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1. INTRODUCTION

∙We already covered panel data models where the error term had no

particular structure. But we assumed either contemporaneous

exogeneity (pooled OLS) or strict exogeneity (feasible GLS).

∙ Now we explicitly add a time constant, unobserved effect to the

model. Often called unobserved heterogeneity.
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∙ Start with the balanced panel case, and assume random sampling

across i (the cross section dimension), with fixed time periods T. So

xit,yit : t  1, . . . ,T,ci where ci is the unobserved effect drawn

along with the observed data.

∙ The unbalanced case is trickier because we must know why we are

missing some time periods for some units. We consider this much later

under missing data/sample selection issues.
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∙ For a random draw i from the population, the basic model is

yit  xit  ci  uit, t  1, . . . ,T,

where uit : t  1, . . . ,T are the idiosyncratic errors. The composite

error at time t is

vit  ci  uit

∙ Because of ci, the sequence vit : t  1, . . . ,T is almost certainly

serially correlated, and definitely is if uit is serially uncorrelated.
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∙ Useful to write a population version of the model in conditional

expectation form:

Eyt|xt,c  xt  c, t  1, . . . ,T.

Therefore,

j 
∂Eyt|xt,c
∂xtj

,

so that j is the partial effect of xtj on Eyt|xt,c, so that we are

“holding c fixed.”

∙ Hope is that we can allow c to be correlated with xt.
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∙With a single cross section, there is nothing we can do unless we can

find good observable proxies for c or IVs for the endogenous elements

of xt. But with two or more periods we have more options.

∙We can write the population model as

yt  xt  c  ut
Eut|xt,c  0

Suppose we have T  2 time periods:

y1  x1  c  u1

y2  x2  c  u2
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∙ Subtract t  1 from t  2 and define Δy  y2 − y1, Δx  x2 − x1, and

Δu  u2 − u1:

Δy  Δx  Δu,

which is now a cross section in the changes or differences.

∙ Sufficient for OLS on a random sample to consistently estimate :

EΔx′Δu  0
rank EΔx′Δx  K.

∙ The rank condition is violated if xt has elements that do not change

over time. Assume each element of xt has some time variation (that is,

for at least some members in the population).
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∙ The orthogonality condition is

Ex2 − x1′u2 − u1  0.

But

Ex2 − x1′u2 − u1  Ex2
′ u2 − Ex1

′ u2 − Ex2
′ u1  Ex1

′ u1

 −Ex1
′ u2  Ex2

′ u1

because Ext′ut  0 under the conditional mean specification.
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∙ OLS on the differences will only be consistent if we add

Exs′ut  0, s ≠ t.

This is a kind of strict exogeneity assumption. However, we have

removed c from the composite error. Assuming xs is uncorrelated with

ut for all s and t is weaker than assuming xs is uncorrelated with the

composite error, c  ut, for all s and t.
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∙Would we really omit an intercept from the differenced equation?

Very unlikely. If we start with a model with different intercepts,

y1  1  x1  c  u1

y2  2  x2  c  u2

then

Δy    Δx  Δu,

where   2 − 1 is the change in the aggregate time effects

(intercepts). Now the rank condition also excludes variables that change

by the same amount for each unit (such as age).
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2. ASSUMPTIONS

∙ As mentioned earlier, we assume a balanced panel and all asymptotic

analysis – implicit or explicit – is with fixed T and N → , where N is

the size of the cross section.

∙ The basic unobserved effects model is

yit  xit  ci  uit, t  1, . . . ,T,

where xit is 1  K and so  is K  1. In addition to unobserved effect

and unobserved heterogeneity, ci is sometimes called a latent effect or

an individual effect, firm effect, school effect, and so on.
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∙ An extension of the basic model is

yit  xit   tci  uit, t  1, . . . ,T,

where  t : t  1, . . . ,T are unknown parameters (and we have to

assume something like 1  1). More on this later.

∙ As in the earlier treatment, the model is written with  not depending

on time. But xit can include time period dummies and interactions of

variables with time periods dummies, so the model is quite flexible.
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∙ A general specification is

yit  gt  zi  wit  ci  uit

where gt is a vector of aggregate time effects (often time dummies), zi

is a set of time-constant observed variables, and wit changes across i

and t (for at least some units i and time periods t). wit can include

nteractions among time-constant and time varying variables.

∙ In microeconometric applications, best to avoid calling ci a “random

effect” or a “fixed effect.” We are treating ci always as a random

variable.
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Assumptions about the Unobserved Effect

∙ In modern applications, “random effect” essentially means

Covxit,ci  0, t  1, . . . ,T,

although we often will strengthen this.

∙ The term “fixed effect” means that no restrictions are placed on the

relationship between ci and xit.

∙ Recently, “correlated random effects” is used to denote situations

where we model the relationship between ci and xit, and it is

especially useful for nonlinear models (but also for linear models, as we

will see).
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Exogeneity Assumptions on the Explanatory Variables

yit  xit  ci  uit

Contemporaneous Exogeneity Conditional on the Unobserved Effect:

Euit|xit,ci  0

or

Eyit|xit,ci  xit  ci.

∙ Ideally, we could proceed with just this assumption.
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∙ Strict Exogeneity Conditional on the Unobserved Effect:

Eyit|xi1, . . . ,xiT,ci  Eyit|xit,ci  xit  ci,

so that only xit affects the expected value of yit once ci is controlled for.

∙ This is weaker than if we did not condition on ci. Assuming the

condition holds conditional on ci,

Eyit|xi1, . . . ,xiT  xit  Eci|xi1, . . . ