fits a linear regression model to the squared
residuals ε̂2

i of the model under investigation and rejects if too much of the
variance is explained by the additional explanatory variables. For this auxiliary
regression, the same explanatory variables X are taken as in the main model.
Other strategies could be to use the fitted values ŷi or the original regressors
plus squared terms and interactions (White 1980). For our model fitted to the
journals data, stored in jour_lm, the diagnostic plots in Figure 3.3 suggest
that the variance decreases with the fitted values or, equivalently, it increases
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with the price per citation. Hence, the regressor log(citeprice) used in the
main model should also be employed for the auxiliary regression.

Under H0, the test statistic of the Breusch-Pagan test approximately fol-
lows a χ2

q distribution, where q is the number of regressors in the auxiliary
regression (excluding the constant term). The textbook version of the test is
for normally distributed errors, an assumption that is often too strong for
practical work. It can be overcome by using a studentized version (Koenker
1981).

The function bptest() implements all these flavors of the Breusch-Pagan
test. By default, it computes the studentized statistic for the auxiliary regres-
sion utilizing the original regressors X. Hence

R> bptest(jour_lm)

studentized Breusch-Pagan test

data: jour_lm
BP = 9.803, df = 1, p-value = 0.001742

uses log(citeprice) in the auxiliary regression and detects heteroskedastic-
ity in the data with respect to the price per citation. Alternatively, the White
test picks up the heteroskedasticity. It uses the original regressors as well as
their squares and interactions in the auxiliary regression, which can be passed
as a second formula to bptest(). Here, this reduces to

R> bptest(jour_lm, ~ log(citeprice) + I(log(citeprice)^2),

+ data = journals)

studentized Breusch-Pagan test

data: jour_lm
BP = 10.91, df = 2, p-value = 0.004271

Another test for heteroskedasticity—nowadays probably more popular in
textbooks than in applied work—is the Goldfeld-Quandt test (Goldfeld and
Quandt 1965). Its simple idea is that after ordering the sample with respect
to the variable explaining the heteroskedasticity (e.g., price per citation in our
example), the variance at the beginning should be different from the variance
at the end of the sample. Hence, splitting the sample and comparing the mean
residual sum of squares before and after the split point via an F test should
be able to detect a change in the variance. However, there are few applications
where a meaningful split point is known in advance; hence, in the absence of
better alternatives, the center of the sample is often used. Occasionally, some
central observations are omitted in order to improve the power. The function
gqtest() implements this test; by default, it assumes that the data are al-
ready ordered, and it also uses the middle of the sample as the split point
without omitting any central observations.
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In order to apply this test to the journals data, we order the observations
with respect to price per citation. This leads again to a highly significant
result that confirms the Breusch-Pagan analysis presented above:

R> gqtest(jour_lm, order.by = ~ citeprice, data = journals)

Goldfeld-Quandt test

data: jour_lm
GQ = 1.703, df1 = 88, df2 = 88, p-value = 0.00665

Testing the functional form

The assumption E(ε|X) = 0 is crucial for consistency of the least-squares es-
timator. A typical source for violation of this assumption is a misspecification
of the functional form; e.g., by omitting relevant variables. One strategy for
testing the functional form is to construct auxiliary variables and assess their
significance using a simple F test. This is what Ramsey’s RESET (regression
specification error test; Ramsey 1969) does: it takes powers of the fitted values
ŷ and tests whether they have a significant influence when added to the re-
gression model. Alternatively, powers of the original regressors or of the first
principal component of X can be used. All three versions are implemented
in the function resettest(). It defaults to using second and third powers of
the fitted values as auxiliary variables. With only one real regressor in the
model matrix X (excluding the intercept), all three strategies yield equivalent
results. Hence we use

R> resettest(jour_lm)

RESET test

data: jour_lm
RESET = 1.441, df1 = 2, df2 = 176, p-value = 0.2395

to assess whether second and third powers of log(citeprice) can signifi-
cantly improve the model. The result is clearly non-significant, and hence no
misspecification can be detected in this direction.

The rainbow test (Utts 1982) takes a different approach to testing the
functional form. Its basic idea is that even a misspecified model might be able
to fit the data reasonably well in the “center” of the sample but might lack fit
in the tails. Hence, the rainbow test fits a model to a subsample (typically the
middle 50%) and compares it with the model fitted to the full sample using
an F test. To determine the “middle”, the sample has to be ordered; e.g., by
a regressor variable or by the Mahalanobis distance of the regressor vector xi

to the mean regressor. Both procedures are implemented (along with some
further options for fine-tuning the choice of the subsample) in the function
raintest(). For the jour_lm model, we may use
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R> raintest(jour_lm, order.by = ~ age, data = journals)

Rainbow test

data: jour_lm
Rain = 1.774, df1 = 90, df2 = 88, p-value = 0.003741

This orders the journals data by age and assesses whether the model fit for
the 50% “middle-aged” journals is different from the fit comprising all jour-
nals. This appears to be the case, signaling that the relationship between the
number of subscriptions and the price per citation also depends on the age
of the journal. As we will see below, the reason seems to be that libraries are
willing to pay more for established journals.

Another diagnostic test that relies on ordering the sample prior to testing
is the Harvey-Collier test (Harvey and Collier 1977). For the ordered sample,
the test computes the recursive residuals (Brown, Durbin, and Evans 1975) of
the fitted model. The recursive residuals are essentially standardized one-step-
ahead prediction errors: the linear model is fitted to the first i−1 observations,
and from this the ith observation is predicted and the corresponding resid-
ual is computed and suitably standardized. If the model is correctly specified,
the recursive residuals have mean zero, whereas the mean should significantly
differ from zero if the ordering variable has an influence on the regression rela-
tionship. Therefore, the Harvey-Collier test is a simple t test for zero mean; it
is implemented in the function harvtest(). Applying this test to the journals
data yields the following result:

R> harvtest(jour_lm, order.by = ~ age, data = journals)

Harvey-Collier test

data: jour_lm
HC = 5.081, df = 177, p-value = 9.464e-07

This confirms the results from the rainbow test, emphasizing that the age of
the journals has a significant influence on the regression relationship.

Testing for autocorrelation

Just as the disturbances in cross-section models are typically heteroskedastic,
they are often affected by autocorrelation (or serial correlation) in time series
regressions. Let us reconsider the first model for the US consumption function
from Section 3.5:

R> data("USMacroG")

R> consump1 <- dynlm(consumption ~ dpi + L(dpi),

+ data = USMacroG)

A classical testing procedure suggested for assessing autocorrelation in regres-
sion relationships is the Durbin-Watson test (Durbin and Watson 1950). The
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test statistic is computed as the ratio of the sum of the squared first differences
of the residuals (i.e., (ε̂i− ε̂i−1)2), and the residual sum of squares. Under the
null hypothesis of no autocorrelation, the test statistic should be in the vicin-
ity of 2—under the alternative of positive autocorrelation, it typically is much
smaller. The distribution under the null hypothesis is nonstandard: under the
assumption of normally distributed errors, it can be represented as the dis-
tribution of a linear combination of χ2 variables with weights depending on
the regressor matrix X. Many textbooks still recommend using tabulated up-
per and lower bounds of critical values. The function dwtest() implements an
exact procedure for computing the p value and also provides a normal approx-
imation for sufficiently large samples (both depending on the regressor matrix
X). The function can be easily applied to the fitted consumption function via

R> dwtest(consump1)

Durbin-Watson test

data: consump1
DW = 0.0866, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0

here detecting a highly significant positive autocorrelation, which confirms the
results from Section 3.5.

Further tests for autocorrelation, originally suggested for diagnostic check-
ing of ARIMA models (see Chapter 6), are the Box-Pierce test (Box and Pierce
1970) and a modified version, the Ljung-Box test (Ljung and Box 1978). Both
are implemented in the function Box.test() in base R (in the stats pack-
age). The test statistics are (approximate) χ2 statistics based on estimates
of the autocorrelations up to order p: the Box-Pierce statistic is n times the
sum of squared autocorrelations, and the Ljung-Box refinement weighs the
squared autocorrelation at lag j by (n + 2)/(n − j) (j = 1, . . . , p). The de-
fault in Box.test() is to use the Box-Pierce version with p = 1. Unlike the
diagnostic tests in lmtest, the function expects a series of residuals and not
the specification of a linear model as its primary argument. Here, we apply
the Box-Ljung test to the residuals of consump1, which again yields a highly
significant result.

R> Box.test(residuals(consump1), type = "Ljung-Box")

Box-Ljung test

data: residuals(consump1)
X-squared = 176.1, df = 1, p-value < 2.2e-16

An alternative approach to assessing autocorrelation is the Breusch-
Godfrey test (Breusch 1979; Godfrey 1978)—unlike the Durbin-Watson test,
this also works in the presence of lagged dependent variables (see also Sec-
tion 7.1). The Breusch-Godfrey test is an LM test against both AR(p) and
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MA(p) alternatives, computed by fitting an auxiliary regression that explains
the residuals ε̂ by the original regressors X augmented by the lagged residuals
up to order p (ε̂i−1, . . . , ε̂i−p) (where zeros are used as starting values). The
resulting RSS is compared with the RSS of the original RSS in a χ2 (or F )
test. Both versions are implemented in the function bgtest(). By default, it
uses an order of p = 1. Here, we obtain

R> bgtest(consump1)

Breusch-Godfrey test for serial correlation of order 1

data: consump1
LM test = 193.0, df = 1, p-value < 2.2e-16

again confirming the previous results for this model.
More details on various time series models in R and dealing with autocor-

relation are provided in Chapter 6.

4.3 Robust Standard Errors and Tests

As illustrated in the preceding sections, economic data typically exhibit some
form of autocorrelation and/or heteroskedasticity. If the covariance structure
were known, it could be taken into account in a (parametric) model, but more
often than not, the form of the autocorrelation or heteroskedasticity is un-
known. In such cases, regression coefficients can typically still be estimated
consistently using OLS (given that the functional form is correctly specified),
but for valid inference a consistent covariance matrix estimate is essential.
Over the last 20 years, several procedures for heteroskedasticity consistent
(HC) and, more generally, for heteroskedasticity and autocorrelation consis-
tent (HAC) covariance matrix estimation have been suggested in the econo-
metrics literature. These are today routinely applied in econometric practice.

To be more specific, the problem is that the standard t and F tests
performed when calling summary() or anova() for a fitted linear model as-
sume that errors are homoskedastic and uncorrelated given the regressors:
Var(ε|X) = σ2I. In practice, however, as motivated for the data sets above,
this is often not the case and Var(ε|X) = Ω, where Ω is unknown. In this
situation, the covariance matrix of the estimated regression coefficients β̂ is
given by

Var(β̂|X) =
(
X>X

)−1
X>ΩX

(
X>X

)−1
,

which only reduces to the familiar σ2(X>X)−1 if the errors are indeed ho-
moskedastic and uncorrelated. Hence, for valid inference in models with het-
eroskedasticity and/or autocorrelation, it is vital to compute a robust esti-
mate of Var(β̂|X). In R, the package sandwich (which is automatically at-
tached when loading AER) provides the functions vcovHC() and vcovHAC()
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implementing HC and HAC counterparts of vcov(). Furthermore, the es-
timates produced by these functions can be easily plugged into the func-
tions coeftest() and waldtest() from lmtest, functions generalizing the
summary() and anova() methods for fitted linear models. More details on
the implementation and application of these functions can be found in Zeileis
(2004).

HC estimators

In cross-section regressions, it is typically appropriate to assume that Ω is
a diagonal matrix with potentially non-constant diagonal entries. Therefore,
a natural plug-in estimator for Var(β̂|X) could use Ω̂ = diag(ω1, . . . , ωn);
that is, a diagonal matrix. Various choices for ωi have been suggested in the
literature:

const : ωi = σ̂2

HC0 : ωi = ε̂2
i

HC1 : ωi =
n

n− k
ε̂2
i

HC2 : ωi =
ε̂2

i

1− hii

HC3 : ωi =
ε̂2

i

(1− hii)2

HC4 : ωi =
ε̂2

i

(1− hii)δi

where hii are again the diagonal elements of the hat matrix, h̄ is their
mean, and δi = min{4, hii/h̄}. All these variants are available in the func-
tion vcovHC().

The first version is the standard estimator for homoskedastic errors. All
others produce different kinds of HC estimators. The estimator HC0 was in-
troduced by Eicker (1963) and popularized in econometrics by White (1980).
The estimators HC1, HC2, and HC3 were suggested by MacKinnon and White
(1985) to improve the performance in small samples. A more extensive study
of small-sample behavior was conducted by Long and Ervin (2000), who arrive
at the conclusion that HC3 provides the best performance in small samples,
as it gives less weight to influential observations. HC3 is the default choice in
vcovHC(). More recently, Cribari-Neto (2004) suggested the estimator HC4
to further improve small-sample performance, especially in the presence of
influential observations.

The function vcovHC() can be applied to a fitted linear model, just like
the function vcov(). For the model fitted to the journals data, both yield
rather similar estimates of the covariance matrix:

R> vcov(jour_lm)
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(Intercept) log(citeprice)
(Intercept) 3.126e-03 -6.144e-05
log(citeprice) -6.144e-05 1.268e-03

R> vcovHC(jour_lm)

(Intercept) log(citeprice)
(Intercept) 0.003085 0.000693
log(citeprice) 0.000693 0.001188

To obtain just the regression coefficients, their standard errors, and associated
t statistics (thus omitting the additional information on the fit of the model
provided by summary(jour_lm)), the function call coeftest(jour_lm) may
be used. This has the advantage that other covariance matrix estimates—
specified either as a function or directly as the fitted matrix—can be passed
as an argument. For the journals data, this gives

R> coeftest(jour_lm, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7662 0.0555 85.8 <2e-16
log(citeprice) -0.5331 0.0345 -15.5 <2e-16

which is almost identical to the standard summary() output. In the call above,
the argument vcov was specified as a function; using coeftest(jour_lm,
vcov = vcovHC(jour_lm)) (i.e., specifying vcov as the estimated covariance
matrix ) yields identical output.

To compare the different types of HC estimators described above for the
journals data, we compute the corresponding standard errors for the fitted
jour_lm model

R> t(sapply(c("const", "HC0", "HC1", "HC2", "HC3", "HC4"),

+ function(x) sqrt(diag(vcovHC(jour_lm, type = x)))))

(Intercept) log(citeprice)
const 0.05591 0.03561
HC0 0.05495 0.03377
HC1 0.05526 0.03396
HC2 0.05525 0.03412
HC3 0.05555 0.03447
HC4 0.05536 0.03459

which shows that, for these data, all estimators lead to almost identical results.
In fact, all standard errors are slightly smaller than those computed under the
assumption of homoskedastic errors.

To illustrate that using robust covariance matrix estimates can indeed
make a big difference, we reconsider the public schools data. We have already
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fitted a linear regression model explaining the per capita public school ex-
penditures by per capita income and detected several influential observations
(most notably Alaska). This has the effect that if a quadratic model is fitted
to the data, it appears to provide a significant improvement over the linear
model, although this spurious significance is in fact only caused by a single
outlier, Alaska:

R> ps_lm <- lm(Expenditure ~ Income, data = ps)

R> ps_lm2 <- lm(Expenditure ~ Income + I(Income^2), data = ps)

R> anova(ps_lm, ps_lm2)

Analysis of Variance Table

Model 1: Expenditure ~ Income
Model 2: Expenditure ~ Income + I(Income^2)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 48 181015
2 47 150986 1 30030 9.35 0.0037

As illustrated by Cribari-Neto (2004), this can be remedied by using a robust
covariance matrix estimate for inference. Note that in this context the pattern
in the residuals is typically not referred to as heteroskedasticity but rather as
having outliers or influential observations. However, the principles underlying
the HC estimators also yield appropriate results in this situation.

To obtain the same type of test as in the anova() call above, we use
waldtest(). This function provides a vcov argument, which again takes either
a function or a matrix. In the latter case, the covariance matrix has to be
computed for the more complex model to yield the correct result:

R> waldtest(ps_lm, ps_lm2, vcov = vcovHC(ps_lm2, type = "HC4"))

Wald test

Model 1: Expenditure ~ Income
Model 2: Expenditure ~ Income + I(Income^2)
Res.Df Df F Pr(>F)

1 48
2 47 1 0.08 0.77

This shows that the quadratic term is, in fact, not significant; an equivalent
result can also be obtained via coeftest(ps_lm2, vcov = vcovHC(ps_lm2,
type = "HC4")).

HAC estimators

In time series regressions, if the error terms εi are correlated, Ω is not diago-
nal and can only be estimated directly upon introducing further assumptions
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on its structure. However, if the form of heteroskedasticity and autocorrela-
tion is unknown, valid standard errors and tests may be obtained by employ-
ing empirical counterparts of X>ΩX instead. This is achieved by computing
weighted sums of the empirical autocorrelations of ε̂ixi.

Various estimators that differ with respect to the choice of the weights
have been suggested. They have in common that weights are chosen accord-
ing to some kernel function but differ in the choice of the kernel as well as
the choice of the bandwidth used. The function vcovHAC() implements a gen-
eral framework for this type of estimator; more details on its implementation
can be found in Zeileis (2004). In addition to vcovHAC(), there are several
convenience functions available in sandwich that make different strategies for
choosing kernels and bandwidths easily accessible: the function NeweyWest()
implements the estimator of Newey and West (1987, 1994) using a nonpara-
metric bandwidth selection, kernHAC() provides the class of kernel HAC es-
timators of Andrews (1991) with parametric bandwidth selection as well as
prewhitening, as suggested by Andrews and Monahan (1992), and weave()
implements the class of weighted empirical adaptive variance estimators of
Lumley and Heagerty (1999). In econometrics, the former two estimators are
frequently used, and here we illustrate how they can be applied to the con-
sumption function consump1.

We compute the standard errors under the assumption of spherical errors
and compare them with the results of the quadratic spectral kernel and the
Bartlett kernel HAC estimators, both using prewhitening:

R> rbind(SE = sqrt(diag(vcov(consump1))),

+ QS = sqrt(diag(kernHAC(consump1))),

+ NW = sqrt(diag(NeweyWest(consump1))))

(Intercept) dpi L(dpi)
SE 14.51 0.2063 0.2075
QS 94.11 0.3893 0.3669
NW 100.83 0.4230 0.3989

Both sets of robust standard errors are rather similar (except maybe for the
intercept) and much larger than the uncorrected standard errors. As already
illustrated above, these functions may again be passed to coeftest() or
waldtest() (and other inference functions).

4.4 Resistant Regression

Leave-one-out diagnostics, as presented in Section 4.1, are a popular means for
detecting unusual observations. However, such observations may “mask” each
other, meaning that there may be several cases of the same type, and hence
conventional diagnostics will not be able to detect such problems. With low-
dimensional data such as PublicSchools, we can always resort to plotting,
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but the situation is much worse with high-dimensional data. A solution is to
use robust regression techniques.

There are many procedures in statistics and econometrics labeled as “ro-
bust”, among them the sandwich covariance estimators discussed in the pre-
ceding section. In this section, “robust” means “resistant” regression; that
is, regression methods that can withstand alterations of a small percent-
age of the data set (in more practical terms, the estimates are unaffected
by a certain percentage of outlying observations). The first regression es-
timators with this property, the least median of squares (LMS) and least
trimmed squares (LTS) estimators defined by arg minβ medi|yi − x>i β| and
arg minβ

∑q
i=1 ε̂2

i:n(β), respectively (Rousseeuw 1984), were studied in the
early 1980s. Here, ε̂2

i = |yi−x>i β|2 are the squared residuals and i : n denotes
that they are arranged in increasing order. It turned out that LTS is prefer-
able, and we shall use this method below. For an applied account of robust
regression techniques, we refer to Venables and Ripley (2002).

In econometrics, these methods appear to be not as widely used as they
deserve to be. Zaman, Rousseeuw, and Orhan (2001) report that a search
through ECONLIT “led to a remarkably low total of 14 papers” published
in the economics literature that rely on robust regression techniques. This
section is an attempt at improving the situation.

For illustration, we consider a growth regression. The determinants of eco-
nomic growth have been a popular field of empirical research for the last 20
years. The starting point is the classical Solow model relating GDP growth
to the accumulation of physical capital and to population growth. In an influ-
ential paper, Mankiw, Romer, and Weil (1992) consider an augmented Solow
model that also includes a proxy for the accumulation of human capital. For
a data set comprising 98 countries (available as GrowthDJ in AER), they con-
clude that human capital is an important determinant of economic growth.
They also note that the OECD countries are not fitted well by their model.
This led Nonneman and Vanhoudt (1996) to reexamine their findings for
OECD countries (available as OECDGrowth in AER), suggesting, among other
things, a further extension of the Solow model by incorporating a measure of
accumulation of technological know-how.

Here, we consider the classical textbook Solow model for the Nonneman
and Vanhoudt (1996) data with

log(Yt/Y0) = β1 + β2 log(Y0) + β3 log(Kt) + β4 log(nt + 0.05) + εt,

where Yt and Y0 are real GDP in periods t and 0, respectively, Kt is a measure
of the accumulation of physical capital, and nt is population growth (with 5%
added in order to account for labor productivity growth). The OECDGrowth
data provide these variables for all OECD countries with a population exceed-
ing 1 million. Specifically, Yt and Y0 are taken as the real GDP (per person of
working age; i.e., ages 15 to 65) in 1985 and 1960, respectively, both in 1985
international prices, Kt is the average of the annual ratios of real domestic
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investment to real GDP, and nt is annual population growth, all for the period
1960–1985.

OLS estimation of this model yields

R> data("OECDGrowth")

R> solow_lm <- lm(log(gdp85/gdp60) ~ log(gdp60) +

+ log(invest) + log(popgrowth + .05), data = OECDGrowth)

R> summary(solow_lm)

Call:
lm(formula = log(gdp85/gdp60) ~ log(gdp60) + log(invest) +
log(popgrowth + 0.05), data = OECDGrowth)

Residuals:
Min 1Q Median 3Q Max

-0.18400 -0.03989 -0.00785 0.04506 0.31879

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9759 1.0216 2.91 0.0093
log(gdp60) -0.3429 0.0565 -6.07 9.8e-06
log(invest) 0.6501 0.2020 3.22 0.0048
log(popgrowth + 0.05) -0.5730 0.2904 -1.97 0.0640

Residual standard error: 0.133 on 18 degrees of freedom Multiple
R-squared: 0.746, Adjusted R-squared: 0.704
F-statistic: 17.7 on 3 and 18 DF, p-value: 1.34e-05

The fit is quite reasonable for a cross-section regression. The coefficients on
gdp60 and invest are highly significant, and the coefficient on popgrowth is
borderline at the 10% level. We shall return to this issue below.

With three regressors, the standard graphical displays are not as effec-
tive for the detection of unusual data. Zaman et al. (2001) recommend first
running an LTS analysis flagging observations with unusually large residuals
and running a standard OLS regression excluding the outlying observations
thereafter. Since robust methods are not very common in applied economet-
rics, relying on OLS for the final estimates to be reported would seem to be a
useful strategy for practical work. However, LTS may flag too many points as
outlying. Recall from Section 4.1 that there are good and bad leverage points;
only the bad ones should be excluded. Also, a large residual may correspond
to an observation with small leverage, an observation with an unusual yi that
is not fitted well but at the same time does not disturb the analysis. The strat-
egy is therefore to exclude observations that are bad leverage points, defined
here as high-leverage points with large LTS residuals.

Least trimmed squares regression is provided in the function lqs() in the
MASS package, the package accompanying Venables and Ripley (2002). Here,
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lqs stands for least quantile of squares because lqs() also provides LMS
regression and generalizations thereof. However, the default is LTS, which is
what we use here.

The code chunk

R> library("MASS")

R> solow_lts <- lqs(log(gdp85/gdp60) ~ log(gdp60) +

+ log(invest) + log(popgrowth + .05), data = OECDGrowth,

+ psamp = 13, nsamp = "exact")

sets psamp = 13, and thus we trim 9 of the 22 observations in OECDGrowth. By
choosing nsamp = "exact", the LTS estimates are computed by minimizing
the sum of squares from all conceivable subsamples of size 13. This is only
feasible for small samples such as the data under investigation; otherwise some
other sampling technique should be used.1

lqs() provides two estimates of scale, the first defined via the fit criterion
and the second based on the variance of those residuals whose absolute value
is less than 2.5 times the initial estimate. Following Zaman et al. (2001), we
use the second estimate of scale and define a large residual as a scaled residual
exceeding 2.5 in absolute values. Thus, the observations corresponding to small
residuals can be extracted by

R> smallresid <- which(

+ abs(residuals(solow_lts)/solow_lts$scale[2]) <= 2.5)

We still need a method for detecting the high-leverage points. For consis-
tency, this method should be a robust method. The robustness literature pro-
vides several robust covariance estimators that can be used to determine these
points, among them the minimum-volume ellipsoid (MVE) and the minimum-
covariance determinant (MCD) methods. Both are implemented in the func-
tion cov.rob() from the MASS package, with MVE being the default.

Below, we extract the model matrix, estimate its covariance matrix by
MVE, and subsequently compute the leverage (utilizing the mahalanobis()
function), storing the observations that are not high-leverage points.

R> X <- model.matrix(solow_lm)[,-1]

R> Xcv <- cov.rob(X, nsamp = "exact")

R> nohighlev <- which(

+ sqrt(mahalanobis(X, Xcv$center, Xcv$cov)) <= 2.5)

The“good observations”are defined as those having at least one of the desired
properties, small residual or low leverage. They are determined by concate-
nating the vectors smallresid and nohighlev and removing duplicates using
unique():

R> goodobs <- unique(c(smallresid, nohighlev))

1 Our results slightly improve on Zaman et al. (2001) because they do not seem to
have used an exhaustive search for determining their robust estimates.
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Thus, the “bad observations” are

R> rownames(OECDGrowth)[-goodobs]

[1] "Canada" "USA" "Turkey" "Australia"

Running OLS excluding the bad leverage points now yields

R> solow_rob <- update(solow_lm, subset = goodobs)

R> summary(solow_rob)

Call:
lm(formula = log(gdp85/gdp60) ~ log(gdp60) + log(invest) +
log(popgrowth + 0.05), data = OECDGrowth,
subset = goodobs)

Residuals:
Min 1Q Median 3Q Max

-0.1545 -0.0555 -0.0065 0.0316 0.2677

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.7764 1.2816 2.95 0.0106
log(gdp60) -0.4507 0.0569 -7.93 1.5e-06
log(invest) 0.7033 0.1906 3.69 0.0024
log(popgrowth + 0.05) -0.6504 0.4190 -1.55 0.1429

Residual standard error: 0.107 on 14 degrees of freedom
Multiple R-squared: 0.853, Adjusted R-squared: 0.822
F-statistic: 27.1 on 3 and 14 DF, p-value: 4.3e-06

Note that the results are somewhat different from the original OLS results for
the full data set. Specifically, population growth does not seem to belong in
this model. Of course, this does not mean that population growth plays no role
in connection with economic growth but just that this variable is not needed
conditional on the inclusion of the remaining ones and, more importantly, for
this subset of countries. With a larger set of countries, population growth
is quite likely to play its role. The OECD countries are fairly homogeneous
with respect to that variable, and some countries with substantial population
growth have been excluded in the robust fit. Hence, the result should not come
as a surprise.

Augmented or extended versions of the Solow model that include further
regressors such as human capital (log(school)) and technological know-how
(log(randd)) are explored in an exercise.
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4.5 Quantile Regression

Least-squares regression can be viewed as a method for modeling the condi-
tional mean of a response. Sometimes other characteristics of the conditional
distribution are more interesting, for example the median or more generally
the quantiles. Thanks to the efforts of Roger Koenker and his co-authors,
quantile regression has recently been gaining ground as an alternative to OLS
in many econometric applications; see Koenker and Hallock (2001) for a brief
introduction and Koenker (2005) for a comprehensive treatment.

The (linear) quantile regression model is given by the conditional quantile
functions (indexed by the quantile τ)

Qy(τ |x) = x>i β;

i.e., Qy(τ |x) denotes the τ -quantile of y conditional on x. Estimates are ob-
tained by minimizing

∑
i %τ (yi−x>i β) with respect to β, where, for τ ∈ (0, 1),

%τ denotes the piecewise linear function %τ (u) = u{τ − I(u < 0)}, I being the
indicator function. This is a linear programming problem.

A fitting function, rq(), for “regression quantiles”, has long been available
in the package quantreg (Koenker 2008). For a brief illustration, we return to
the Bierens and Ginther (2001) data used in Chapter 3 and consider quantile
versions of a Mincer-type wage equation, namely

Qlog(wage)(τ |x) = β1 + β2 experience + β3 experience
2 + β4 education

The function rq() defaults to τ = 0.5; i.e., median or LAD (for“least absolute
deviations”) regression. Hence a median version of the wage equation is fitted
via

R> library("quantreg")

R> data("CPS1988")

R> cps_f <- log(wage) ~ experience + I(experience^2) + education

R> cps_lad <- rq(cps_f, data = CPS1988)

R> summary(cps_lad)

Call: rq(formula = cps_f, data = CPS1988)

tau: [1] 0.5

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 4.24088 0.02190 193.67801 0.00000
experience 0.07744 0.00115 67.50040 0.00000
I(experience^2) -0.00130 0.00003 -49.97890 0.00000
education 0.09429 0.00140 67.57170 0.00000

This may be compared with the OLS results given in the preceding chapter.
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Quantile regression is particularly useful when modeling several quantiles
simultaneously. In order to illustrate some basic functions from quantreg, we
consider the first and third quartiles (i.e., τ = 0.25 and τ = 0.75). Since rq()
takes vectors of quantiles, fitting these two models is as easy as

R> cps_rq <- rq(cps_f, tau = c(0.25, 0.75), data = CPS1988)

R> summary(cps_rq)

Call: rq(formula = cps_f, tau = c(0.25, 0.75), data = CPS1988)

tau: [1] 0.25

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 3.78227 0.02866 131.95187 0.00000
experience 0.09156 0.00152 60.26473 0.00000
I(experience^2) -0.00164 0.00004 -45.39064 0.00000
education 0.09321 0.00185 50.32519 0.00000

Call: rq(formula = cps_f, tau = c(0.25, 0.75), data = CPS1988)

tau: [1] 0.75

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 4.66005 0.02023 230.39729 0.00000
experience 0.06377 0.00097 65.41363 0.00000
I(experience^2) -0.00099 0.00002 -44.15591 0.00000
education 0.09434 0.00134 70.65853 0.00000

A natural question is whether the regression lines or surfaces are parallel; i.e.,
whether the effects of the regressors are uniform across quantiles. There exists
an anova() method for exploring this question. It requires separate fits for
each quantile and can be used in two forms: for an overall test of equality of
the entire sets of coefficients, we use

R> cps_rq25 <- rq(cps_f, tau = 0.25, data = CPS1988)

R> cps_rq75 <- rq(cps_f, tau = 0.75, data = CPS1988)

R> anova(cps_rq25, cps_rq75)

Quantile Regression Analysis of Variance Table

Model: log(wage) ~ experience + I(experience^2) + education
Joint Test of Equality of Slopes: tau in { 0.25 0.75 }

Df Resid Df F value Pr(>F)
1 3 56307 115 <2e-16
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while

R> anova(cps_rq25, cps_rq75, joint = FALSE)

Quantile Regression Analysis of Variance Table

Model: log(wage) ~ experience + I(experience^2) + education
Tests of Equality of Distinct Slopes: tau in { 0.25 0.75 }

Df Resid Df F value Pr(>F)
experience 1 56309 339.41 <2e-16
I(experience^2) 1 56309 329.74 <2e-16
education 1 56309 0.35 0.55

provides coefficient-wise comparisons. We see that effects are not uniform
across quantiles in this example, with differences being associated with the
regressor experience.

It is illuminating to visualize the results from quantile regression fits. One
possibility is to plot, for each regressor, the estimate as a function of the
quantile. This is achieved using plot() on the summary() of the quantile
regression object. In order to obtain a more meaningful plot, we now use a
larger set of τs, specifically τ ∈ {0.05, 0.1, . . . , 0.95}:

R> cps_rqbig <- rq(cps_f, tau = seq(0.05, 0.95, by = 0.05),

+ data = CPS1988)

R> cps_rqbigs <- summary(cps_rqbig)

Figure 4.5, obtained via

R> plot(cps_rqbigs)

visualizes the variation of the coefficients as a function of τ , and it is clear that
the influence of the covariates is far from uniform. The shaded areas represent
pointwise 90% (by default) confidence intervals for the quantile regression
estimates. For comparison, the horizontal solid and dashed lines shown in
each plot signify the OLS estimate and an associated 90% confidence interval.

It should be noted that quantreg contains a number of further functions for
quantile modeling, including nonlinear and nonparametric versions. There also
exist several algorithms for fitting these models (specifically, both exterior and
interior point methods) as well as several choices of methods for computing
confidence intervals and related test statistics.
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Fig. 4.5. Visualization of a quantile regression fit.

4.6 Exercises

1. Consider the CigarettesB data taken from Baltagi (2002). Run a re-
gression of real per capita consumption on real price and real per capita
income (all variables in logarithms). Obtain the usual diagnostic statis-
tics using influence.measures(). Which observations are influential? To
which states do they correspond? Are the results intuitive?

2. Reanalyze the PublicSchools data using robust methods:
(a) Run a regression of Expenditure on Income using least trimmed

squares (LTS). Which observations correspond to large LTS residu-
als?

(b) Which observations are high-leverage points?
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(c) Run OLS on the data, excluding all observations that have large LTS
residuals and are high-leverage points. Compare your result with the
analysis provided in Section 4.1.

3. Explore further growth regressions for the OECDGrowth data using the aug-
mented and extended Solow models of Nonneman and Vanhoudt (1996),
which consider the additional regressors log(school) (human capital)
and log(randd) (technological know-how), respectively. First, replicate
the OLS results from Nonneman and Vanhoudt (1996, Table IV), and
subsequently compare them with the resistant LTS results by adopting
the strategy of Zaman et al. (2001).

4. When discussing quantile regression, we confined ourselves to the standard
Mincer equation. However, the CPS1988 data contain further explanatory
variables, namely the factors ethnicity, smsa, region, and parttime.
Replicate the LAD regression (i.e., the quantile regression with τ = 0.5)
results from Bierens and Ginther (2001) using these covariates.



5

Models of Microeconometrics

Many econometrics packages can perform the analyses discussed in the fol-
lowing sections. Often, however, they do so with a different program or pro-
cedure for each type of analysis—for example, probit regression and Poisson
regression—so that the unifying structure of these methods is not apparent.

R does not come with different programs for probit and Poisson regressions.
Instead, it follows mainstream statistics in providing the unifying framework
of generalized linear models (GLMs) and a single fitting function, glm(). Fur-
thermore, models extending GLMs are provided by R functions that analo-
gously extend the basic glm() function (i.e., have similar interfaces, return
values, and associated methods).

This chapter begins with a brief introduction to GLMs, followed by sections
on regression for binary dependent variables, counts, and censored dependent
variables. The final section points to methods for multinomial and ordinal
responses and semiparametric extensions.

5.1 Generalized Linear Models

Chapter 3 was devoted to the linear regression model, for which inference
is exact and the OLS estimator coincides with the maximum likelihood esti-
mator (MLE) when the disturbances are, conditional on the regressors, i.i.d.
N (0, σ2). Here, we briefly describe how the salient features of this model can
be extended to situations where the dependent variable y comes from a wider
class of distributions.

Three aspects of the linear regression model for a conditionally normally
distributed response y are:

1. The linear predictor ηi = x>i β through which µi = E(yi|xi) depends on
the k × 1 vectors xi of observations and β of parameters.

2. The distribution of the dependent variable yi|xi is N (µi, σ
2).

3. The expected response is equal to the linear predictor, µi = ηi.

C. Kleiber, A. Zeileis, Applied Econometrics with R,
DOI: 10.1007/978-0-387-77318-6 5, © Springer Science+Business Media, LLC 2008
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The class of generalized linear models (GLMs) extends 2. and 3. to more
general families of distributions for y and to more general relations between
E(yi|xi) and the linear predictor than the identity. Specifically, yi|xi may now
follow a density or probability mass function of the type

f(y; θ, φ) = exp
{

yθ − b(θ)
φ

+ c(y;φ)
}

, (5.1)

where θ, called the canonical parameter, depends on the linear predictor, and
the additional parameter φ, called the dispersion parameter, is often known.
Also, the linear predictor and the expectation of y are now related by a mono-
tonic transformation,

g(µi) = ηi.

For fixed φ, (5.1) describes a linear exponential family, a class of distribu-
tions that includes a number of well-known distributions such as the normal,
Poisson, and binomial.

The class of generalized linear models is thus defined by the following
elements:

1. The linear predictor ηi = x>i β through which µi = E(yi|xi) depends on
the k × 1 vectors xi of observations and β of parameters.

2. The distribution of the dependent variable yi|xi is a linear exponential
family.

3. The expected response and the linear predictor are related by a monotonic
transformation, g(µi) = ηi, called the link function of the GLM.

Thus, the family of GLMs extends the applicability of linear-model ideas
to data where responses are binary or counts, among further possibilities. The
unifying framework of GLMs emerged in the statistical literature in the early
1970s (Nelder and Wedderburn 1972).

The Poisson distribution with parameter µ and probability mass function

f(y;µ) =
e−µµy

y!
, y = 0, 1, 2, . . . ,

perhaps provides the simplest example leading to a nonnormal GLM. Writing

f(y;µ) = exp(y log µ− µ− log y!),

it follows that the Poisson density has the form (5.1) with θ = log µ, b(θ) = eθ,
φ = 1, and c(y;φ) = − log y!. Furthermore, in view of E(y) = µ > 0, it is
natural to employ log µ = η; i.e., to use a logarithmic link. The transformation
g relating the original parameter, here µ, and the canonical parameter θ from
the exponential family representation is called the canonical link in the GLM
literature. Hence the logarithmic link is in fact the canonical link for the
Poisson family.
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Table 5.1. Selected GLM families and their canonical (default) links.

Family Canonical link Name

binomial log{µ/(1− µ)} logit

gaussian µ identity

poisson log µ log

Similarly, for binary data, the Bernoulli distribution (a special case of the
binomial distribution) is suitable, and here we have

f(y; p) =
{

y log
(

p

1− p

)
+ log(1− p)

}
, y ∈ {0, 1},

which shows that the logit transform log{p/(1− p)}, the quantile function of
the logistic distribution, corresponds to the canonical link for the binary re-
gression model. A widely used non-canonical link for this model is the quantile
function of the standard normal distribution, yielding the probit link.

Table 5.1 provides a summary of the most important examples of general-
ized linear models. A more complete list may be found in standard references
on GLMs such as McCullagh and Nelder (1989).

In view of the built-in distributional assumption, it is natural to estimate
a GLM by the method of maximum likelihood. For the GLM with a normally
distributed response and the identity link, the MLE reduces to the least-
squares estimator and is therefore available in closed form. In general, there
is no closed-form expression for the MLE; instead it must be determined us-
ing numerical methods. For GLMs, the standard algorithm is called iterative
weighted least squares (IWLS). It is an implementation of the familiar Fisher
scoring algorithm adapted for GLMs.

These analogies with the classical linear model suggest that a fitting func-
tion for GLMs could look almost like the fitting function for the linear model,
lm(). In R, this is indeed the case. The fitting function for GLMs is called
glm(), and its syntax closely resembles the syntax of lm(). Of course, there are
extra arguments for selecting the response distribution and the link function,
but apart from this, the familiar arguments such as formula, data, weights,
and subset are all available. In addition, all the extractor functions from Ta-
ble 3.1 have methods for objects of class “glm”, the class of objects returned
by glm().

5.2 Binary Dependent Variables

Regression problems with binary dependent variables are quite common in
microeconometrics, usually under the names of logit and probit regressions.
The model is
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E(yi|xi) = pi = F (x>i β), i = 1, . . . , n,

where F equals the standard normal CDF in the probit case and the logistic
CDF in the logit case. As noted above, fitting logit or probit models proceeds
using the function glm() with the appropriate family argument (including
a specification of the link function). For binary responses (i.e., Bernoulli
outcomes), the family is binomial, and the link is specified either as link
= "logit" or link = "probit", the former being the default. (A look at
?glm reveals that there are further link functions available, but these are not
commonly used in econometrics.)

To provide a typical example, we again turn to labor economics, consider-
ing female labor force participation for a sample of 872 women from Switzer-
land. The data were originally analyzed by Gerfin (1996) and are also used by
Davidson and MacKinnon (2004). The dependent variable is participation,
which we regress on all further variables plus age squared; i.e., on income,
education, age, age^2, numbers of younger and older children (youngkids
and oldkids), and on the factor foreign, which indicates citizenship. Fol-
lowing Gerfin (1996), we begin with a probit regression:

R> data("SwissLabor")

R> swiss_probit <- glm(participation ~ . + I(age^2),

+ data = SwissLabor, family = binomial(link = "probit"))

R> summary(swiss_probit)

Call:
glm(formula = participation ~ . + I(age^2),
family = binomial(link = "probit"), data = SwissLabor)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.919 -0.969 -0.479 1.021 2.480

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.7491 1.4069 2.66 0.0077
income -0.6669 0.1320 -5.05 4.3e-07
age 2.0753 0.4054 5.12 3.1e-07
education 0.0192 0.0179 1.07 0.2843
youngkids -0.7145 0.1004 -7.12 1.1e-12
oldkids -0.1470 0.0509 -2.89 0.0039
foreignyes 0.7144 0.1213 5.89 3.9e-09
I(age^2) -0.2943 0.0499 -5.89 3.8e-09

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1203.2 on 871 degrees of freedom
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Residual deviance: 1017.2 on 864 degrees of freedom
AIC: 1033

Number of Fisher Scoring iterations: 4

This shows that the summary of a“glm”object closely resembles the summary
of an “lm” object: there are a brief summary of the residuals and a table pro-
viding coefficients, standard errors, etc., and this is followed by some further
summary measures. Among the differences is the column labeled z value. It
provides the familiar t statistic (the estimate divided by its standard error),
but since it does not follow an exact t distribution here, even under ideal con-
ditions, it is commonly referred to its asymptotic approximation, the normal
distribution. Hence, the p value comes from the standard normal distribu-
tion here. For the current model, all variables except education are highly
significant. The dispersion parameter (denoted φ in (5.1)) is taken to be 1
because the binomial distribution is a one-parameter exponential family. The
deviance resembles the familiar residual sum of squares. Finally, the number
of Fisher scoring iterations is provided, which indicates how quickly the IWLS
algorithm terminates.

Visualization

Traditional scatterplots are of limited use in connection with binary dependent
variables. When plotting participation versus a continuous regressor such
as age using

R> plot(participation ~ age, data = SwissLabor, ylevels = 2:1)

R by default provides a so-called spinogram, which is similar to the spine
plot introduced in Section 2.8. It first groups the regressor age into inter-
vals, just as in a histogram, and then produces a spine plot for the resulting
proportions of participation within the age groups. Note that the hori-
zontal axis is distorted because the width of each age interval is propor-
tional to the corresponding number of observations. By setting ylevels =
2:1, the order of participation levels is reversed, highlighting participation
(rather than non-participation). Figure 5.1 shows the resulting plot for the
regressors education and age, indicating an approximately quadratic rela-
tionship between participation and age and slight nonlinearities between
participation and education.

Effects

In view of
∂E(yi|xi)

∂xij
=

∂Φ(x>i β)
∂xij

= φ(x>i β) · βj , (5.2)

effects in a probit regression model vary with the regressors. Researchers
often state average marginal effects when reporting results from a binary
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Fig. 5.1. Spinograms for binary dependent variables.

GLM. There are several versions of such averages. It is perhaps best to use
n−1

∑n
i=1 φ(x>i β̂) · β̂j , the average of the sample marginal effects. In R, this is

simply

R> fav <- mean(dnorm(predict(swiss_probit, type = "link")))

R> fav * coef(swiss_probit)

(Intercept) income age education youngkids
1.241930 -0.220932 0.687466 0.006359 -0.236682
oldkids foreignyes I(age^2)

-0.048690 0.236644 -0.097505

Another version evaluates (5.2) at the average regressor, x̄. This is straight-
forward as long as all regressors are continuous; however, more often than
not, the model includes factors. In this case, it is preferable to report average
effects for all levels of the factors, averaging only over continuous regressors.
In the case of the SwissLabor data, there is only a single factor, foreign, in-
dicating whether the individual is Swiss or not. Thus, average marginal effects
for these groups are available via

R> av <- colMeans(SwissLabor[, -c(1, 7)])

R> av <- data.frame(rbind(swiss = av, foreign = av),

+ foreign = factor(c("no", "yes")))

R> av <- predict(swiss_probit, newdata = av, type = "link")

R> av <- dnorm(av)

R> av["swiss"] * coef(swiss_probit)[-7]

(Intercept) income age education youngkids
1.495137 -0.265976 0.827628 0.007655 -0.284938
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oldkids I(age^2)
-0.058617 -0.117384

and

R> av["foreign"] * coef(swiss_probit)[-7]

(Intercept) income age education youngkids
1.136517 -0.202180 0.629115 0.005819 -0.216593
oldkids I(age^2)

-0.044557 -0.089229

This indicates that all effects are smaller in absolute size for the foreign women.
Furthermore, methods for visualizing effects in linear and generalized linear

models are available in the package effects (Fox 2003).

Goodness of fit and prediction

In contrast to the linear regression model, there is no commonly accepted
version of R2 for generalized linear models, not even for the special case of
binary dependent variables.

R2 measures for nonlinear models are often called pseudo-R2s. If we define
`(β̂) as the log-likelihood for the fitted model and `(ȳ) as the log-likelihood
for the model containing only a constant term, we can use a ratio of log-
likelihoods,

R2 = 1− `(β̂)
`(ȳ)

,

often called McFadden’s pseudo-R2. This is easily made available in R by
computing the null model, and then extracting the logLik() values for the
two models

R> swiss_probit0 <- update(swiss_probit, formula = . ~ 1)

R> 1 - as.vector(logLik(swiss_probit)/logLik(swiss_probit0))

[1] 0.1546

yields a rather modest pseudo-R2 for the model fitted to the SwissLabor data.
In the first line of the code chunk above, the update() call reevaluates the
original call using the formula corresponding to the null model. In the second
line, as.vector() strips off all additional attributes returned by logLik()
(namely the "class" and "df" attributes).

A further way of assessing the fit of a binary regression model is to compare
the categories of the observed responses with their fitted values. This requires
prediction for GLMs. The generic function predict() also has a method for
objects of class “glm”. However, for GLMs, things are slightly more involved
than for linear models in that there are several types of predictions. Specifi-
cally, the predict() method for “glm” objects has a type argument allowing
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types "link", "response", and "terms". The default "link" is on the scale
of the linear predictors, and "response" is on the scale of the mean of the
response variable. For a binary regression model, the default predictions are
thus of probabilities on the logit or probit scales, while type = "response"
yields the predicted probabilities themselves. (In addition, the "terms" option
returns a matrix giving the fitted values of each term in the model formula
on the linear-predictor scale.)

In order to obtain the predicted class, we round the predicted probabili-
ties and tabulate the result against the actual values of participation in a
confusion matrix,

R> table(true = SwissLabor$participation,

+ pred = round(fitted(swiss_probit)))

pred
true 0 1
no 337 134
yes 146 255

corresponding to 67.89% correctly classified and 32.11% misclassified obser-
vations in the observed sample.

However, this evaluation of the model uses the arbitrarily chosen cutoff 0.5
for the predicted probabilities. To avoid choosing a particular cutoff, the per-
formance can be evaluated for every conceivable cutoff; e.g., using (as above)
the“accuracy”of the model, the proportion of correctly classified observations,
as the performance measure. The left panel of Figure 5.2 indicates that the
best accuracy is achieved for a cutoff slightly below 0.5.

Alternatively, the receiver operating characteristic (ROC) curve can be
used: for every cutoff c ∈ [0, 1], the associated true positive rate (TPR(c),
in our case the number of women participating in the labor force that are
also classified as participating compared with the total number of women
participating) is plotted against the false positive rate (FPR(c), in our case
the number of women not participating in the labor force that are classified as
participating compared with the total number of women not participating).
Thus, ROC = {(FPR(c),TPR(c)) | c ∈ [0, 1]}, and this curve is displayed in
the right panel of Figure 5.2. For a sensible predictive model, the ROC curve
should be at least above the diagonal (which corresponds to random guessing).
The closer the curve is to the upper left corner (FPR = 0, TPR = 1), the
better the model performs.

In R, visualizations of these (and many other performance measures) can be
created using the ROCR package (Sing, Sander, Beerenwinkel, and Lengauer
2005). In the first step, the observations and predictions are captured in an
object created by prediction(). Subsequently, various performances can be
computed and plotted:

R> library("ROCR")

R> pred <- prediction(fitted(swiss_probit),
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Fig. 5.2. Accuracy and ROC curve for labor force probit regression.

+ SwissLabor$participation)

R> plot(performance(pred, "acc"))

R> plot(performance(pred, "tpr", "fpr"))

R> abline(0, 1, lty = 2)

Figure 5.2 indicates that the fit is reasonable but also that there is room
for improvement. We will reconsider this problem at the end of this chapter
using semiparametric techniques.

Residuals and diagnostics

For residual-based diagnostics, a residuals() method for “glm” objects is
available. It provides various types of residuals, the most prominent of which
are deviance and Pearson residuals. The former are defined as (signed) con-
tributions to the overall deviance of the model and are computed by default
in R. The latter are the raw residuals yi− µ̂i scaled by the standard error (of-
ten called standardized residuals in econometrics) and are available by setting
type = "pearson". Other types of residuals useful in certain situations and
readily available via the residuals() method are working, raw (or response),
and partial residuals. The associated sums of squares can be inspected using

R> deviance(swiss_probit)

[1] 1017

R> sum(residuals(swiss_probit, type = "deviance")^2)

[1] 1017

R> sum(residuals(swiss_probit, type = "pearson")^2)
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[1] 866.5

and an analysis of deviance is performed by the anova() method for “glm”ob-
jects. Other standard tests for nested model comparisons, such as waldtest(),
linear.hypothesis(), and coeftest(), are available as well.

We also note that sandwich estimates of the covariance matrix are available
in the usual manner, and thus

R> coeftest(swiss_probit, vcov = sandwich)

would give the usual regression output with robustified standard errors and
t statistics. However, the binary case differs from the linear regression model
in that it is not possible to misspecify the variance while correctly specifying
the regression equation. Instead, both are either correctly specified or not.
Thus, users must be aware that, in the case where conventional and sandwich
standard errors are very different, there are likely to be problems with the
regression itself and not just with the variances of the estimates. Therefore, we
do not recommend general use of sandwich estimates in the binary regression
case (see also Freedman 2006, for further discussion). Sandwich estimates are
much more useful and less controversial in Poisson regressions, as discussed
in the following section.

(Quasi-)complete separation

To conclude this section, we briefly discuss an issue that occasionally arises
with probit or logit regressions. For illustration, we consider a textbook ex-
ample inspired by Stokes (2004). The goal is to study the deterrent effect
of capital punishment in the United States of America in 1950 utilizing the
MurderRates data taken from Maddala (2001). Maddala uses these data to
illustrate probit and logit models, apparently without noticing that there is a
problem.

Running a logit regression of an indicator of the incidence of executions
(executions) during 1946–1950 on the median time served of convicted mur-
derers released in 1951 (time in months), the median family income in 1949
(income), the labor force participation rate (in percent) in 1950 (lfp), the
proportion of the population that was non-Caucasian in 1950 (noncauc), and
a factor indicating region (southern) yields, using the defaults of the estima-
tion process,

R> data("MurderRates")

R> murder_logit <- glm(I(executions > 0) ~ time + income +

+ noncauc + lfp + southern, data = MurderRates,

+ family = binomial)

Warning message:
fitted probabilities numerically 0 or 1 occurred in:
glm.fit(x = X, y = Y, weights = weights, start = start,
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Thus, calling glm() results in a warning message according to which some
fitted probabilities are numerically identical to zero or one. Also, the standard
error of southern is suspiciously large:

R> coeftest(murder_logit)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 10.9933 20.7734 0.53 0.597
time 0.0194 0.0104 1.87 0.062
income 10.6101 5.6541 1.88 0.061
noncauc 70.9879 36.4118 1.95 0.051
lfp -0.6676 0.4767 -1.40 0.161
southernyes 17.3313 2872.1707 0.01 0.995

Clearly, this model deserves a closer look. The warning suggests that numerical
problems were encountered, so it is advisable to modify the default settings
of the IWLS algorithm in order to determine the source of the phenomenon.
The relevant argument to glm() is control, which takes a list consisting of
the entries epsilon, the convergence tolerance epsilon, maxit, the maximum
number of IWLS iterations, and trace, the latter indicating if intermediate
output is required for each iteration. Simultaneously decreasing the epsilon
and increasing the maximum number of iterations yields

R> murder_logit2 <- glm(I(executions > 0) ~ time + income +

+ noncauc + lfp + southern, data = MurderRates,

+ family = binomial, control = list(epsilon = 1e-15,

+ maxit = 50, trace = FALSE))

Warning message:
fitted probabilities numerically 0 or 1 occurred in:
glm.fit(x = X, y = Y, weights = weights, start = start,

Interestingly, the warning does not go away and the coefficient on southern
has doubled, accompanied by a 6,000-fold increase of the corresponding stan-
dard error:

R> coeftest(murder_logit2)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.10e+01 2.08e+01 0.53 0.597
time 1.94e-02 1.04e-02 1.87 0.062
income 1.06e+01 5.65e+00 1.88 0.061
noncauc 7.10e+01 3.64e+01 1.95 0.051
lfp -6.68e-01 4.77e-01 -1.40 0.161
southernyes 3.13e+01 1.73e+07 1.8e-06 1.000
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The explanation of this phenomenon is somewhat technical: although the like-
lihood of the logit model is known to be globally concave and bounded from
above, this does not imply that an interior maximum exists. This is precisely
the problem we encountered here, and it depends on the settings of the func-
tion call when and where the algorithm terminates. Termination does not
mean that a maximum was found, just that it was not possible to increase
the objective function beyond the tolerance epsilon supplied. Specifically, we
have here a situation where the maximum likelihood estimator does not exist.
Instead, there exists a β0 such that

yi = 0 whenever x>i β0 ≤ 0,

yi = 1 whenever x>i β0 ≥ 0.

If this is the case, the data are said to exhibit quasi-complete separation
(the case of strict inequalities being called complete separation). Although
the effect is not uncommon with small data sets, it is rarely discussed in
textbooks; Davidson and MacKinnon (2004) is an exception.

For the problem at hand, the change in the coefficient on southern already
indicates that this variable alone is responsible for the effect. A tabulation
reveals

R> table(I(MurderRates$executions > 0), MurderRates$southern)

no yes
FALSE 9 0
TRUE 20 15

In short, all of the 15 southern states, plus 20 of the remaining ones, executed
convicted murderers during the period in question; thus the variable southern
alone contains a lot of information on the dependent variable.

In practical terms, complete or quasi-complete separation is not necessarily
a nuisance. After all, we are able to perfectly distinguish the zeros from the
ones. However, many practitioners find it counterintuitive, if not disturbing,
that the nonexistence of the MLE might be beneficial in some situations. Note
also that inspection of the individual t statistics in coeftest(murder_logit)
suggests excluding southern. As a result, the warning would have gone away,
but the predictions would have been worse. The message is to carefully study
such warnings in regressions with a binary dependent variable, with huge
standard errors often pointing to the source of the problem.

5.3 Regression Models for Count Data

In this section, we consider a number of regression models for count data.
A convenient reference on the methodological background is Cameron and
Trivedi (1998). For illustration, we use the RecreationDemand data previ-
ously analyzed by Ozuna and Gomez (1995) and Gurmu and Trivedi (1996),
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among others. The data are cross-section data on the number of recreational
boating trips to Lake Somerville, Texas, in 1980, based on a survey adminis-
tered to 2,000 registered leisure boat owners in 23 counties in eastern Texas.
The dependent variable is trips, and we want to regress it on all further
variables: a (subjective) quality ranking of the facility (quality), a factor
indicating whether the individual engaged in water-skiing at the lake (ski),
household income (income), a factor indicating whether the individual paid
a user’s fee at the lake (userfee), and three cost variables (costC, costS,
costH) representing opportunity costs.

We begin with the standard model for count data, a Poisson regression.
As noted above, this is a generalized linear model. Using the canonical link
for the Poisson family (the log link), the model is

E(yi|xi) = µi = exp(x>i β).

Fitting is as simple as

R> data("RecreationDemand")

R> rd_pois <- glm(trips ~ ., data = RecreationDemand,

+ family = poisson)

To save space, we only present the partial coefficient tests and not the full
summary() output:

R> coeftest(rd_pois)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.26499 0.09372 2.83 0.0047
quality 0.47173 0.01709 27.60 < 2e-16
skiyes 0.41821 0.05719 7.31 2.6e-13
income -0.11132 0.01959 -5.68 1.3e-08
userfeeyes 0.89817 0.07899 11.37 < 2e-16
costC -0.00343 0.00312 -1.10 0.2713
costS -0.04254 0.00167 -25.47 < 2e-16
costH 0.03613 0.00271 13.34 < 2e-16

This would seem to indicate that almost all regressors are highly significant.
For later reference, we note the log-likelihood of the fitted model:

R> logLik(rd_pois)

'log Lik.' -1529 (df=8)

Dealing with overdispersion

Recall that the Poisson distribution has the property that the variance equals
the mean (“equidispersion”). This built-in feature needs to be checked in any
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empirical application. In econometrics, Poisson regressions are often plagued
by overdispersion, meaning that the variance is larger than the linear predictor
permits.

One way of testing for overdispersion is to consider the alternative hypoth-
esis (Cameron and Trivedi 1990)

Var(yi|xi) = µi + α · h(µi), (5.3)

where h is a positive function of µi. Overdispersion corresponds to α > 0
and underdispersion to α < 0. The coefficient α can be estimated by an
auxiliary OLS regression and tested with the corresponding t statistic, which
is asymptotically standard normal under the null hypothesis of equidispersion.

Common specifications of the transformation function h are h(µ) = µ2 or
h(µ) = µ. The former corresponds to a negative binomial (NB) model (see
below) with quadratic variance function (called NB2 by Cameron and Trivedi
1998), the latter to an NB model with linear variance function (called NB1
by Cameron and Trivedi 1998). In the statistical literature, the reparameter-
ization

Var(yi|xi) = (1 + α) · µi = dispersion · µi (5.4)

of the NB1 model is often called a quasi-Poisson model with dispersion pa-
rameter.

The package AER provides the function dispersiontest() for testing
equidispersion against alternative (5.3). By default, the parameterization (5.4)
is used. Alternatively, if the argument trafo is specified, the test is formulated
in terms of the parameter α. Tests against the quasi-Poisson formulation and
the NB2 alternative are therefore available using

R> dispersiontest(rd_pois)

Overdispersion test

data: rd_pois
z = 2.412, p-value = 0.007941
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion

6.566

and

R> dispersiontest(rd_pois, trafo = 2)

Overdispersion test

data: rd_pois
z = 2.938, p-value = 0.001651
alternative hypothesis: true alpha is greater than 0
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sample estimates:
alpha
1.316

Both suggest that the Poisson model for the trips data is not well specified in
that there appears to be a substantial amount of overdispersion.

One possible remedy is to consider a more flexible distribution that does
not impose equality of mean and variance. The most widely used distribu-
tion in this context is the negative binomial. It may be considered a mixture
distribution arising from a Poisson distribution with random scale, the latter
following a gamma distribution. Its probability mass function is

f(y;µ, θ) =
Γ (θ + y)
Γ (θ)y!

µyθθ

(µ + θ)y+θ
, y = 0, 1, 2, . . . , µ > 0, θ > 0.

The variance of the negative binomial distribution is given by

Var(y;µ, θ) = µ +
1
θ
µ2,

which is of the form (5.3) with h(µ) = µ2 and α = 1/θ.
If θ is known, this distribution is of the general form (5.1). The Poisson

distribution with parameter µ arises for θ → ∞. The geometric distribution
is the special case where θ = 1.

In R, tools for negative binomial regression are provided by the MASS
package (Venables and Ripley 2002). Specifically, for estimating negative bi-
nomial GLMs with known θ, the function negative.binomial() can be used;
e.g., for a geometric regression via family = negative.binomial(theta =
1). For unknown θ, the function glm.nb() is available. Thus

R> library("MASS")

R> rd_nb <- glm.nb(trips ~ ., data = RecreationDemand)

R> coeftest(rd_nb)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.12194 0.21430 -5.24 1.6e-07
quality 0.72200 0.04012 18.00 < 2e-16
skiyes 0.61214 0.15030 4.07 4.6e-05
income -0.02606 0.04245 -0.61 0.539
userfeeyes 0.66917 0.35302 1.90 0.058
costC 0.04801 0.00918 5.23 1.7e-07
costS -0.09269 0.00665 -13.93 < 2e-16
costH 0.03884 0.00775 5.01 5.4e-07
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R> logLik(rd_nb)

'log Lik.' -825.6 (df=9)

provides a new model for the trips data. The shape parameter of the fitted neg-
ative binomial distribution is θ̂ = 0.7293, suggesting a considerable amount of
overdispersion and confirming the results from the test for overdispersion. We
note that the negative binomial model represents a substantial improvement
in terms of likelihood.

Robust standard errors

Instead of switching to a more general family of distributions, it is also possible
to use the Poisson estimates along with a set of standard errors estimated
under less restrictive assumptions, provided the mean is correctly specified.
The package sandwich implements sandwich variance estimators for GLMs
via the sandwich() function. In microeconometric applications, the resulting
estimates are often called Huber-White standard errors. For the problem at
hand, Poisson and Huber-White errors are rather different:

R> round(sqrt(rbind(diag(vcov(rd_pois)),

+ diag(sandwich(rd_pois)))), digits = 3)

(Intercept) quality skiyes income userfeeyes costC costS
[1,] 0.094 0.017 0.057 0.02 0.079 0.003 0.002
[2,] 0.432 0.049 0.194 0.05 0.247 0.015 0.012

costH
[1,] 0.003
[2,] 0.009

This again indicates that the simple Poisson model is inadequate. Regression
output utilizing robust standard errors is available using

R> coeftest(rd_pois, vcov = sandwich)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.26499 0.43248 0.61 0.54006
quality 0.47173 0.04885 9.66 < 2e-16
skiyes 0.41821 0.19387 2.16 0.03099
income -0.11132 0.05031 -2.21 0.02691
userfeeyes 0.89817 0.24691 3.64 0.00028
costC -0.00343 0.01470 -0.23 0.81549
costS -0.04254 0.01173 -3.62 0.00029
costH 0.03613 0.00939 3.85 0.00012

It should be noted that the sandwich estimator is based on first and second
derivatives of the likelihood: the outer product of gradients (OPG) forms the
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Fig. 5.3. Empirical distribution of trips.

“meat” and the second derivatives the “bread” of the sandwich (see Zeileis
2006b, for further details on the implementation). Both are asymptotically
equivalent under correct specification, and the default estimator of the covari-
ance (computed by the vcov() method) is based on the “bread”. However, it
is also possible to employ the “meat” alone. This is usually called the OPG
estimator in econometrics. It is nowadays considered to be inferior to com-
peting estimators, but as it is often found in the older literature, it might be
useful to have it available for comparison. OPG standard errors for our model
are given by

R> round(sqrt(diag(vcovOPG(rd_pois))), 3)

(Intercept) quality skiyes income userfeeyes
0.025 0.007 0.020 0.010 0.033
costC costS costH
0.001 0.000 0.001

Zero-inflated Poisson and negative binomial models

A typical problem with count data regressions arising in microeconometric
applications is that the number of zeros is often much larger than a Pois-
son or negative binomial regression permit. Figure 5.3 indicates that the
RecreationDemand data contain a large number of zeros; in fact, no less than
63.28% of all respondents report no trips to Lake Somerville.
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However, the Poisson regression fitted above only provides 41.96% of zero
observations, again suggesting that this model is not satisfactory. A closer
look at observed and expected counts reveals

R> rbind(obs = table(RecreationDemand$trips)[1:10], exp = round(

+ sapply(0:9, function(x) sum(dpois(x, fitted(rd_pois))))))

0 1 2 3 4 5 6 7 8 9
obs 417 68 38 34 17 13 11 2 8 1
exp 277 146 68 41 30 23 17 13 10 7

This again underlines that there are problems with the previously considered
specification. In fact, the variance-to-mean ratio for the trips variable equals
17.64, a value usually too large to be accommodated by covariates. Alternative
models are needed.

One such model is the zero-inflated Poisson (ZIP) model (Lambert 1992),
which suggests a mixture specification with a Poisson count component and
an additional point mass at zero. With IA(y) denoting the indicator function,
the basic idea is

fzeroinfl(y) = pi · I{0}(y) + (1− pi) · fcount(y;µi),

where now µi and pi are modeled as functions of the available covariates. Em-
ploying the canonical link for the count part gives log(µi) = x>i β, while for the
binary part g(pi) = z>i γ for some quantile function g, with the canonical link
given by the logistic distribution and the probit link as a popular alternative.
Note that the two sets of regressors xi and zi need not be identical.

The package pscl provides a function zeroinfl() for fitting this family
of models (Zeileis, Kleiber, and Jackman 2008), allowing Poisson, geometric,
and negative binomial distributions for the count component fcount(y).

Following Cameron and Trivedi (1998), we consider a regression of trips
on all further variables for the count part (using a negative binomial distribu-
tion) and model the inflation part as a function of quality and income:

R> rd_zinb <- zeroinfl(trips ~ . | quality + income,

+ data = RecreationDemand, dist = "negbin")

This specifies the linear predictor in the count part as employing all avail-
able regressors, while the inflation part, separated by |, only uses quality
and income. The inflation part by default uses the logit model, but all other
links available in glm() may also be used upon setting the argument link
appropriately. For the RecreationDemand data, a ZINB model yields

R> summary(rd_zinb)

Call:
zeroinfl(formula = trips ~ . | quality + income,
data = RecreationDemand, dist = "negbin")
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Count model coefficients (negbin with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.09663 0.25668 4.27 1.9e-05
quality 0.16891 0.05303 3.19 0.00145
skiyes 0.50069 0.13449 3.72 0.00020
income -0.06927 0.04380 -1.58 0.11378
userfeeyes 0.54279 0.28280 1.92 0.05494
costC 0.04044 0.01452 2.79 0.00534
costS -0.06621 0.00775 -8.55 < 2e-16
costH 0.02060 0.01023 2.01 0.04415
Log(theta) 0.19017 0.11299 1.68 0.09235

Zero-inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.743 1.556 3.69 0.00022
quality -8.307 3.682 -2.26 0.02404
income -0.258 0.282 -0.92 0.35950

Theta = 1.209
Number of iterations in BFGS optimization: 26
Log-likelihood: -722 on 12 Df

showing a clearly improved log-likelihood compared with the plain negative
binomial model. The expected counts are given by

R> round(colSums(predict(rd_zinb, type = "prob")[,1:10]))

0 1 2 3 4 5 6 7 8 9
433 47 35 27 20 16 12 10 8 7

which shows that both the zeros and the remaining counts are captured much
better than in the previous models. Note that the predict() method for type
= "prob" returns a matrix that provides a vector of expected probabilities
for each observation. By taking column sums, the expected counts can be
computed, here for 0, . . . , 9.

Hurdle models

Another model that is able to capture excessively large (or small) numbers of
zeros is the hurdle model (Mullahy 1986). In economics, it is more widely used
than the zero-inflation model presented above. The hurdle model consists of
two parts (hence it is also called a “two-part model”):

• A binary part (given by a count distribution right-censored at y = 1):
Is yi equal to zero or positive? “Is the hurdle crossed?”

• A count part (given by a count distribution left-truncated at y = 1):
If yi > 0, how large is yi?
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This results in a model with

fhurdle(y;x, z, β, γ)

=
{

fzero(0; z, γ), if y = 0,
{1− fzero(0; z, γ)} · fcount(y;x, β)/{1− fcount(0;x, β)}, if y > 0.

The hurdle model is somewhat easier to fit than the zero-inflation model
because the resulting likelihood decomposes into two parts that may be max-
imized separately.

The package pscl also provides a function hurdle(). Again following
Cameron and Trivedi (1998), we consider a regression of trips on all fur-
ther variables for the count part and model the inflation part as a function of
only quality and income. The available distributions in hurdle() are again
Poisson, negative binomial, and geometric.

We warn readers that there exist several parameterizations of hurdle mod-
els that differ with respect to the hurdle mechanism. Here it is possible to
specify either a count distribution right-censored at one or a Bernoulli distri-
bution distinguishing between zeros and non-zeros (which is equivalent to the
right-censored geometric distribution). The first variant appears to be more
common in econometrics; however, the Bernoulli specification is more intu-
itively interpretable as a hurdle (and hence used by default in hurdle()).
Here, we employ the latter, which is equivalent to the geometric distribution
used by Cameron and Trivedi (1998).

R> rd_hurdle <- hurdle(trips ~ . | quality + income,

+ data = RecreationDemand, dist = "negbin")

R> summary(rd_hurdle)

Call:
hurdle(formula = trips ~ . | quality + income,
data = RecreationDemand, dist = "negbin")

Count model coefficients (truncated negbin with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8419 0.3828 2.20 0.0278
quality 0.1717 0.0723 2.37 0.0176
skiyes 0.6224 0.1901 3.27 0.0011
income -0.0571 0.0645 -0.88 0.3763
userfeeyes 0.5763 0.3851 1.50 0.1345
costC 0.0571 0.0217 2.63 0.0085
costS -0.0775 0.0115 -6.71 1.9e-11
costH 0.0124 0.0149 0.83 0.4064
Log(theta) -0.5303 0.2611 -2.03 0.0423
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Zero hurdle model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7663 0.3623 -7.64 2.3e-14
quality 1.5029 0.1003 14.98 < 2e-16
income -0.0447 0.0785 -0.57 0.57

Theta: count = 0.588
Number of iterations in BFGS optimization: 18
Log-likelihood: -765 on 12 Df

Again, we consider the expected counts:

R> round(colSums(predict(rd_hurdle, type = "prob")[,1:10]))

0 1 2 3 4 5 6 7 8 9
417 74 42 27 19 14 10 8 6 5

Like the ZINB model, the negative binomial hurdle model results in a consid-
erable improvement over the initial Poisson specification.

Further details on fitting, assessing and comparing regression models for
count data can be found in Zeileis et al. (2008).

5.4 Censored Dependent Variables

Censored dependent variables have been used in econometrics ever since To-
bin (1958) modeled the demand for durable goods by means of a censored
latent variable. Specifically, the tobit model posits a Gaussian linear model
for a latent variable, say y0. y0 is only observed if positive; otherwise zero is
reported:

y0
i = x>i β + εi, εi|xi ∼ N (0, σ2) i.i.d.,

yi =
{

y0
i , y0

i > 0,
0, y0

i ≤ 0.

The log-likelihood of this model is thus given by

`(β, σ2) =
∑
yi>0

(
log φ{(yi − x>i β)/σ} − log σ

)
+

∑
yi=0

log Φ(x>i β/σ).

To statisticians, especially biostatisticians, this is a special case of a censored
regression model. An R package for fitting such models has long been available,
which is the survival package accompanying Therneau and Grambsch (2000).
(In fact, survival even contains Tobin’s original data; readers may want to
explore data("tobin") there.) However, many aspects of that package will
not look familiar to econometricians, and thus our package AER comes with
a convenience function tobit() interfacing survival’s survreg() function.
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We illustrate the mechanics using a famous—or perhaps infamous—data
set taken from Fair (1978). It is available as Affairs in AER and provides
the results of a survey on extramarital affairs conducted by the US magazine
Psychology Today in 1969. The dependent variable is affairs, the number of
extramarital affairs during the past year, and the available regressors include
age, yearsmarried, children (a factor indicating the presence of children),
occupation (a numeric score coding occupation), and rating (a numeric
variable coding the self-rating of the marriage; the scale is 1 through 5, with
5 indicating “very happy”).

We note that the dependent variable is a count and is thus perhaps best
analyzed along different lines; however, for historical reasons and for com-
parison with sources such as Greene (2003), we follow the classical approach.
(Readers are asked to explore count data models in an exercise.)

tobit() has a formula interface like lm(). For the classical tobit model
with left-censoring at zero, only this formula and a data set are required:

R> data("Affairs")

R> aff_tob <- tobit(affairs ~ age + yearsmarried +

+ religiousness + occupation + rating, data = Affairs)

R> summary(aff_tob)

Call:
tobit(formula = affairs ~ age + yearsmarried +
religiousness + occupation + rating, data = Affairs)

Observations:
Total Left-censored Uncensored Right-censored
601 451 150 0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 8.1742 2.7414 2.98 0.0029
age -0.1793 0.0791 -2.27 0.0234
yearsmarried 0.5541 0.1345 4.12 3.8e-05
religiousness -1.6862 0.4038 -4.18 3.0e-05
occupation 0.3261 0.2544 1.28 0.2000
rating -2.2850 0.4078 -5.60 2.1e-08
Log(scale) 2.1099 0.0671 31.44 < 2e-16

Scale: 8.25

Gaussian distribution
Number of Newton-Raphson Iterations: 4
Log-likelihood: -706 on 7 Df
Wald-statistic: 67.7 on 5 Df, p-value: 3.1e-13
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The output comprises the usual regression output along with the value of the
log-likelihood and a Wald statistic paralleling the familiar regression F statis-
tic. For convenience, a tabulation of censored and uncensored observations is
also included. The results indicate that yearsmarried and rating are the
main “risk factors”.

To further illustrate the arguments to tobit(), we refit the model by
introducing additional censoring from the right:

R> aff_tob2 <- update(aff_tob, right = 4)

R> summary(aff_tob2)

Call:
tobit(formula = affairs ~ age + yearsmarried +
religiousness + occupation + rating, right = 4,
data = Affairs)

Observations:
Total Left-censored Uncensored Right-censored
601 451 70 80

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.9010 2.8039 2.82 0.00483
age -0.1776 0.0799 -2.22 0.02624
yearsmarried 0.5323 0.1412 3.77 0.00016
religiousness -1.6163 0.4244 -3.81 0.00014
occupation 0.3242 0.2539 1.28 0.20162
rating -2.2070 0.4498 -4.91 9.3e-07
Log(scale) 2.0723 0.1104 18.77 < 2e-16

Scale: 7.94

Gaussian distribution
Number of Newton-Raphson Iterations: 4
Log-likelihood: -500 on 7 Df
Wald-statistic: 42.6 on 5 Df, p-value: 4.5e-08

The standard errors are now somewhat larger, reflecting the fact that heav-
ier censoring leads to a loss of information. tobit() also permits, via the
argument dist, alternative distributions of the latent variable, including the
logistic and Weibull distributions.

Among the methods for objects of class “tobit”, we briefly consider a
Wald-type test:

R> linear.hypothesis(aff_tob, c("age = 0", "occupation = 0"),

+ vcov = sandwich)
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Linear hypothesis test

Hypothesis:
age = 0
occupation = 0

Model 1: affairs ~ age + yearsmarried + religiousness +
occupation + rating

Model 2: restricted model

Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq)
1 594
2 596 -2 4.91 0.086

Thus, the regressors age and occupation are jointly weakly significant. For
illustration, we use a sandwich covariance estimate, although it should be
borne in mind that, as in the binary and unlike the Poisson case, in this
model, misspecification of the variance typically also means misspecification
of the mean (see again Freedman 2006, for further discussion).

5.5 Extensions

The number of models used in microeconometrics has grown considerably over
the last two decades. Due to space constraints, we can only afford to briefly
discuss a small selection. We consider a semiparametric version of the binary
response model as well as multinomial and ordered logit models.

Table 5.2 provides a list of further relevant packages.

A semiparametric binary response model

Recall that the log-likelihood of the binary response model is

`(β) =
n∑

i=1

{
yi log F (x>i β) + (1− yi) log{1− F (x>i β)}

}
,

where F is the CDF of the logistic or the Gaussian distribution in the logit or
probit case, respectively. The Klein and Spady (1993) approach estimates F
via kernel methods, and thus it may be considered a semiparametric maximum
likelihood estimator. In another terminology, it is a semiparametric single-
index model. We refer to Li and Racine (2007) for a recent exposition.

In R, the Klein and Spady estimator is available in the package np (Hayfield
and Racine 2008), the package accompanying Li and Racine (2007). Since
the required functions from that package currently do not accept factors as
dependent variables, we preprocess the SwissLabor data via
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Table 5.2. Further packages for microeconometrics.

Package Description

gam Generalized additive models (Hastie 2006)

lme4 Nonlinear random-effects models: counts, binary depen-
dent variables, etc. (Bates 2008)

mgcv Generalized additive (mixed) models (Wood 2006)

micEcon Demand systems, cost and production functions (Hen-
ningsen 2008)

mlogit Multinomial logit models with choice-specific variables
(Croissant 2008)

robustbase Robust/resistant regression for GLMs (Maechler,
Rousseeuw, Croux, Todorov, Ruckstuhl, and Salibian-
Barrera 2007)

sampleSelection Selection models: generalized tobit, heckit (Toomet and
Henningsen 2008)

R> SwissLabor$partnum <- as.numeric(SwissLabor$participation) - 1

which creates a dummy variable partnum within SwissLabor that codes non-
participation and participation as 0 and 1, respectively. Fitting itself requires
first computing a bandwidth object using the function npindexbw(), as in

R> library("np")

R> swiss_bw <- npindexbw(partnum ~ income + age + education +

+ youngkids + oldkids + foreign + I(age^2), data = SwissLabor,

+ method = "kleinspady", nmulti = 5)

A summary of the bandwidths is available via

R> summary(swiss_bw)

Single Index Model
Regression data (872 observations, 7 variable(s)):

income age education youngkids oldkids foreign
Beta: 1 -2.219 -0.0249 -5.515 0.1797 -0.8268

I(age^2)
Beta: 0.3427
Bandwidth: 0.383
Optimisation Method: Nelder-Mead
Regression Type: Local-Constant
Bandwidth Selection Method: Klein and Spady
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Formula: partnum ~ income + age + education + youngkids +
oldkids + foreign + I(age^2)

Objective Function Value: 0.5934 (achieved on multistart 3)

Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 1

Finally, the Klein and Spady estimate is given by passing the bandwidth object
swiss_bw to npindex():

R> swiss_ks <- npindex(bws = swiss_bw, gradients = TRUE)

R> summary(swiss_ks)

Single Index Model
Regression Data: 872 training points, in 7 variable(s)

income age education youngkids oldkids foreign
Beta: 1 -2.219 -0.0249 -5.515 0.1797 -0.8268

I(age^2)
Beta: 0.3427
Bandwidth: 0.383
Kernel Regression Estimator: Local-Constant

Confusion Matrix
Predicted

Actual 0 1
0 345 126
1 137 264

Overall Correct Classification Ratio: 0.6984
Correct Classification Ratio By Outcome:

0 1
0.7325 0.6584

McFadden-Puig-Kerschner performance measure from
prediction-realization tables: 0.6528

Continuous Kernel Type: Second-Order Gaussian
No. Continuous Explanatory Vars.: 1

The resulting confusion matrix may be compared with the confusion matrix
of the original probit model (see Section 5.2),

R> table(Actual = SwissLabor$participation, Predicted =

+ round(predict(swiss_probit, type = "response")))
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Predicted
Actual 0 1

no 337 134
yes 146 255

showing that the semiparametric model has slightly better (in-sample) per-
formance.

When applying semiparametric procedures such as the Klein and Spady
method, one should be aware that these are rather time-consuming (despite
the optimized and compiled C code underlying the np package). In fact, the
model above takes more time than all other examples together when compiling
this book on the authors’ machines.

Multinomial responses

For illustrating the most basic version of the multinomial logit model, a model
with only individual-specific covariates, we consider the BankWages data taken
from Heij, de Boer, Franses, Kloek, and van Dijk (2004). It contains, for em-
ployees of a US bank, an ordered factor job with levels "custodial", "admin"
(for administration), and "manage" (for management), to be modeled as a
function of education (in years) and a factor minority indicating minority
status. There also exists a factor gender, but since there are no women in the
category "custodial", only a subset of the data corresponding to males is
used for parametric modeling below.

To obtain a first overview of how job depends on education, a table of
conditional proportions can be generated via

R> data("BankWages")

R> edcat <- factor(BankWages$education)

R> levels(edcat)[3:10] <- rep(c("14-15", "16-18", "19-21"),

+ c(2, 3, 3))

R> tab <- xtabs(~ edcat + job, data = BankWages)

R> prop.table(tab, 1)

job
edcat custodial admin manage
8 0.245283 0.754717 0.000000
12 0.068421 0.926316 0.005263
14-15 0.008197 0.959016 0.032787
16-18 0.000000 0.367089 0.632911
19-21 0.000000 0.033333 0.966667

where education has been transformed into a categorical variable with some
of the sparser levels merged. This table can also be visualized in a spine plot
via

R> plot(job ~ edcat, data = BankWages, off = 0)
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Fig. 5.4. Relationship between job category and education.

or equivalently via spineplot(tab, off = 0). The result in Figure 5.4 indi-
cates that the proportion of "custodial" employees quickly decreases with
education and that, at higher levels of education, a larger proportion of indi-
viduals is employed in the management category.

Multinomial logit models permit us to quantify this observation. They can
be fitted utilizing the multinom() function from the package nnet (for “neural
networks”), a package from the VR bundle accompanying Venables and Ripley
(2002). Note that the function is only superficially related to neural networks
in that the algorithm employed is the same as that for single hidden-layer
neural networks (as provided by nnet()).

The main arguments to multinom() are again formula and data, and thus
a multinomial logit model is fitted via

R> library("nnet")

R> bank_mnl <- multinom(job ~ education + minority,

+ data = BankWages, subset = gender == "male", trace = FALSE)

Instead of providing the full summary() of the fit, we just give the more com-
pact

R> coeftest(bank_mnl)

z test of coefficients:

edcat

jo
b

8 12 14−15 16−18 19−21

cu
st

od
ia

l
ad

m
in

m
an

ag
e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



5.5 Extensions 149

Estimate Std. Error z value Pr(>|z|)
admin:(Intercept) -4.761 1.173 -4.06 4.9e-05
admin:education 0.553 0.099 5.59 2.3e-08
admin:minorityyes -0.427 0.503 -0.85 0.3957
manage:(Intercept) -30.775 4.479 -6.87 6.4e-12
manage:education 2.187 0.295 7.42 1.2e-13
manage:minorityyes -2.536 0.934 -2.71 0.0066

This confirms that the proportions of "admin" and "manage" job categories
(as compared with the reference category, here "custodial") increase with
education and decrease for minority. Both effects seem to be stronger for
the "manage" category.

We add that, in contrast to multinom(), the recent package mlogit (Crois-
sant 2008) also fits multinomial logit models containing “choice-specific” (i.e.,
outcome-specific) attributes.

Ordinal responses

The dependent variable job in the preceding example can be considered an
ordered response, with "custodial" < "admin" < "manage". This suggests
that an ordered logit or probit regression may be worth exploring; here we
consider the former. In the statistical literature, this is often called propor-
tional odds logistic regression; hence the name polr() for the fitting function
from the MASS package (which, despite its name, can also fit ordered probit
models upon setting method="probit"). Here, this yields

R> library("MASS")

R> bank_polr <- polr(job ~ education + minority,

+ data = BankWages, subset = gender == "male", Hess = TRUE)

R> coeftest(bank_polr)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
education 0.8700 0.0931 9.35 < 2e-16
minorityyes -1.0564 0.4120 -2.56 0.010
custodial|admin 7.9514 1.0769 7.38 1.5e-13
admin|manage 14.1721 0.0941 150.65 < 2e-16

using again the more concise output of coeftest() rather than summary().
The ordered logit model just estimates different intercepts for the different job
categories but a common set of regression coefficients. The results are similar
to those for the multinomial model, but the different education and minority
effects for the different job categories are, of course, lost. This appears to
deteriorate the model fit as the AIC increases:

R> AIC(bank_mnl)
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[1] 249.5

R> AIC(bank_polr)

[1] 268.6

5.6 Exercises

1. For the SwissLabor data, plotting participation versus education (see
Figure 5.1) suggests a nonlinear effect of education. Fit a model utilizing
education squared in addition to the regressors considered in Section 5.2.
Does the new model result in an improvement?

2. The PSID1976 data originating from Mroz (1987) are used in many econo-
metrics texts, including Greene (2003) and Wooldridge (2002). Following
Greene (2003, p. 681):
(a) Fit a probit model for labor force participation using the regressors

age, age squared, family income, education, and a factor indicating
the presence of children. (The factor needs to be constructed from the
available information.)

(b) Reestimate the model assuming that different equations apply to
women with and without children.

(c) Perform a likelihood ratio test to check whether the more general
model is really needed.

3. Analyze the DoctorVisits data, taken from Cameron and Trivedi (1998),
using a Poisson regression for the number of visits. Is the Possion model
satisfactory? If not, where are the problems and what could be done about
them?

4. As mentioned above, the Affairs data are perhaps better analyzed uti-
lizing models for count data rather than a tobit model as we did here.
Explore a Poisson regression and some of its variants, and be sure to
check whether the models accommodate the many zeros present in these
data.

5. Using the PSID1976 data, run a tobit regression of hours worked on non-
wife income (to be constructed from the available information), age, ex-
perience, experience squared, education, and the numbers of younger and
older children.
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Time Series

Time series arise in many fields of economics, especially in macroeconomics
and financial economics. Here, we denote a time series (univariate or multi-
variate) as yt, t = 1, . . . , n. This chapter first provides a brief overview of
R’s time series classes and “naive” methods such as the classical decomposi-
tion into a trend, a seasonal component, and a remainder term, as well as
exponential smoothing and related techniques. It then moves on to autore-
gressive moving average (ARMA) models and extensions. We discuss classical
Box-Jenkins style analysis based on the autocorrelation and partial autocor-
relation functions (ACF and PACF) as well as model selection via information
criteria.

Many time series in economics are nonstationary. Nonstationarity often
comes in one of two forms: the time series can be reduced to stationarity by
differencing or detrending, or it contains structural breaks and is therefore
only piecewise stationary. The third section therefore shows how to perform
the standard unit-root and stationarity tests as well as cointegration tests.
The fourth section discusses the analysis of structural change, where R offers
a particularly rich set of tools for testing as well as dating breaks. The final
section briefly discusses structural time series models and volatility models.

Due to space constraints, we confine ourselves to time domain methods.
However, all the standard tools for analysis in the frequency domain, notably
estimates of the spectral density by several techniques, are available as well.
In fact, some of these methods have already been used, albeit implicitly, in
connection with HAC covariance estimation in Chapter 4.

6.1 Infrastructure and “Naive” Methods

Classes for time series data

In the previous chapters, we already worked with different data structures
that can hold rectangular data matrices, most notably “data.frame” for

C. Kleiber, A. Zeileis, Applied Econometrics with R,
DOI: 10.1007/978-0-387-77318-6 6, © Springer Science+Business Media, LLC 2008
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cross-sectional data. Dealing with time series data poses slightly different chal-
lenges. While we also need a rectangular, typically numeric, data matrix, in
addition, some way of storing the associated time points of the series is re-
quired. R offers several classes for holding such data. Here, we discuss the two
most important (closely related) classes, “ts” and “zoo”.

R ships with the basic class “ts” for representing time series data; it is
aimed at regular series, in particular at annual, quarterly, and monthly data.
Objects of class “ts” are either a numeric vector (for univariate series) or
a numeric matrix (for multivariate series) containing the data, along with a
"tsp" attribute reflecting the time series properties. This is a vector of length
three containing the start and end times (in time units) and the frequency.
Time series objects of class “ts” can easily be created with the function ts()
by supplying the data (a numeric vector or matrix), along with the arguments
start, end, and frequency. Methods for standard generic functions such as
plot(), lines(), str(), and summary() are provided as well as various time-
series-specific methods, such as lag() or diff(). As an example, we load
and plot the univariate time series UKNonDurables, containing the quarterly
consumption of non-durables in the United Kingdom (taken from Franses
1998).

R> data("UKNonDurables")

R> plot(UKNonDurables)

The resulting time series plot is shown in the left panel of Figure 6.1. The
time series properties

R> tsp(UKNonDurables)

[1] 1955.00 1988.75 4.00

reveal that this is a quarterly series starting in 1955(1) and ending in 1988(4).
If the series of all time points is needed, it can be extracted via time(); e.g.,
time(UKNonDurables). Subsets can be chosen using the function window();
e.g.,

R> window(UKNonDurables, end = c(1956, 4))

Qtr1 Qtr2 Qtr3 Qtr4
1955 24030 25620 26209 27167
1956 24620 25972 26285 27659

Single observations can be extracted by setting start and end to the same
value.

The “ts” class is well suited for annual, quarterly, and monthly time se-
ries. However, it has two drawbacks that make it difficult to use in some
applications: (1) it can only deal with numeric time stamps (and not with
more general date/time classes); (2) internal missing values cannot be omit-
ted (because then the start/end/frequency triple is no longer sufficient for
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Fig. 6.1. Quarterly time series of consumption of non-durables in the United
Kingdom (left) and monthly number of car drivers killed or seriously injured in the
United Kingdom (right, with filtered version).

reconstructing all time stamps). Both are major nuisances when working with
irregular series (e.g., with many financial time series). Consequently, vari-
ous implementations for irregular time series have emerged in contributed R
packages, the most flexible of which is “zoo”, provided by the zoo1 package
(Zeileis and Grothendieck 2005). It can have time stamps of arbitrary type
and is designed to be as similar as possible to “ts”. Specifically, the series are
essentially also numeric vectors or matrices but with an "index" attribute
containing the full vector of indexes (or time stamps) rather than only the
"tsp" attribute with start/end/frequency. Therefore, “zoo” series can be seen
as a generalization of“ts”series. Most methods that work for“ts”objects also
work for “zoo” objects, some have extended functionality, and some new ones
are provided. Regular series can be coerced back and forth between the classes
without loss of information using the functions as.zoo() and as.ts(). Hence,
it does not make much difference which of these two classes is used for annual,
quarterly, or monthly data—whereas “zoo” is much more convenient for daily
data (e.g., coupled with an index of class “Date”) or intraday data (e.g., with
“POSIXct” or “chron” time stamps). See Zeileis and Grothendieck (2005) for
further details on “zoo” series and Grothendieck and Petzoldt (2004) for more
on date/time classes in R.

Throughout this book, we mainly rely on the “ts” class; only in very few
illustrations where additional flexibility is required do we switch to “zoo”.
1 zoo stands for Z’s ordered observations, named after the author who started the

development of the package.
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(Linear) filtering

One of the most basic tools for transforming time series (e.g., for eliminating
seasonality) is linear filtering (see Brockwell and Davis 1991, 1996). An im-
portant class of linear filters are finite moving averages, transformations that
replace the raw data yt by a weighted sum

ŷt =
s∑

j=−r

ajyt+j , t = r + 1, . . . , n− s.

If r equals s, the filter is called symmetric. In R, the function filter() permits
the use of fairly general filters; its argument filter takes a vector containing
the coefficients aj . Apart from moving averages (default, see above), filter()
can also apply recursive linear filters, another important class of filters.

As an example, we consider the monthly time series UKDriverDeaths con-
taining the well-known data from Harvey and Durbin (1986) on car drivers
killed or seriously injured in the United Kingdom from 1969(1) through
1984(12). These are also known as the “seatbelt data”, as they were used
by Harvey and Durbin (1986) for evaluating the effectiveness of compulsory
wearing of seatbelts introduced on 1983-01-31. The following code loads and
plots the series along with a filtered version utilizing the simple symmetric
moving average of length 13 with coefficients (1/24, 1/12, . . . , 1/12, 1/24)>.

R> data("UKDriverDeaths")

R> plot(UKDriverDeaths)

R> lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12),

+ col = 2)

The resulting plot is depicted in the right panel of Figure 6.1, illustrating that
the filter eliminates seasonality. Other classical filters, such as the Henderson
or Spencer filters (Brockwell and Davis 1991), can be applied analogously.

Another function that can be used for evaluating linear and nonlinear
functions on moving data windows is rollapply() (for rolling apply). This
can be used for computing running means via rollapply(UKDriverDeaths,
12, mean), yielding a result similar to that for the symmetric filter above, or
running standard deviations

R> plot(rollapply(UKDriverDeaths, 12, sd))

shown in the right panel of Figure 6.2, revealing increased variation around
the time of the policy intervention.

As mentioned above, filter() also provides autoregressive (recursive)
filtering. This can be exploited for simple simulations; e.g., from AR(1) models.
The code

R> set.seed(1234)

R> x <- filter(rnorm(100), 0.9, method = "recursive")
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Fig. 6.2. UK driver deaths: trends from two season-trend decompositions (left)
and running standard deviations (right).

generates 100 observations from an AR(1) process with parameter 0.9 and
standard normal innovations. A more elaborate tool for simulating from gen-
eral ARIMA models is provided by arima.sim().

Decomposition

Filtering with moving averages can also be used for an additive or multi-
plicative decomposition into seasonal, trend, and irregular components. The
classical approach to this task, implemented in the function decompose(), is
to take a simple symmetric filter as illustrated above for extracting the trend
and derive the seasonal component by averaging the trend-adjusted observa-
tions from corresponding periods. A more sophisticated approach that also
accommodates time-varying seasonal components is seasonal decomposition
via loess smoothing (Cleveland, Cleveland, McRae, and Terpenning 1990). It
is available in the function stl() and iteratively finds the seasonal and trend
components by loess smoothing of the observations in moving data windows
of a certain size. Both methods are easily applied in R using (in keeping with
the original publication, we employ logarithms)

R> dd_dec <- decompose(log(UKDriverDeaths))

R> dd_stl <- stl(log(UKDriverDeaths), s.window = 13)

where the resulting objects dd_dec and dd_stl hold the trend, seasonal, and
irregular components in slightly different formats (a list for the
“decomposed.ts” and a multivariate time series for the “stl” object). Both
classes have plotting methods drawing time series plots of the components
with a common time axis. The result of plot(dd_stl) is provided in
Figure 6.3, and the result of plot(dd_dec) looks rather similar. (The bars
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Fig. 6.3. Season-trend decomposition by loess smoothing.

at the right side of Figure 6.3 are of equal heights in user coordinates to
ease interpretation.) A graphical comparison of the fitted trend components,
obtained via

R> plot(dd_dec$trend, ylab = "trend")

R> lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2)

and given in Figure 6.2 (left panel), reveals that both methods provide
qualitatively similar results, with stl() yielding a smoother curve. Anal-
ogously, the seasonal components dd_stl$time.series[,"seasonal"] and
dd_dec$seasonal could be extracted and compared. We note that stl()
has artificially smoothed over the structural break due to the introduction of
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Fig. 6.4. Predictions from Holt-Winters exponential smoothing.

seatbelts, inducing some rather large values in the remainder series. We shall
come back to this example in Section 6.4 using different methods.

Exponential smoothing

Another application of linear filtering techniques are classical forecasting
methods of the exponential smoothing type, such as simple or double expo-
nential smoothing, employing recursively reweighted lagged observations for
predicting future data. A general framework for this is Holt-Winters smooth-
ing (see Meyer 2002, for a brief introduction in R), which comprises these
and related exponential smoothing techniques as special cases. The function
HoltWinters() implements the general methodology—by default computing
a Holt-Winters filter with an additive seasonal component, determining the
smoothing parameters by minimizing the squared prediction error on the ob-
served data. To illustrate its use, we separate the UKDriverDeaths series into
a historical sample up to 1982(12) (i.e., before the change in legislation) and
use Holt-Winters filtering to predict the observations for 1983 and 1984.

R> dd_past <- window(UKDriverDeaths, end = c(1982, 12))

R> dd_hw <- HoltWinters(dd_past)

R> dd_pred <- predict(dd_hw, n.ahead = 24)

Figure 6.4 compares Holt-Winters predictions with the actually observed series
after the policy intervention via

Holt−Winters filtering
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R> plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths))

R> lines(UKDriverDeaths)

showing that the number of road casualties clearly dropped after the intro-
duction of mandatory wearing of seatbelts.

We conclude by noting that a more sophisticated function for exponen-
tial smoothing algorithms, named ets(), is available in the package forecast
(Hyndman and Khandakar 2008).

6.2 Classical Model-Based Analysis

The classical approach to parametric modeling and forecasting is to employ
an autoregressive integrated moving average (ARIMA) model for capturing
the dependence structure in a time series (Brockwell and Davis 1991; Box and
Jenkins 1970; Hamilton 1994). To fix the notation, ARIMA(p, d, q) models are
defined by the equation

φ(L)(1− L)dyt = θ(L)εt, (6.1)

where the autoregressive (AR) part is given by the pth-order polynomial
φ(L) = 1− φ1L− . . .− φpL

p in the lag operator L, the moving average (MA)
part is given by the qth-order polynomial θ(L) = 1+θ1L+ . . .+θqL

q, and d is
the order of differencing. (Note the sign convention for the MA polynomial.)

For ease of reference, Table 6.1 provides a partial list of time series fitting
functions (with StructTS() being discussed in Section 6.5).

Fig. 6.5. (Partial) autocorrelation function.
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Table 6.1. Time series fitting functions in R.

Function Package Description

ar() stats Fits univariate autoregressions via Yule-Walker, OLS,
ML, or Burg’s method and unrestricted VARs by Yule-
Walker, OLS, or Burg’s method. Order selection by AIC
possible.

arima() stats Fits univariate ARIMA models, including seasonal
(SARIMA) models, models with covariates (ARIMAX),
and subset ARIMA models, by unconditional ML or by
CSS.

arma() tseries Fits ARMA models by CSS. Starting values via Hannan-
Rissanen. Note: Parameterization of intercept different
from arima().

auto.arima() forecast Order selection via AIC, BIC, or AICC within a user-
defined set of models. Fitting is done via arima().

StructTS() stats Fits structural time series models: local level, local trend,
and basic structural model.

Before fitting an ARIMA model to a series, it is helpful to first take an
exploratory look at the empirical ACF and PACF. In R, these are available in
the functions acf() and pacf(), respectively. For the artificial AR(1) process
x from the previous section, they are computed and plotted by

R> acf(x)

R> pacf(x)

and shown in Figure 6.5. Here, the maximum number of lags defaults to
10 log10(n), but it can be changed by the argument lag.max. Plotting can
be suppressed by setting plot = FALSE. This is useful when the (P)ACF is
needed for further computations.

The empirical ACF for series x decays only slowly, while the PACF ex-
ceeds the individual confidence limits only for lag 1, reflecting clearly how the
series was generated. Next we try to recover the true structure by fitting an
autoregression to x via the function ar():

R> ar(x)

Call:
ar(x = x)

Coefficients:
1

0.928
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Order selected 1 sigma^2 estimated as 1.29

This agrees rather well with the true autocorrelation of 0.9. By default, ar()
fits AR models up to lag p = 10 log10(n) and selects the minimum AIC model.
This is usually a good starting point for model selection, even though the de-
fault estimator is the Yule-Walker estimator, which is considered a preliminary
estimator. ML is also available in addition to OLS and Burg estimation; see
?ar for further details.

For a real-world example, we return to the UKNonDurables series, aiming
at establishing a model for the (log-transformed) observations up to 1970(4)
for predicting the remaining series.

R> nd <- window(log(UKNonDurables), end = c(1970, 4))

The corresponding time series plot (see Figure 6.1) suggests rather clearly
that differencing is appropriate; hence the first row of Figure 6.6 depicts the
empirical ACF and PACF of the differenced series. As both exhibit a strong
seasonal pattern (already visible in the original series), the second row of
Figure 6.6 also shows the empirical ACF and PACF after double differencing
(at the seasonal lag 4 and at lag 1) as generated by

R> acf(diff(nd), ylim = c(-1, 1))

R> pacf(diff(nd), ylim = c(-1, 1))

R> acf(diff(diff(nd, 4)), ylim = c(-1, 1))

R> pacf(diff(diff(nd, 4)), ylim = c(-1, 1))

For this series, a model more general than a simple AR model is needed:
arima() fits general ARIMA models, including seasonal ARIMA (SARIMA)
models and models containing further regressors (utilizing the argument
xreg), either via ML or minimization of the conditional sum of squares (CSS).
The default is to use CSS to obtain starting values and then ML for refine-
ment. As the model space is much more complex than in the AR(p) case,
where only the order p has to be chosen, base R does not offer an automatic
model selection method for general ARIMA models based on information cri-
teria. Therefore, we use the preliminary results from the exploratory analy-
sis above and R’s general tools to set up a model search for an appropriate
SARIMA(p, d, q)(P,D,Q)4 model,

Φ(L4)φ(L)(1− L4)D(1− L)dyt = θ(L)Θ(L4)εt, (6.2)

which amends the standard ARIMA model (6.1) by additional polynomials
operating on the seasonal frequency.

The graphical analysis clearly suggests double differencing of the original
series (d = 1, D = 1), some AR and MA effects (we allow p = 0, 1, 2 and
q = 0, 1, 2), and low-order seasonal AR and MA parts (we use P = 0, 1 and
Q = 0, 1), giving a total of 36 parameter combinations to consider. Of course,
higher values for p, q, P , and Q could also be assessed. We refrain from doing so
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Fig. 6.6. (Partial) autocorrelation functions for UK non-durables data.

to save computation time in this example—however, we encourage readers to
pursue this issue for higher-order models as well. We also note that the package
forecast (Hyndman and Khandakar 2008) contains a function auto.arima()
that performs a search over a user-defined set of models, just as we do here
manually. To choose from the 36 possible models, we set up all parameter
combinations via expand.grid(), fit each of the associated SARIMA models
using arima() in a for() loop, and store the resulting BIC extracted from
the model (obtained via AIC() upon setting k = log(length(nd))).

R> nd_pars <- expand.grid(ar = 0:2, diff = 1, ma = 0:2,

+ sar = 0:1, sdiff = 1, sma = 0:1)

R> nd_aic <- rep(0, nrow(nd_pars))

R> for(i in seq(along = nd_aic)) nd_aic[i] <- AIC(arima(nd,
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+ unlist(nd_pars[i, 1:3]), unlist(nd_pars[i, 4:6])),

+ k = log(length(nd)))

R> nd_pars[which.min(nd_aic),]

ar diff ma sar sdiff sma
22 0 1 1 0 1 1

These computations reveal that a SARIMA(0, 1, 1)(0, 1, 1)4 model is best in
terms of BIC, conforming well with the exploratory analysis. This model is
also famously known as the airline model due to its application to a series of
airline passengers in the classical text by Box and Jenkins (1970). It is refitted
to nd via

R> nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1))

R> nd_arima

Call:
arima(x = nd, order = c(0, 1, 1), seasonal = c(0, 1, 1))

Coefficients:
ma1 sma1

-0.353 -0.583
s.e. 0.143 0.138

sigma^2 estimated as 9.65e-05: log likelihood = 188.14,
aic = -370.27

showing that both moving average coefficients are negative and significant. To
assess whether this model appropriately captures the dependence structure of
the series, tsdiag() produces several diagnostic plots

R> tsdiag(nd_arima)

shown in Figure 6.7. In the first panel, the standardized residuals are plotted.
They do not exhibit any obvious pattern. Their empirical ACF in the second
panel shows no (individually) significant autocorrelation at lags > 1. Finally,
the p values for the Ljung-Box statistic in the third panel all clearly exceed
5% for all orders, indicating that there is no significant departure from white
noise for the residuals.

As there are no obvious deficiencies in our model, it is now used for pre-
dicting the remaining 18 years in the sample:

R> nd_pred <- predict(nd_arima, n.ahead = 18 * 4)

The object nd_pred contains the predictions along with their associated stan-
dard errors and can be compared graphically with the observed series via

R> plot(log(UKNonDurables))

R> lines(nd_pred$pred, col = 2)
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Fig. 6.7. Diagnostics for SARIMA(0, 1, 1)(0, 1, 1)4 model.

Figure 6.8 shows that the general trend is captured reasonably well. However,
the model systematically overpredicts for certain parts of the sample in the
1980s.

We conclude by adding that there exist, apart from generic functions such
as coef(), logLik(), predict(), print(), and vcov(), which also work on
objects of class “Arima” (the class of objects returned by arima()), several
further convenience functions for exploring ARMA models and their repre-
sentations. These are listed in Table 6.2.
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Fig. 6.8. Predictions from SARIMA(0, 1, 1)(0, 1, 1)4 model.

Table 6.2. Convenience functions for ARMA models.

Function Package Description

acf2AR() stats Computes an AR process exactly fitting a given autocor-
relation function.

arima.sim() stats Simulation of ARIMA models.

ARMAacf() stats Computes theoretical (P)ACF for a given ARMA model.

ARMAtoMA() stats Computes MA(∞) representation for a given ARMA
model.

6.3 Stationarity, Unit Roots, and Cointegration

Many time series in macroeconomics and finance are nonstationary, the pre-
cise form of the nonstationarity having caused a hot debate some 25 years
ago. Nelson and Plosser (1982) argued that macroeconomic time series often
are more appropriately described by unit-root nonstationarity than by de-
terministic time trends. We refer to Hamilton (1994) for an overview of the
methodology. The Nelson and Plosser data (or rather an extended version
ending in 1988) are available in R in the package tseries (Trapletti 2008), and
we shall use them for an exercise at the end of this chapter.
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Fig. 6.9. Time series of average monthly European spot prices for black and white
pepper (fair average quality) in US dollars per ton.

To illustrate the main methods, we employ a different data set,
PepperPrice, containing a bivariate time series of average monthly Euro-
pean spot prices for black and white pepper in US dollars per ton. The data
are taken from Franses (1998) and are part of the AER package accompanying
this book. Figure 6.9 plots both series, and for obvious reasons they are rather
similar:

R> data("PepperPrice")

R> plot(PepperPrice, plot.type = "single", col = 1:2)

R> legend("topleft", c("black", "white"), bty = "n",

+ col = 1:2, lty = rep(1,2))

We begin with an investigation of the time series properties of the individual
series, specifically determining their order of integration. There are two ways
to proceed: one can either test the null hypothesis of difference stationarity
against stationarity (the approach of the classical unit-root tests) or reverse
the roles of the alternatives and use a stationarity test such as the KPSS test
(Kwiatkowski, Phillips, Schmidt, and Shin 1992).

Unit-root tests

The test most widely used by practitioners, the augmented Dickey-Fuller
(ADF) test (Dickey and Fuller 1981), is available in the function adf.test()
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from the package tseries (Trapletti 2008). This function implements the t test
of H0 : % = 0 in the regression

∆yt = α + δt + %yt−1 +
k∑

j=1

φj∆yt−j + εt. (6.3)

The number of lags k defaults to b(n−1)1/3c but may be changed by the user.
For the series corresponding to the price of white pepper, the test yields

R> library("tseries")

R> adf.test(log(PepperPrice[, "white"]))

Augmented Dickey-Fuller Test

data: log(PepperPrice[, "white"])
Dickey-Fuller = -1.744, Lag order = 6, p-value = 0.6838
alternative hypothesis: stationary

while, for the series of first differences, we obtain

R> adf.test(diff(log(PepperPrice[, "white"])))

Augmented Dickey-Fuller Test

data: diff(log(PepperPrice[, "white"]))
Dickey-Fuller = -5.336, Lag order = 6, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(diff(log(PepperPrice[, "white"]))) :
p-value smaller than printed p-value

Note that a warning is issued because the p value is only interpolated from
a few tabulated critical values, and hence no p values outside the interval
[0.01, 0.1] can be provided.

Alternatively, the Phillips-Perron test (Phillips and Perron 1988) with its
nonparametric correction for autocorrelation (essentially employing a HAC
estimate of the long-run variance in a Dickey-Fuller-type test (6.3) instead
of parametric decorrelation) can be used. It is available in the function
pp.test() from the package tseries (there also exists a function PP.test()
in base R, but it has fewer options). Using the default options to the Phillips-
Perron t test in the equation with a time trend, we obtain

R> pp.test(log(PepperPrice[, "white"]), type = "Z(t_alpha)")

Phillips-Perron Unit Root Test

data: log(PepperPrice[, "white"])
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Dickey-Fuller Z(t_alpha) = -1.6439, Truncation lag
parameter = 5, p-value = 0.726
alternative hypothesis: stationary

Thus, all tests suggest that the null hypothesis of a unit root cannot be rejected
here. Alternative implementations of the preceding methods with somewhat
different interfaces are available in the package urca (Pfaff 2006). That package
also offers a function ur.ers() implementing the test of Elliott, Rothenberg,
and Stock (1996), which utilizes GLS detrending.

Stationarity tests

Kwiatkowski et al. (1992) proceed by testing for the presence of a random
walk component rt in the regression

yt = dt + rt + εt,

where dt denotes a deterministic component and εt is a stationary—more
precisely, I(0)—error process. This test is also available in the function
kpss.test() in the package tseries. The deterministic component is either
a constant or a linear time trend, the former being the default. Setting the
argument null = "Trend" yields the second version. Here, we obtain

R> kpss.test(log(PepperPrice[, "white"]))

KPSS Test for Level Stationarity

data: log(PepperPrice[, "white"])
KPSS Level = 0.9129, Truncation lag parameter = 3,
p-value = 0.01

Hence the KPSS test also points to nonstationarity of the pepper price series.
(Again, a warning is issued, as the p value is interpolated from the four critical
values provided by Kwiatkowski et al. 1992, it is suppressed here.)

Readers may want to check that the series pertaining to black pepper
yields similar results when tested for unit roots or stationarity.

Cointegration

The very nature of the two pepper series already suggests that they possess
common features. Having evidence for nonstationarity, it is of interest to test
for a common nonstationary component by means of a cointegration test.

A simple method to test for cointegration is the two-step method proposed
by Engle and Granger (1987). It regresses one series on the other and performs
a unit root test on the residuals. This test, often named after Phillips and
Ouliaris (1990), who provided the asymptotic theory, is available in the func-
tion po.test() from the package tseries. Specifically, po.test() performs a
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Phillips-Perron test using an auxiliary regression without a constant and lin-
ear trend and the Newey-West estimator for the required long-run variance.
A regression of the price for black pepper on that for white pepper yields

R> po.test(log(PepperPrice))

Phillips-Ouliaris Cointegration Test

data: log(PepperPrice)
Phillips-Ouliaris demeaned = -24.0987, Truncation lag
parameter = 2, p-value = 0.02404

suggesting that both series are cointegrated. (Recall that the first series per-
tains to black pepper. The function proceeds by regressing the first series
on the remaining ones.) A test utilizing the reverse regression is as easy
as po.test(log(PepperPrice[,2:1])). However, the problem with this ap-
proach is that it treats both series in an asymmetric fashion, while the concept
of cointegration demands that the treatment be symmetric.

The standard tests proceeding in a symmetric manner stem from Jo-
hansen’s full-information maximum likelihood approach (Johansen 1991). For
a pth-order cointegrated vector autoregressive (VAR) model, the error correc-
tion form is (omitting deterministic components)

∆yt = Πyt−1 +
p−1∑
j=1

Γj∆yt−j + εt.

The relevant tests are available in the function ca.jo() from the package
urca. The basic version considers the eigenvalues of the matrix Π in the pre-
ceding equation. We again refer to Hamilton (1994) for the methodological
background.

Here, we employ the trace statistic—the maximum eigenvalue, or“lambda-
max”, test is available as well—in an equation amended by a constant term
(specified by ecdet = "const"), yielding

R> library("urca")

R> pepper_jo <- ca.jo(log(PepperPrice), ecdet = "const",

+ type = "trace")

R> summary(pepper_jo)

######################
# Johansen-Procedure #
######################

Test type: trace statistic , without linear trend and
constant in cointegration

Eigenvalues (lambda):
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[1] 4.93195e-02 1.35081e-02 1.38778e-17

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct
r <= 1 | 3.66 7.52 9.24 12.97
r = 0 | 17.26 17.85 19.96 24.60

Eigenvectors, normalised to first column:
(These are the cointegration relations)

black.l2 white.l2 constant
black.l2 1.000000 1.00000 1.00000
white.l2 -0.889231 -5.09942 2.28091
constant -0.556994 33.02742 -20.03244

Weights W:
(This is the loading matrix)

black.l2 white.l2 constant
black.d -0.0747230 0.00245321 3.86752e-17
white.d 0.0201561 0.00353701 4.03196e-18

The null hypothesis of no cointegration is rejected; hence the Johansen test
confirms the results from the initial two-step approach.

6.4 Time Series Regression and Structural Change

More on fitting dynamic regression models

As already discussed in Chapter 3, there are various ways of fitting dynamic
linear regression models by OLS in R. Here, we present two approaches in
more detail: (1) setting up lagged and differenced regressors “by hand” and
calling lm(); (2) using the convenience interface dynlm() from the package
dynlm (Zeileis 2008). We illustrate both approaches using a model for the
UKDriverDeaths series: the log-casualties are regressed on their lags 1 and
12, essentially corresponding to the multiplicative SARIMA(1, 0, 0)(1, 0, 0)12
model

yt = β1 + β2 yt−1 + β3 yt−12 + εt, t = 13, . . . , 192.

For using lm() directly, we set up a multivariate time series containing the
original log-casualties along with two further variables holding the lagged ob-
servations. The lagged variables are created with lag(). Note that its second
argument, the number of lags, must be negative to shift back the observations.
For “ts” series, this just amounts to changing the "tsp" attribute (leaving the



170 6 Time Series

observations unchanged), whereas for “zoo” series k observations have to be
omitted for computation of the kth lag. For creating unions or intersections
of several “ts” series, ts.union() and ts.intersect() can be used, respec-
tively. For “zoo” series, both operations are provided by the merge() method.
Here, we use ts.intersect() to combine the original and lagged series, as-
suring that leading and trailing NAs are omitted before the model fitting. The
final call to lm() works just as in the preceding sections because lm() does not
need to know that the underlying observations are from a single time series.

R> dd <- log(UKDriverDeaths)

R> dd_dat <- ts.intersect(dd, dd1 = lag(dd, k = -1),

+ dd12 = lag(dd, k = -12))

R> lm(dd ~ dd1 + dd12, data = dd_dat)

Call:
lm(formula = dd ~ dd1 + dd12, data = dd_dat)

Coefficients:
(Intercept) dd1 dd12

0.421 0.431 0.511

The disadvantage is that lm() cannot preserve time series properties of the
data unless further effort is made (specifically, setting dframe = TRUE in
ts.intersect() and na.action = NULL in lm(); see ?lm for details). Even
then, various nuisances remain, such as using different na.actions, print out-
put formatting, or subset selection.

The function dynlm() addresses these issues. It provides an extended
model language in which differences and lags can be directly specified via
d() and L() (using the opposite sign of lag() for the second argument),
respectively. Thus

R> library("dynlm")

R> dynlm(dd ~ L(dd) + L(dd, 12))

Time series regression with "ts" data:
Start = 1970(1), End = 1984(12)

Call:
dynlm(formula = dd ~ L(dd) + L(dd, 12))

Coefficients:
(Intercept) L(dd) L(dd, 12)

0.421 0.431 0.511

yields the same results as above, but the object returned is a “dynlm” object
inheriting from “lm” and provides additional information on the underlying
time stamps. The same model could be written somewhat more concisely as



6.4 Time Series Regression and Structural Change 171

dd ~ L(dd, c(1, 12)). Currently, the disadvantage of dynlm() compared
with lm() is that it cannot be reused as easily with other functions. However,
as dynlm is still under development, this is likely to improve in future versions.

Structural change tests

As we have seen in previous sections, the structure in the series of log-
casualties did not remain the same throughout the full sample period: there
seemed to be a decrease in the mean number of casualties after the policy
change in seatbelt legislation. Translated into a parametric time series model,
this means that the parameters of the model are not stable throughout the
sample period but change over time.

The package strucchange (Zeileis, Leisch, Hornik, and Kleiber 2002) imple-
ments a large collection of tests for structural change or parameter instability
that can be broadly placed in two classes: (1) fluctuation tests and (2) tests
based on F statistics. Fluctuation tests try to assess the structural stability by
capturing fluctuation in cumulative or moving sums (CUSUMs or MOSUMs)
of residuals (OLS or recursive), model scores (i.e., empirical estimating func-
tions), or parameter estimates (from recursively growing or from rolling data
windows). The idea is that, under the null hypothesis of parameter stability,
the resulting “fluctuation processes” are governed by a functional central limit
theorem and only exhibit limited fluctuation, whereas under the alternative
of structural change, the fluctuation is generally increased. Thus, there is ev-
idence for structural change if an appropriately chosen empirical fluctuation
process crosses a boundary that the corresponding limiting process crosses
only with probability α. In strucchange, empirical fluctuation processes can
be fitted via efp(), returning an object of class “efp” that has a plot()
method for performing the corresponding test graphically and an sctest()
method (for structural change test) for a traditional significance test with test
statistic and p value.

Here, we use an OLS-based CUSUM test (Ploberger and Krämer 1992)
to assess the stability of the SARIMA-type model for the UK driver deaths
data fitted at the beginning of this section. The OLS-based CUSUM process is
simply the scaled cumulative sum process of the OLS residuals ε̂t = yt−x>t β̂;
that is,

efp(s) =
1

σ̂
√

n

bnsc∑
t=1

ε̂t, 0 ≤ s ≤ 1.

It can be computed with the function efp() by supplying formula and data
(as for lm()) and setting in addition type = "OLS-CUSUM":

R> dd_ocus <- efp(dd ~ dd1 + dd12, data = dd_dat,

+ type = "OLS-CUSUM")

The associated structural change test, by default considering the maximum
absolute deviation of the empirical fluctuation process from zero and given by
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R> sctest(dd_ocus)

OLS-based CUSUM test

data: dd_ocus
S0 = 1.4866, p-value = 0.02407

is significant at the default 5% level, signaling that the model parameters are
not stable throughout the entire sample period. The plot in the left panel of
Figure 6.10 results from

R> plot(dd_ocus)

and yields some further insights. In addition to the excessive fluctuation (con-
veyed by the boundary crossing), it can be seen from the peak in the process
that an abrupt change seems to have taken place in about 1973(10), match-
ing the timing of the first oil crisis. A smaller second peak in the process,
associated with the change of seatbelt legislation in 1983(1), is also visible.

Tests based on F statistics, the second class of tests in strucchange, are
designed to have good power for single-shift alternatives (of unknown tim-
ing). The basic idea is to compute an F statistic (or Chow statistic) for each
conceivable breakpoint in a certain interval and reject the null hypothesis of
structural stability if any of these statistics (or some other functional such
as the mean) exceeds a certain critical value (Andrews 1993; Andrews and
Ploberger 1994). Processes of F statistics can be fitted with Fstats(), em-
ploying an interface similar to efp(). The resulting “Fstats” objects can
again be assessed by the corresponding sctest() method or graphically by
the plot() method. The code chunk

R> dd_fs <- Fstats(dd ~ dd1 + dd12, data = dd_dat, from = 0.1)

R> plot(dd_fs)

R> sctest(dd_fs)

supF test

data: dd_fs
sup.F = 19.3331, p-value = 0.006721

uses the supF test of Andrews (1993) for the SARIMA-type model with a
trimming of 10%; i.e., an F statistic is computed for each potential break-
point between 1971(6) and 1983(6), omitting the leading and trailing 10% of
observations. The resulting process of F statistics is shown in the right panel
of Figure 6.10, revealing two clear peaks in 1973(10) and 1983(1). Both the
boundary crossing and the tiny p value show that there is significant departure
from the null hypothesis of structural stability. The two peaks in the F pro-
cess also demonstrate that although designed for single-shift alternatives, the
supF test has power against multiple-shift alternatives. In this case, it brings
out the two breaks even more clearly than the OLS-based CUSUM test.



6.4 Time Series Regression and Structural Change 173

Fig. 6.10. OLS-based CUSUM process (left) and process of F statistics (right) for
the UK driver deaths model.

Many further tests for structural change are available in strucchange. A
unified and more flexible approach is implemented in gefp() (Zeileis 2005,
2006a). In practice, this multitude of tests is often a curse rather than a
blessing. Unfortunately, no test is superior to any other test for all conceivable
patterns of structural change. Hence, the choice of a suitable test can be
facilitated if there is some prior knowledge about which types of changes are
likely to occur and which parameters are affected by it (see Zeileis 2005, for
some discussion of this).

To further illustrate the wide variety of structural change tests, we consider
a second example. Lütkepohl, Teräsvirta, and Wolters (1999) establish an
error correction model (ECM) for German M1 money demand, reanalyzed by
Zeileis, Leisch, Kleiber, and Hornik (2005) in a structural change setting. The
data frame GermanM1 contains data from 1961(1) to 1995(4) on per capita
M1, price index, per capita GNP (all in logs) and an interest rate. It can be
loaded along with the model used by Lütkepohl et al. (1999) via

R> data("GermanM1")

R> LTW <- dm ~ dy2 + dR + dR1 + dp + m1 + y1 + R1 + season

involving the differenced and lagged series as well as a factor season that
codes the quarter of the year. To test whether a stable model can be fitted for
this ECM, particularly in view of the German monetary unification on 1990-
06-01, a recursive estimates (RE) test (the “fluctuation test” of Ploberger,
Krämer, and Kontrus 1989), is employed using

R> m1_re <- efp(LTW, data = GermanM1, type = "RE")

R> plot(m1_re)
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Fig. 6.11. Recursive estimates fluctuation process for German M1 model.

The boundary crossing of the RE process shown in Figure 6.11 signals again
that there is a deviation from structural stability (at the default 5% level), and
the clear peak conveys that this is due to an abrupt change in 1990, matching
the timing of the German monetary unification.

Dating structural changes

Given that there is evidence for structural change in a certain model, a natural
strategy is to find a model that incorporates the changes. When the changes
are abrupt, this amounts to segmenting the original data and fitting the model
on each subset. In the framework of the linear regression model, the setup is

yt = x>t β(j) + εt, t = nj−1 + 1, . . . , nj , j = 1, . . . ,m + 1, (6.4)

where j = 1, . . . ,m is the segment index and β(j) is the segment-specific set
of regression coefficients. The indices {n1, . . . , nm} denote the set of unknown
breakpoints, and by convention n0 = 0 and nm+1 = n.

Estimating the breakpoints is also called dating structural changes. For
the two models considered above, visual inspection already provides informa-
tion on the locations of the breakpoints. However, a more formal procedure
for determining the number and location of breakpoints is desirable. Bai and
Perron (1998, 2003) established a general methodology for estimating break-
points and their associated confidence intervals in OLS regression, and their
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method is implemented in the function breakpoints() by Zeileis, Kleiber,
Krämer, and Hornik (2003). The dating procedure of Bai and Perron (2003)
employs a dynamic programming algorithm based on the Bellman principle
for finding those m breakpoints that minimize the residual sum of squares
(RSS) of a model with m + 1 segments, given some minimal segment size of
h ·n observations. Here, h is a bandwidth parameter to be chosen by the user.
Similar to the choice of trimming for the F statistics-based tests, the minimal
proportion of observations in each segment is typically chosen to be 10% or
15%. Given h and m, the breakpoints minimizing the RSS can be determined;
however, typically the number of breakpoints m is not known in advance. One
possibility is to compute the optimal breakpoints for m = 0, 1, . . . breaks and
choose the model that minimizes some information criterion such as the BIC.
This model selection strategy is also directly available within breakpoints().

Returning to the UKDriverDeaths series, we estimate the breakpoints for
a SARIMA-type model with a minimal segment size of 10% using

R> dd_bp <- breakpoints(dd ~ dd1 + dd12, data = dd_dat, h = 0.1)

The RSS and BIC as displayed by plot(dd_bp) are shown in the left panel
of Figure 6.12. Although the RSS drops clearly up to m = 3 breaks, the BIC
is minimal for m = 0 breaks. This is not very satisfactory, as the structural
change tests clearly showed that the model parameters are not stable. As the
BIC was found to be somewhat unreliable for autoregressive models by Bai
and Perron (2003), we rely on the interpretation from the visualization of the
structural change tests and use the model with m = 2 breaks. Its coefficients
can be extracted via

R> coef(dd_bp, breaks = 2)

(Intercept) dd1 dd12
1970(1) - 1973(10) 1.45776 0.117323 0.694480
1973(11) - 1983(1) 1.53421 0.218214 0.572330
1983(2) - 1984(12) 1.68690 0.548609 0.214166

reflecting that particularly the period after the change in seatbelt legislation
in 1983(1) is different from the observations before. The other breakpoint
is in 1973(10), again matching the timing of the oil crisis and confirming
the interpretation from the structural change tests. The observed and fitted
series, along with confidence intervals for the breakpoints, are shown in the
right panel of Figure 6.12 as generated by

R> plot(dd)

R> lines(fitted(dd_bp, breaks = 2), col = 4)

R> lines(confint(dd_bp, breaks = 2))

Readers are asked to estimate breakpoints for the GermanM1 example in an
exercise.
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Fig. 6.12. Left panel: BIC and residual sum of squares for segmented UK driver
death models. Right panel: observed and fitted segmented series.

6.5 Extensions

For reasons of space, our discussion of time series methods has been rather
brief. Table 6.3 provides a list of several further packages containing time
series functions.

The remainder of this section briefly considers structural time series models
and the most widely used volatility model, the GARCH(1,1).

Structural time series models

Structural time series models are state-space models utilizing a decomposition
of the time series into a number of components that are specified by a set of
disturbance variances. Thus, these models may be considered error component
models for time series data. Harvey (1989) and Durbin and Koopman (2001)
are standard references.

StructTS() from the package stats fits a subclass of (linear and Gaussian)
state-space models, including the so-called basic structural model defined via
the measurement equation

yt = µt + γt + εt, εt ∼ N (0, σ2
ε) i.i.d.,

where γt is a seasonal component (with frequency s) defined as γt+1 =
−

∑s−1
j=1 γt+1−j + ωt, ωt ∼ N (0, σ2

ω) i.i.d., and the local level and trend com-
ponents are given by

µt+1 = µt + ηt + ξt, ξt ∼ N (0, σ2
ξ ) i.i.d.,

ηt+1 = ηt + ζt, ζt ∼ N (0, σ2
ζ ) i.i.d.
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Table 6.3. Further packages for time series analysis.

Package Description

dse Multivariate time series modeling with state-space and
vector ARMA (VARMA) models (Gilbert 2007).

FinTS R companion to Tsay (2005) with data sets, functions,
and script files to work some of the examples (Graves
2008).

forecast Univariate time series forecasting, including exponential
smoothing, state space, and ARIMA models. Part of the
forecasting bundle (Hyndman and Khandakar 2008).

fracdiff ML estimation of fractionally integrated ARMA
(ARFIMA) models and semiparametric estimation of
the fractional differencing parameter (Fraley, Leisch, and
Maechler 2006).

longmemo Convenience functions for long-memory models; also con-
tains several data sets (Beran, Whitcher, and Maechler
2007).

mFilter Miscellaneous time series filters, including Baxter-King,
Butterworth, and Hodrick-Prescott (Balcilar 2007).

Rmetrics Suite of some 20 packages for financial engineering and
computational finance (Wuertz 2008), including GARCH
modeling in the package fGarch.

tsDyn Nonlinear time series models: STAR, ESTAR, LSTAR
(Di Narzo and Aznarte 2008).

vars (Structural) vector autoregressive (VAR) models (Pfaff
2008).

All error terms are assumed to be mutually independent. Special cases are the
local linear trend model, where γt is absent, and the local linear model, where
in addition σ2

ζ = 0.
In total, there are four parameters, σ2

ξ , σ2
η, σ2

ω, and σ2
ε , some (but not all)

of which may be absent (and often are in practical applications).
It should be noted that, for example, the reduced form of the local trend

model is ARIMA(0,2,2), but with restrictions on the parameter set. Propo-
nents of structural time series models argue that the implied restrictions often
are meaningful in practical terms and thus lead to models that are easier to
interpret than results from unrestricted ARIMA fits.

Here, we fit the basic structural model to the UKDriverDeaths data using

R> dd_struct <- StructTS(log(UKDriverDeaths))
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Fig. 6.13. The basic structural model for the UK driver deaths.

The resulting components

R> plot(cbind(fitted(dd_struct), residuals(dd_struct)))

are shown in Figure 6.13. This approach also clearly brings out the drop in
the number of accidents in connection with the change in legislation.

More information on structural time series models in R is provided by
Ripley (2002) and Venables and Ripley (2002).

GARCH models

Many financial time series exhibit volatility clustering. Figure 6.14 provides a
typical example, a series of 1974 DEM/GBP exchange rate returns for the
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Fig. 6.14. DEM/GBP exchange rate returns.

period 1984-01-03 through 1991-12-31, taken from Bollerslev and Ghysels
(1996). This data set has recently become a benchmark in the GARCH litera-
ture, and it is also used in Greene (2003, Chapter 11). A Ljung-Box test of the
MarkPound series suggests that it is white noise (note that this is not without
problems since this test assumes i.i.d. data under the null hypothesis), while
a test of the squares is highly significant. Thus, a GARCH model might be
appropriate.

The package tseries provides a function garch() for the fitting of
GARCH(p, q) models with Gaussian innovations, defaulting to the popular
GARCH(1, 1)

yt = σtνt, νt ∼ N (0, 1) i.i.d.,
σ2

t = ω + αy2
t−1 + βσ2

t−1, ω > 0, α > 0, β ≥ 0.

For the exchange rate data, we obtain

R> mp <- garch(MarkPound, grad = "numerical", trace = FALSE)

R> summary(mp)

Call:
garch(x = MarkPound, grad = "numerical", trace = FALSE)

Model:
GARCH(1,1)
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Residuals:
Min 1Q Median 3Q Max

-6.79739 -0.53703 -0.00264 0.55233 5.24867

Coefficient(s):
Estimate Std. Error t value Pr(>|t|)

a0 0.0109 0.0013 8.38 <2e-16
a1 0.1546 0.0139 11.14 <2e-16
b1 0.8044 0.0160 50.13 <2e-16

Diagnostic Tests:
Jarque Bera Test

data: Residuals
X-squared = 1060.01, df = 2, p-value < 2.2e-16

Box-Ljung test

data: Squared.Residuals
X-squared = 2.4776, df = 1, p-value = 0.1155

which gives ML estimates along with outer-product-of-gradients (OPG) stan-
dard errors and also reports diagnostic tests of the residuals for normality (re-
jected) and independence (not rejected). Numerical (rather than the default
analytical) gradients are employed in the garch() call because the resulting
maximized log-likelihood is slightly larger. For brevity, trace = FALSE sup-
presses convergence diagnostics, but we encourage readers to reenable this
option in applications.

More elaborate tools for volatility modeling are available in the Rmetrics
collection of packages (Wuertz 2008). We mention the function garchFit()
from the package fGarch, which includes, among other features, a wider se-
lection of innovation distributions in GARCH specifications.

6.6 Exercises

1. Decompose the UKNonDurables data. Filter these data using the Holt-
Winters technique.

2. Repeat Exercise 1 for the DutchSales data. Compare a decomposition via
decompose() with a decomposition via stl().

3. Using the AirPassengers series,
• filter the data using Holt-Winters smoothing,
• fit the airline model, and
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• fit the basic structural model.
Compare the results.

4. Reread Nelson and Plosser (1982) and test a selection of the extended
Nelson-Plosser data, available as NelPlo in the package tseries, for unit
roots. Also fit ARIMA models to these series. (You may need the xreg
argument to arima() for series that appear to be trend stationary.)

5. Compute and plot the coefficients of the implied MA(∞) representations
(i.e., the impulse response functions) for (the stationary part of) the mod-
els fitted in the preceding exercise.
Hint: Use ARMAtoMA().

6. Stock and Watson (2007) consider an autoregressive distributed lag model
for the change in the US inflation rate using the USMacroSW data. Specif-
ically, the model is

∆inft = β0 +
4∑

i=1

βi∆inft−i +
4∑

j=1

γjunempt−j + εt.

Plot the sequence of F statistics for a single structural break for this
ADL(4, 4) model using Fstats() and test for structural changes with the
supF test.

7. Apply the Bai and Perron (2003) dating algorithm to the German M1
data. Do the results correspond to the German monetary reunion?

8. Fit the basic structural model to the UKNonDurables data. Compare this
with the ARIMA model fitted in Section 6.2.
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Programming Your Own Analysis

Data analysis, both in academic and in corporate environments, typically
involves, in some form or other, the following three components: (a) using
or writing software that can perform the desired analysis, (b) a sequence
of commands or instructions that apply the software to the data set under
investigation, and (c) documentation of the commands and their output.

R comes with a rich suite of tools that help implement all these steps while
making the analysis reproducible and applicable to new data. So far, we have
mostly been concerned with providing short examples of existing functionality.
In this chapter, we try to enrich this picture by illustrating how further aspects
of the tasks above can be performed:

(a) In the simplest case, a function that performs exactly the analysis desired is
already available. This is the case for many standard models, as discussed
in the preceding chapters. In the worst case, no infrastructure is available
yet, and a new function has to be written from scratch. In most cases,
however, something in between is required: a (set of) new function(s) that
reuse(s) existing functionality. This can range from simple convenience
interfaces to extensions built on top of existing functions. In any case,
the resulting software is most easily applicable if the functions reflect the
conceptual steps in the analysis.

(b) As R is mostly used via its command-line interface, assembling scripts with
R commands is straightforward (and the history() from an R session
is often a good starting point). To make the results reproducible, it is
important to keep track of the entire analysis, from data preprocessing
over model fitting to evaluation and generation of output and graphics.

(c) For documenting results obtained from an analysis in R, many environ-
ments are available, ranging from word processors to markup languages
such as HTML or LATEX. For all of these it is possible to produce R
output—numerical and/or graphical—and to include this “by hand” in the
documentation (e.g., by “copy and paste”). However, this can be tedious
and, more importantly, make replication or application to a different data

C. Kleiber, A. Zeileis, Applied Econometrics with R,
DOI: 10.1007/978-0-387-77318-6 7, © Springer Science+Business Media, LLC 2008
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set much more cumbersome. Therefore, R ships with support for tightly
bundling R scripts (as discussed in (b)) and the documentation of their
output so that R first runs the analysis and then includes the results in the
documentation. Base R provides the function Sweave() (in package utils),
which by default supports “weaving” of R code with LATEX documentation
but also allows other documentation formats to be plugged in.

In the following, we provide examples for a few typical tasks in econo-
metric analysis—simulation of power curves, bootstrapping a regression, and
maximizing a likelihood. In doing so, we go beyond using off-the-shelf software
and in each case require some of the steps discussed above.

7.1 Simulations

A simulation study is one of the most typical programming tasks when eval-
uating some algorithm; e.g., a test procedure or an estimator. It usually in-
volves (at least) three steps: (1) simulating data from some data-generating
process (DGP); (2) evaluating the quantities of interest (e.g., rejection prob-
abilities, parameter estimates, model predictions); and (3) iterating the first
two steps over a number of different scenarios. Here, we exemplify how to
accomplish such a task in R by comparing the power of two well-known tests
for autocorrelation—the Durbin-Watson and the Breusch-Godfrey test—in
two different specifications of a linear regression. In the following, we first set
up three functions that capture the steps above before we actually run the
simulation and summarize the results both numerically and graphically.

Data-generating process

We consider the Durbin-Watson and Breusch-Godfrey tests for two different
linear regression models: a trend model with regressor xi = i and a model
with a lagged dependent variable xi = yi−1. Recall that the Durbin-Watson
test is not valid in the presence of lagged dependent variables.

More specifically, the model equations are

trend: yi = β1 + β2 · i + εi,

dynamic: yi = β1 + β2 · yi−1 + εi,

where the regression coefficients are in both cases β = (0.25,−0.75)>, and
{εi}, i = 1, . . . , n, is a stationary AR(1) series, derived from standard normal
innovations and with lag 1 autocorrelation %. All starting values, both for y
and ε, are chosen as 0.

We want to analyze the power properties of the two tests (for size α = 0.05)
on the two DGPs for autocorrelations % = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99 and
sample sizes n = 15, 30, 50.

To carry out such a simulation in R, we first define a function dgp() that
implements the DGP above:
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R> dgp <- function(nobs = 15, model = c("trend", "dynamic"),

+ corr = 0, coef = c(0.25, -0.75), sd = 1)

+ {

+ model <- match.arg(model)

+ coef <- rep(coef, length.out = 2)

+

+ err <- as.vector(filter(rnorm(nobs, sd = sd), corr,

+ method = "recursive"))

+ if(model == "trend") {

+ x <- 1:nobs

+ y <- coef[1] + coef[2] * x + err

+ } else {

+ y <- rep(NA, nobs)

+ y[1] <- coef[1] + err[1]

+ for(i in 2:nobs)

+ y[i] <- coef[1] + coef[2] * y[i-1] + err[i]

+ x <- c(0, y[1:(nobs-1)])

+ }

+ return(data.frame(y = y, x = x))

+ }

The arguments to dgp() are nobs (corresponding to n with default 15), model
(specifying the equation used, by default "trend"), corr (the autocorrelation
%, by default 0), coef (corresponding to β), and sd (the standard deviation
of the innovation series). The latter two are held constant in the following.
After assuring that model and coef are of the form required, dgp() sets up
the regressor and dependent variable and returns both in a “data.frame”
comprising the variables y and x.

Evaluation for a single scenario

Based on this implementation of the DGP, we can now easily simulate the
power of both tests for a given combination of parameters. In simpower(), we
just iterate through a for() loop (by default with nrep = 100 iterations) in
which we simulate a data set, apply both dwtest() (the Durbin-Watson test
from lmtest) and bgtest() (the Breusch-Godfrey test from lmtest) to it, and
store the associated p values. After completing the for() loop, we return the
proportion of significant p values (by default at size = 0.05).

R> simpower <- function(nrep = 100, size = 0.05, ...)

+ {

+ pval <- matrix(rep(NA, 2 * nrep), ncol = 2)

+ colnames(pval) <- c("dwtest", "bgtest")

+ for(i in 1:nrep) {

+ dat <- dgp(...)

+ pval[i,1] <- dwtest(y ~ x, data = dat,
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+ alternative = "two.sided")$p.value

+ pval[i,2] <- bgtest(y ~ x, data = dat)$p.value

+ }

+ return(colMeans(pval < size))

+ }

The remaining argument ... is a simple mechanism for passing on further
arguments to other functions. Here, any argument beyond nrep and size
is passed to dgp(). For example, we could easily modify the correlation em-
ployed via simpower(corr = 0.9), which would then internally call dgp(corr
= 0.9), all other defaults remaining unchanged.

Iterated evaluation over all scenarios

Given these two building blocks, the DGP and the power simulator, we can
now set up the main simulation routine in which we compute the power for
different combinations of autocorrelation, sample size, and regression model:

R> simulation <- function(corr = c(0, 0.2, 0.4, 0.6, 0.8,

+ 0.9, 0.95, 0.99), nobs = c(15, 30, 50),

+ model = c("trend", "dynamic"), ...)

+ {

+ prs <- expand.grid(corr = corr, nobs = nobs, model = model)

+ nprs <- nrow(prs)

+

+ pow <- matrix(rep(NA, 2 * nprs), ncol = 2)

+ for(i in 1:nprs) pow[i,] <- simpower(corr = prs[i,1],

+ nobs = prs[i,2], model = as.character(prs[i,3]), ...)

+

+ rval <- rbind(prs, prs)

+ rval$test <- factor(rep(1:2, c(nprs, nprs)),

+ labels = c("dwtest", "bgtest"))

+ rval$power <- c(pow[,1], pow[,2])

+ rval$nobs <- factor(rval$nobs)

+ return(rval)

+ }

This function simply sets up all parameter combinations in a “data.frame”
using expand.grid() and subsequently simulates both power values for each
of the parameter combinations in a for() loop. Finally, the results are slightly
rearranged and returned in a “data.frame”.

Of course, it would have been possible to code all the preceding steps in a
single function; however, such functions tend to be rather monolithic and not
very intelligible. Encapsulating logical steps in computational building blocks
helps to make simulation code readable and facilitates reuse outside a large
simulation. This is particularly helpful during the setup phase, where sanity
checking of the building blocks is possible independently.
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Simulation and summary

Now, all that is required to run the simulation is to set a random seed
(so that the simulation results can always be exactly reproduced) and call
simulation():

R> set.seed(123)

R> psim <- simulation()

Using the default settings, this takes less than a minute on a standard PC;
however, the precision from only 100 replications is certainly not sufficient for
professional applications.

To inspect the simulation results, the most standard and simple format is
tables with numerical output. Using xtabs(), we can turn the “data.frame”
into a “table” that classifies the power outcome by the four design variables.
For printing the resulting four-way table, we create a “flat” two-way table.
This can be achieved using ftable() (for flat table). Placing the values for %
in the columns and nesting all other variables in the rows, we obtain

R> tab <- xtabs(power ~ corr + test + model + nobs, data = psim)

R> ftable(tab, row.vars = c("model", "nobs", "test"),

+ col.vars = "corr")

corr 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99
model nobs test
trend 15 dwtest 0.05 0.10 0.21 0.36 0.55 0.65 0.66 0.62

bgtest 0.07 0.05 0.05 0.10 0.30 0.40 0.41 0.31
30 dwtest 0.09 0.20 0.57 0.80 0.96 1.00 0.96 0.98

bgtest 0.09 0.09 0.37 0.69 0.93 0.99 0.94 0.93
50 dwtest 0.03 0.31 0.76 0.99 1.00 1.00 1.00 1.00

bgtest 0.05 0.23 0.63 0.95 1.00 1.00 1.00 1.00
dynamic 15 dwtest 0.02 0.01 0.00 0.00 0.01 0.03 0.01 0.00

bgtest 0.07 0.04 0.01 0.09 0.14 0.21 0.17 0.26
30 dwtest 0.00 0.01 0.01 0.06 0.00 0.03 0.03 0.19

bgtest 0.05 0.05 0.18 0.39 0.52 0.63 0.64 0.74
50 dwtest 0.02 0.02 0.01 0.03 0.03 0.15 0.39 0.56

bgtest 0.05 0.10 0.36 0.72 0.91 0.90 0.93 0.91

By supplying the test as the last row variable, the table is aimed at comparing
the power curves (i.e., the rejection probabilities for increasing %) between the
two tests under investigation. It can be seen that the Durbin-Watson test
performs somewhat better in the trend model, although the advantage over
the Breusch-Godfrey test diminishes with increasing % and n. As expected, for
the dynamic model, the Durbin-Watson test has almost no power except for
very high correlations whereas the Breusch-Godfrey test performs acceptably.

This difference becomes even more apparent when the comparison is car-
ried out graphically. Instead of the standard R graphics, we prefer to use
so-called trellis graphics for this task. R provides the package lattice (Sarkar
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Fig. 7.1. Simulated power curves for dwtest() (solid) and bgtest() (dashed).

2002), specifically aimed at such layouts. It is written in the grid graphics
system (Murrell 2005), a system even more flexible than R’s default graphics
facilities. grid comes with a multitude of functions and parameters for con-
trolling possibly complex trellis graphics in publication quality. Here, we do
not discuss in detail how to use lattice and grid (the interested reader is re-
ferred to the associated package documentation) and only demonstrate how
to generate Figure 7.1:

R> library("lattice")

R> xyplot(power ~ corr | model + nobs, groups = ~ test,

+ data = psim, type = "b")
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Using xyplot(), a trellis scatterplot is generated for power ~ corr condi-
tional on the combinations of model and nobs. Within each panel, the obser-
vations are grouped by test. All data are taken from the simulation results
psim, and the plotting type is "b", indicating both (i.e., lines and points). For
further control options, see ?xyplot.

In Figure 7.1, rows correspond to varying sample sizes and columns to the
underlying model, and each panel shows the power curves as functions of %
for both tests. The interpretation is much easier compared to the numerical
table: power clearly increases with n and %, and autocorrelation is easier to
detect in the trend than in the dynamic model. While the Durbin-Watson test
performs slightly better in the trend model for small sample sizes, its power
breaks down almost completely in the dynamic model.

7.2 Bootstrapping a Linear Regression

Conventional regression output relies on asymptotic approximations to the
distributions of test statistics, which are often not very reliable in small sam-
ples or models with substantial nonlinearities. A possible remedy is to employ
bootstrap methodology.

In R, a basic recommended package is boot (Canty and Ripley 2008), which
provides functions and data sets from Davison and Hinkley (1997). Specifi-
cally, the function boot() implements the classical nonparametric bootstrap
(sampling with replacement), among other resampling techniques.

Since there is no such thing as “the” bootstrap, the first question is to de-
termine a resampling strategy appropriate for the problem at hand. In econo-
metrics and the social sciences, experimental data are rare, and hence it is
appropriate to consider regressors as well as responses as random variables.
This suggests employing the pairs bootstrap (i.e., to resample observations),
a method that should give reliable standard errors even in the presence of
(conditional) heteroskedasticity.

As an illustration, we revisit an example from Chapter 3, the Journals
data taken from Stock and Watson (2007). The goal is to compute bootstrap
standard errors and confidence intervals by case-based resampling. For ease
of reference, we reproduce the basic regression

R> data("Journals")

R> journals <- Journals[, c("subs", "price")]

R> journals$citeprice <- Journals$price/Journals$citations

R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals)

The function boot() takes several arguments, of which data, statistic, and
R are required. Here, data is simply the data set and R signifies the number
of bootstrap replicates. The second argument, statistic, is a function that
returns the statistic to be bootstrapped, where the function itself must take
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the data set and an index vector providing the indices of the observations
included in the current bootstrap sample.

This is best understood by considering an example. In our case, the re-
quired statistic is given by the convenience function

R> refit <- function(data, i)

+ coef(lm(log(subs) ~ log(citeprice), data = data[i,]))

Now we are ready to call boot():

R> library("boot")

R> set.seed(123)

R> jour_boot <- boot(journals, refit, R = 999)

This yields

R> jour_boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = journals, statistic = refit, R = 999)

Bootstrap Statistics :
original bias std. error

t1* 4.7662 -0.0010560 0.05545
t2* -0.5331 -0.0001606 0.03304

A comparison with the standard regression output

R> coeftest(jour_lm)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7662 0.0559 85.2 <2e-16
log(citeprice) -0.5331 0.0356 -15.0 <2e-16

reveals only minor differences, suggesting that the conventional version is fairly
reliable in this application.

We can also compare bootstrap and conventional confidence intervals. As
the bootstrap standard errors were quite similar to the conventional ones,
confidence intervals will be expected to be quite similar as well in this exam-
ple. To save space, we confine ourselves to those of the slope coefficient. The
bootstrap provides the interval

R> boot.ci(jour_boot, index = 2, type = "basic")
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BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 999 bootstrap replicates

CALL :
boot.ci(boot.out = jour_boot, type = "basic", index = 2)

Intervals :
Level Basic
95% (-0.5952, -0.4665 )
Calculations and Intervals on Original Scale

while its classical counterpart is

R> confint(jour_lm, parm = 2)

2.5 % 97.5 %
log(citeprice) -0.6033 -0.4628

This underlines that both approaches yield essentially identical results here.
Note that boot.ci() provides several further methods for computing boot-
strap intervals.

The bootstrap is particularly helpful in situations going beyond least-
squares regression; thus readers are asked to explore bootstrap standard errors
in connection with robust regression techniques in an exercise.

Finally, it should be noted that boot contains many further functions for
resampling, among them tsboot() for block resampling from time series (for
blocks of both fixed and random lengths). Similar functionality is provided
by the function tsbootstrap() in the package tseries. In addition, a rather
different approach, the maximum entropy bootstrap (Vinod 2006), is available
in the package meboot.

7.3 Maximizing a Likelihood

Transformations of dependent variables are a popular means to improve the
performance of models and are also helpful in the interpretation of results.
Zellner and Revankar (1969), in a search for a generalized production function
that allows returns to scale to vary with the level of output, introduced (among
more general specifications) the generalized Cobb-Douglas form

Yie
θYi = eβ1Kβ2

i Lβ3
i ,

where Y is output, K is capital, and L is labor. From a statistical point of
view, this can be seen as a transformation applied to the dependent variable
encompassing the level (for θ = 0, which in this application yields the clas-
sical Cobb-Douglas function). Introducing a multiplicative error leads to the
logarithmic form
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log Yi + θYi = β1 + β2 log Ki + β3 log Li + εi. (7.1)

However, this model is nonlinear in the parameters, and only for known θ
can it be estimated by OLS. Following Zellner and Ryu (1998) and Greene
(2003, Chapter 17), using the Equipment data on transportation equipment
manufacturing, we attempt to simultaneously estimate the regression coeffi-
cients and the transformation parameter using maximum likelihood assuming
εi ∼ N (0, σ2) i.i.d.

The likelihood of the model is

L =
n∏

i=1

{
φ(εi/σ) · 1 + θYi

Yi

}
,

where εi = log Yi + θYi − β1 − β2 log Ki − β3 log Li and φ(·) is the probability
density function of the standard normal distribution. Note that ∂εi/∂Yi =
(1 + θYi)/Yi.

This gives the log-likelihood

` =
n∑

i=1

{log(1 + θYi)− log Yi} −
n∑

i=1

log φ(εi/σ).

The task is to write a function maximizing this log-likelihood with respect
to the parameter vector (β1, β2, β3, θ, σ

2). This decomposes naturally into the
following three steps: (1) code the objective function, (2) obtain starting values
for an iterative optimization, and (3) optimize the objective function using the
starting values.

Step 1: We begin by coding the log-likelihood. However, since the function
optim() used below by default performs minimization, we have to slightly
modify the natural approach in that we need to minimize the negative of the
log-likelihood.

R> data("Equipment", package = "AER")

R> nlogL <- function(par) {

+ beta <- par[1:3]

+ theta <- par[4]

+ sigma2 <- par[5]

+

+ Y <- with(Equipment, valueadded/firms)

+ K <- with(Equipment, capital/firms)

+ L <- with(Equipment, labor/firms)

+

+ rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L)

+ lhs <- log(Y) + theta * Y

+

+ rval <- sum(log(1 + theta * Y) - log(Y) +

+ dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE))
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+ return(-rval)

+ }

The function nlogL() is a function of a vector parameter par comprising five
elements; for convenience, these are labeled as in Equation (7.1). Variables are
transformed as needed, after which both sides of Equation (7.1) are set up.
These ingredients are then used in the objective function rval, the negative of
which is finally returned. Note that R comes with functions for the logarithms
of the standard distributions, including the normal density dnorm(..., log
= TRUE).

Step 2: optim() proceeds iteratively, and thus (good) starting values are
needed. These can be obtained from fitting the classical Cobb-Douglas form
by OLS:

R> fm0 <- lm(log(valueadded/firms) ~ log(capital/firms) +

+ log(labor/firms), data = Equipment)

The resulting vector of coefficients, coef(fm0), is now amended by 0, our
starting value for θ, and the mean of the squared residuals from the Cobb-
Douglas fit, the starting value for the disturbance variance:

R> par0 <- as.vector(c(coef(fm0), 0, mean(residuals(fm0)^2)))

Step 3: We are now ready to search for the optimum. The new vector par0
containing all the starting values is used in the call to optim():

R> opt <- optim(par0, nlogL, hessian = TRUE)

By default, optim() uses the Nelder-Mead method, but there are further
algorithms available. We set hessian = TRUE in order to obtain standard
errors. Parameter estimates, standard errors, and the value of the objective
function at the estimates can now be extracted via

R> opt$par

[1] 2.91469 0.34998 1.09232 0.10666 0.04275

R> sqrt(diag(solve(opt$hessian)))[1:4]

[1] 0.36055 0.09671 0.14079 0.05850

R> -opt$value

[1] -8.939

In spite of the small sample, these results suggest that θ is greater than 0.
We add that for practical purposes the solution above needs to be verified;

specifically, several sets of starting values must be examined in order to confirm
that the algorithm did not terminate in a local optimum. McCullough (2004)
offers further advice on nonlinear estimation.

Note also that the function presented above is specialized to the data
set under investigation. If a reusable function is needed, a proper function
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GCobbDouglas(formula, data, ...) should be coded and preferably made
available in a package (R Development Core Team 2008g), typically the best
means of sharing collections of functions.

7.4 Reproducible Econometrics Using Sweave()

As noted above, reproducibility of analyses is crucial, both in academic and
corporate environments (Leisch and Rossini 2003). See McCullough and Vinod
(2003), Zeileis and Kleiber (2005), and Koenker and Zeileis (2007) for three
recent examples of partially successful replications in an academic setting. Sev-
eral features make R an ideal environment for reproducible research. Firstly, R
is mostly platform independent and runs on Windows, the Mac family of op-
erating systems, and various flavors of Unix. Secondly, its open-source nature
not only makes the (binary) system available to everyone but also enables in-
spection of the full underlying source code if necessary. Moreover, R supports
literate programming: Sweave() (Leisch 2002, 2003a) allows for mixing R and
LATEX code, making the code and documentation a tightly coupled bundle.

In fact, this book has been entirely written using Sweave() functionality.
For compiling a new version of the book, first the whole source code is ex-
ecuted, its output (text and graphics) is “weaved” with the LATEX text, and
then pdfLATEX is run to produce the final book in PDF (portable document
format). Therefore, it is assured that the input and output displayed are al-
ways in sync with the versions of the data, code, packages, and R itself. The
whole process is platform independent—incidentally, the authors simultane-
ously used Microsoft Windows, Mac OS X, and Debian GNU/Linux during
the course of writing this book.

In the following, we illustrate a fairly simple example for mixing R code
and LATEX documentation. We start out from the file Sweave-journals.Rnw
displayed in Table 7.1.1 It mainly looks like a LATEX file, but it contains R code
chunks beginning with <<...>>= and ending in @. This file can be processed
by R upon calling

R> Sweave("Sweave-journals.Rnw")

which replaces the original R code by valid LATEX code and weaves it into
the file Sweave-journals.tex shown in Table 7.2. In place of the R chunks,
this contains verbatim LATEX chunks with the input and output of the R
commands and/or an \includegraphics{} statement for the inclusion of
figures generated along the way. The additional environments, such as Sinput,
Soutput, and Schunk, are defined in the style file Sweave.sty, a file that is
part of the local R installation. It is included automatically with a system-
dependent path. The file Sweave-journals.tex can then be processed as
usual by LATEX, producing the final document as shown in Table 7.3.
1 The suffix .Rnw is conventionally used to abbreviate “R noweb”. Noweb is a simple

literate-programming tool whose syntax is reused in Sweave().
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Table 7.1. A simple Sweave file: Sweave-journals.Rnw.

\documentclass[a4paper]{article}

\begin{document}

We fit a linear regression for the economic journals demand model.

<<>>=

data("Journals", package = "AER")

journals_lm <- lm(log(subs) ~ log(price/citations), data = Journals)

journals_lm

@

A scatter plot with the fitted regression line is shown below.

\begin{center}

<<fig=TRUE, echo=FALSE>>=

plot(log(subs) ~ log(price/citations), data = Journals)

abline(journals_lm)

@

\end{center}

\end{document}

In addition to “weaving”, there is a second basic operation for literate-
programming documents, called “tangling”, which here amounts to extracting
the included R code. Invoking Stangle() via

R> Stangle("Sweave-journals.Rnw")

produces a file Sweave-journals.R that simply contains the R code from the
two R chunks.

The basic weaving procedure illustrated above can be refined in many
ways. In the starting lines of an R chunk <<...>>=, control options can be in-
serted (together with an optional name for the chunk). Above, we already use
echo=FALSE (which suppresses the display of the code input) and fig=TRUE
(which signals that figures should be produced). By default, both EPS (en-
capsulated PostScript) and PDF files are generated so that the associated
LATEX sources can be compiled either with plain LATEX (for DVI documents)
or pdfLATEX (for PDF documents). Similarly, many other options can be set,
such as height/width for graphics; see ?RweaveLatex for a full list. For run-
ning LATEX, the user can, of course, employ any means he or she is accustomed
to. However, if desired, running LATEX is also possible from within R by using
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Table 7.2. LATEX file Sweave-journals.tex obtained from
Sweave("Sweave-journals.Rnw").

\documentclass[a4paper]{article}

\usepackage{/usr/share/R/share/texmf/Sweave}

\begin{document}

We fit a linear regression for the economic journals demand model.

\begin{Schunk}

\begin{Sinput}

R> data("Journals", package = "AER")

R> journals_lm <- lm(log(subs) ~ log(price/citations),

+ data = Journals)

R> journals_lm

\end{Sinput}

\begin{Soutput}

Call:

lm(formula = log(subs) ~ log(price/citations), data = Journals)

Coefficients:

(Intercept) log(price/citations)

4.766 -0.533

\end{Soutput}

\end{Schunk}

A scatter plot with the fitted regression line is shown below.

\begin{center}

\includegraphics{Sweave-journals-002}

\end{center}

\end{document}

the function texi2dvi() from the package tools 2. PDF output can then be
generated by

R> texi2dvi("Sweave-journals.tex", pdf = TRUE)

The source code for the example above is also contained in a so-called vi-
gnette (Leisch 2003b) in the folder ~/AER/inst/doc of the AER package. The
associated PDF document can be viewed by calling
2 If texi2dvi() does not work out of the box, it might be necessary to set the
"texi2dvi" option, see ?texi2dvi for details.
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Table 7.3. Final document created by running LATEX on Sweave-journals.tex.

We fit a linear regression for the economic journals demand model.

R> data("Journals", package = "AER")

R> journals_lm <- lm(log(subs) ~ log(price/citations),

+ data = Journals)

R> journals_lm

Call:

lm(formula = log(subs) ~ log(price/citations), data = Journals)

Coefficients:

(Intercept) log(price/citations)

4.766 -0.533

A scatter plot with the fitted regression line is shown below.
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R> vignette("Sweave-journals", package = "AER")

This document makes it obvious that it was generated from R because it
includes verbatim R input and output.

For generating reports or papers, one often wants to avoid verbatim
sections and use LATEX formulas and equations instead. This is also easily
achieved using Sweave(), while maintaining the dynamic character of the
document. Two simple ways are to include the output of R expressions di-
rectly in the text via \Sexpr{} or to produce full LATEX code in an R chunk.
We use the former for displaying a formula for the journals regression along
with the estimated coefficients. The LATEX code for this is

\[
\log(\textrm{subscriptions}) \quad = \quad
\Sexpr{round(coef(journals_lm)[1], digits = 2)}
\Sexpr{if(coef(journals_lm)[2] < 0) "-" else "+"}
\Sexpr{abs(round(coef(journals_lm)[2], digits = 2))}
\cdot \log(\textrm{price per citation})

\]

containing three \Sexpr{} statements: the first and third simply extract and
round the coefficients of the fitted“lm”model, and the second one dynamically
chooses the right sign for the slope. The output in the processed document is

log(subscriptions) = 4.77− 0.53 · log(price per citation)

This is very handy for including small text fragments, typically numbers or
short sequences of text. For producing more complex text structures (e.g.,
tables), it is often simpler to use the rich text processing functionality (see
Chapter 2 and ?paste) and put together the full LATEX code within R.

Here, we produce the usual table of coefficients for a regression model.
The code below sets up a table in LATEX, the core of which is filled by the
output of an R chunk whose output is treated as LATEX code by setting the
option results=tex. It extracts the coefficients table from the summary() of
the “lm” object, rounds the numbers and coerces them to characters, prettifies
the p values, and then pastes everything into a LATEX table. The resulting
document is shown in Table 7.4.

Table 7.4. Regression summary

Estimate Std. error t statistic p value

(Intercept) 4.766 0.056 85.249 < 0.001
log(price/citations) -0.533 0.036 -14.968 < 0.001
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\begin{table}
\centering
\caption{Regression summary}
\begin{tabular}{rrrrr}
\hline
& Estimate & Std.~error & $t$ statistic & $p$ value \\
\hline
<<echo=FALSE, results=tex>>=
x <- summary(journals_lm)$coefficients
x[] <- as.character(round(x, digits = 3))
x[,4] <- ifelse(as.numeric(x[,4]) < 0.001, "$<$ 0.001", x[,4])
cat(paste(rownames(x), "&",
apply(x, 1, paste, collapse = " & "), "\\\\ \n"))

@
\hline
\end{tabular}
\end{table}

The last command in the R chunk is somewhat more complex; hence we
recommend that readers simply try to put it together step by step. Note
that the backslash \ has to be escaped because it is the escape character.
Therefore, to produce a double backslash \\ in cat(), both backslashes have
to be escaped.

Instead of hand-crafting the LATEX summary, similar code could have been
generated using the xtable package (Dahl 2007), which can export tables for
several standard R objects to LATEX or HTML.

Although base R just supports weaving of R code and LATEX documenta-
tion, Sweave() is written in such a way that it can be extended to other doc-
umentation formats as well. The package R2HTML (Lecoutre 2003) provides
the function RweaveHTML(), which allows mixing R code with HTML documen-
tation. Similarly, the package odfWeave (Kuhn 2008) contains infrastructure
for embedding R code and output into word-processor files. Specifically, the
function RweaveOdf() and its wrapper odfWeave() can weave R and text in
open document format (ODF). This is a word-processor format supported by
various programs, most notably the OpenOffice.org suite, from which ODF
files can be exported into many other formats, including Microsoft Word doc-
uments and rich text format (RTF). See Koenker and Zeileis (2007) for further
information.
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7.5 Exercises

1. Empirical macroeconomics has seen revived interest in filtering techniques.
Write a function implementing the filter known as the Hodrick-Prescott
filter among economists, including an estimate of its smoothing parameter.
Schlicht (2005) is a good starting point.

2. Our analysis of the OECDGrowth data in Chapter 4 used highly nonlinear
robust regression techniques; in addition, the data set is rather small.
(a) Compute bootstrap standard errors as an alternative to the conven-

tional asymptotic approximations.
(b) Compare the results in (a) with the standard errors obtained in Chap-

ter 4.
3. Zellner and Ryu (1998) also use the Equipment data while discussing a

wider set of functional forms.
(a) (optional) Do not use the AER version of the data set. Instead, down-

load these data from the data archive of the Journal of Applied Econo-
metrics, where they are ordered by variable. Use the scan() function
to generate a data.frame.

(b) Estimate some of the generalized functional forms considered by Zell-
ner and Ryu (1998) via maximum likelihood following the approach
outlined in Section 7.3.
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Arellano-Bond estimator, 87

arima(), 159–161, 163, 181

ARIMA model, 157

fitting, 160
prediction, 162
regression terms, 160
seasonal, 160, 161, 169, 171, 175
selection, 160
simulation, 155

arima.sim(), 155, 164
arithmetic, 17

vector arithmetic, 18
arma(), 159
ARMAacf(), 164
ARMAtoMA(), 164, 181
as.character(), 27
as.data.frame(), 27
as.matrix(), 27
as.numeric(), 27
as.ts(), 153
as.vector(), 127
as.zoo(), 82, 153
asin(), 17
atan(), 17
attach(), 34
auto.arima(), 159, 161
autocorrelation, 104, 184

autocorrelation function, 158
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Equipment, see data sets
error correction model, 168, 173
ets(), 156
example(), 12
exp(), 17
expand.grid(), 161, 186
exploratory data analysis, 46
exponential family, 122, 135
exponential smoothing, 155
expression(), 45

factor(), 37, 38, 49, 71
false positive rate, 128
FAQ, 13
fGarch, see packages
FGLS, see least-squares methods
file(), 37
file.copy(), 37
file.remove(), 37
filter, 154

linear, 154
moving average, 154
recursive, 154

filter(), 154
FinTS, see packages



216 Index

Fisher scoring, 123
fitted(), 59
fitted.values(), 59
five-number summary, 48
fivenum(), 48
fixed effects, 84
fixef(), 85
flow control, 28
fluctuation test, see structural change
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HAC estimator, see covariance matrix
estimation

Harvey-Collier test, 104
harvtest(), 104
hat matrix, 97
hatvalues(), 97
Hausman test, 87
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HC estimator, see covariance matrix

estimation
head(), 47
heatmap, 6
hedonic regression, 91
help(), 12, 13
help.search(), 12, 13
heteroskedasticity, 75, 101
hist(), 44
histogram, 48
history(), 183
HoltWinters(), 156
HousePrices, see data sets
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lattice, see packages
least absolute deviation regression, see

quantile regression
least-squares methods

conditional sum of squares, 160
feasible generalized least squares

(FGLS), 76
generalized least squares (GLS), 76
iterated FGLS, 77
iterative weighted least squares

(IWLS), 123, 131
ordinary least squares (OLS), 2, 4, 11,

55–60, 78–82, 84, 85, 160, 169–171
two-stage least squares, 90
weighted least squares (WLS), 75–78

legend(), 43
length(), 18
leverage, 97
library(), 8
license, 8, 15
likelihood, 127, 132, 136, 139–141, 144,

191
linear hypothesis, 63
linear regression, 2, 3, 55–60, 78–82,

169–171
model diagnostics, 94
model fitting, 2, 11, 57
ordinary least squares (OLS), see

least-squares methods
residuals, see residuals

linear.hypothesis(), 63–65, 130
lines(), 43, 48, 62, 152

link function, 122
canonical link function, 122, 133

list(), 24
literate programming, 194
Ljung-Box test, 105, 162
lm(), 2, 4, 6, 33, 55–58, 62, 66, 70, 74,

75, 78, 79, 91, 123, 142, 169–171
lme4, see packages
LMS regression, see resistant regression
lmtest, see packages
load(), 12, 36
loess smoothing, 155
log(), 11, 17, 18
log10(), 18
log2(), 18
logical comparisons, 25
logit model, 124, 130
logLik(), 59, 127, 163
longmemo, see packages
loop, 28, 30
lower.tri(), 22
lqs(), 112, 113
ls(), 10
LTS regression, see resistant regression

mahalanobis(), 113
main effect, 72
MarkPound, see data sets
MASS, see packages
mathematical functions, 17
matrix operations, 20
max(), 17, 48
maximum likelihood, 123, 144, 160, 191

nonexistence of estimator, 132
MCD, see minimum covariance

determinant
mean(), 31
meboot, see packages
merge(), 81, 170
methods(), 38, 40
mFilter, see packages
mgcv, see packages
micEcon, see packages
min(), 17, 48
minimum covariance determinant

(MCD) estimator, 113
minimum volume ellipsoid (MVE)

estimator, 113
missing values, 38
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ML, see maximum likelihood
mlogit, see packages
mode, 23
model comparison, 68
money demand, 173
mosaic plot, 50
multinom(), 148, 149
multinomial logit model, 147, 148
multinomial response, 147
MurderRates, see data sets
MVE, see minimum volume ellipsoid

NA, see missing values
na.omit(), 94
ncol(), 20
negative binomial distribution, 135
negative binomial regression, 134, 135
negative.binomial(), 135
NelPlo, see data sets
nested coding, 72
Newey-West estimator, see covariance

matrix estimation
NeweyWest(), 110
nlme, see packages
nlogL(), 193
nnet(), 148
nnet, see packages
nonnested models, 82

Cox test, 82
encompassing test, 82
J test, 82

np, see packages
npindex(), 146
npindexbw(), 145
nrow(), 20

object, 9
object orientation, 38, 39
objects(), 10, 11
odfWeave(), 199
odfWeave, see packages
OECDGrowth, see data sets
OLS, see least-squares methods
optim(), 192, 193
optimization, 191
options(), 12
ordered probit model, 149
ordinal response, 149
overdispersion, 133, 135, 136

PACF, see autocorrelation
pacf(), 158
packages, 8

AER, vi, vii, 1, 4, 9, 36, 38, 41, 64,
69, 70, 84, 92, 106, 111, 134, 141,
165, 196, 200

base, 10, 12
boot, 188, 191
car, 63
dse, 177
dyn, 79
dynlm, 79, 169, 171
effects, 127
fGarch, 177, 180
FinTS, 177
forecast, 156, 159, 161, 177
forecasting, 177
foreign, 36
fracdiff, 177
gam, 145
grid, 41, 188
KernSmooth, 6
lattice, 41, 187, 188
lme4, 145
lmtest, 69, 83, 91, 101, 105, 107, 185
longmemo, 177
MASS, 91, 112, 113, 135, 149
meboot, 191
mFilter, 177
mgcv, 145
micEcon, 145
mlogit, 145, 149
nlme, 92
nnet, 148
np, 71, 144, 147
odfWeave, 199
plm, 84, 87, 92
pscl, 138, 140
quantreg, 4, 115–117
R2HTML, 199
Rmetrics, 177, 180
robustbase, 145
ROCR, 128
sampleSelection, 145
sandwich, 94, 106, 110, 136
splines, 70
stats, 105, 159, 164, 176
strucchange, 13, 171, 172
survival, 141
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systemfit, 89, 90
tools, 196
tsDyn, 177
tseries, 159, 164, 166, 167, 179, 181,

191
urca, 167, 168
utils, 184
vars, 177
VR, 148
xtable, 199
zoo, 82, 153

panel data, 84
panel regression

dynamic, 87
static, 84

par(), 42, 43, 62
Parade2005, see data sets
partially linear model, 69
paste(), 37
pdf(), 44, 71
PepperPrice, see data sets
pFtest(), 85
pgmm(), 88
Phillips-Perron test, 166
phtest(), 87
pie(), 44, 49
pie chart, 44, 49
plm(), 84
plm, see packages
plm.data(), 84, 89
plmtest(), 87
plot(), 11, 41–44, 59, 62, 79, 82, 95,

117, 152, 171, 172
po.test(), 167
points(), 43
Poisson distribution, 122, 133, 135
Poisson regression, 133
polr(), 149
power curve, 187, 188
PP.test(), 166
pp.test(), 166
predict(), 4, 56, 59, 61, 127, 139, 163
prediction, 61, 127
prediction(), 128
prediction interval, 61
print(), 41, 59, 163
probit model, 124, 125, 146
production function, 191
prop.table(), 49

proportional odds logistic regression,
149

pscl, see packages
pseudo-R2, 127
PSID1976, see data sets
PSID1982, see data sets
PublicSchools, see data sets

q(), 12
QQ plot, 52, 62, 95
qqplot(), 44
qr(), 21
quantile(), 48
quantile regression, 4, 115

LAD regression, 115
quantreg, see packages
quartz(), 71
quasi-Poisson model, 134

R2HTML, see packages
rainbow test, 103
raintest(), 103
random effects, 85
random number generation, 27
random seed, 27, 187
rbind(), 22
read.csv(), 35
read.csv2(), 35
read.dta(), 36
read.table(), 35, 36
receiver operating characteristic, 128,

129
RecreationDemand, see data sets
recursive estimates test, see structural

change
reference category, 67, 75
regression diagnostics, 94
regression quantiles, see quantile

regression
relevel(), 75
remove(), 10
reproducibility, 194
reserved words, 32
RESET, 103
resettest(), 103
resid(), 59
residuals, 59, 94, 95, 129

deviance, 129
Pearson, 129
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recursive, 104
standardized, 97
studentized, 99

residuals(), 56, 59, 129
resistant regression

LMS regression, 111
LTS regression, 111

rgb(), 71
RGB color model, 71
rm(), 10
Rmetrics, see packages
rnorm(), 24, 27, 28, 40
robust regression, see resistant

regression
robustbase, see packages
ROC, see receiver operating character-

istic
ROCR, see packages
rollapply(), 154
rq(), 4, 6, 115, 116
rstandard(), 97
rstudent(), 99
rug(), 42
RweaveHTML(), 199
RweaveOdf(), 199

sample(), 28
sampleSelection, see packages
sandwich(), 136
sandwich, see packages
sandwich estimator, see covariance

matrix estimation
sapply(), 32
SARIMA, see ARIMA, seasonal
save(), 12
scale-location plot, 63, 95
scan(), 35, 200
scatterplot, 41, 51, 94
sctest(), 171, 172
seemingly unrelated regressions, 89
separation, (quasi-)complete, 130–132
set.seed(), 27
setwd(), 12
sign(), 17
simulation, 184, 187
sin(), 17
single-index model, 144
sink(), 37
skedastic function, 76

Solow model, 111
solve(), 21
spine plot, 50, 125, 147
spinogram, 125
spline, 70

B spline, 70
cubic spline, 70

splines, see packages
sprintf(), 37
sqrt(), 17
standard errors, see covariance matrix

estimation
Stangle(), 195
stationarity test

KPSS, 167
stats, see packages
stl(), 155, 180
str(), 41, 46, 47, 152
string manipulation, 36
strsplit(), 37
strucchange, see packages
StructTS(), 158, 159, 176
structural change

Chow test, 172
CUSUM test, 171, 172
dating, 174
empirical fluctuation process, 171
fluctuation test, 173
recursive estimates test, 173
supF test, 172
tests for structural change, 171

structural time series model, 176
basic structural model, 177

structure(), 70
subset(), 35
subsetting, 19, 24
Subversion, 14
summary(), 4, 11, 38–41, 47, 56, 58, 59,

63, 73, 74, 85, 90, 106–108, 117,
133, 148, 149, 152, 199

summary.default(), 39, 40
summary.factor(), 40
supF test, see structural change
SUR, see seemingly unrelated regression
survival, see packages
survreg(), 141
svd(), 21
Sweave(), vi, 184, 194, 198, 199
SwissLabor, see data sets
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system(), 37
system.time(), 30
systemfit(), 89, 90
systemfit, see packages

table(), 50
tail(), 47
tan(), 17
tapply(), 32, 52
task view, 9
texi2dvi(), 196
text(), 43, 45
time(), 152
time series, 78, 151

classes, 151
decompositions, 155
diagnostics, 162

tobit(), 141–143
tobit model, 141
tools, see packages
true positive rate, 128
ts(), 152
ts.intersect(), 170
ts.union(), 170
tsboot(), 191
tsbootstrap(), 191
tsdiag(), 162
tsDyn, see packages
tseries, see packages
two-stage least squares, see least-squares

methods

UKDriverDeaths, see data sets
UKNonDurables, see data sets
underdispersion, 134
unique(), 113
unit root, 165

tests, 165, 166
update(), 69, 127
upper.tri(), 22
ur.ers(), 167
urca, see packages
USConsump1993, see data sets
UseMethod(), 39
USMacroG, see data sets
USMacroSW, see data sets
utils, see packages

VAR, see vector autoregressive model
variance function

linear, 134
NB1, 134
NB2, 134
quadratic, 134

vars, see packages
vcov(), 59, 107, 137, 163
vcovHAC(), 106, 110
vcovHC(), 106, 107
vector, 23

character, 23
logical, 23
mode, 23

vector autoregressive model, 168
vectorized calculations, 31
version control, 14
vignette(), 13
volatility model, 178
VR, see packages

wage equation, 3, 65, 115
waldtest(), 69, 83, 107, 109, 110, 130
weave(), 110
which(), 26
which.max(), 26
which.min(), 26
while(), 29
Wilkinson-Rogers notation, 58, 67
window(), 152
windows(), 71
with(), 35
WLS, see least-squares methods
word processor, 183
write.csv(), 35
write.csv2(), 35
write.dta(), 36
write.table(), 35, 36
writeLines(), 37
writing functions, 29

xtable, see packages
xtabs(), 50, 187
xyplot(), 188

Yule-Walker estimator, 160

zero-inflation model, 137
ZINB, 138
ZIP, 138

zeroinfl(), 138
zoo, see packages
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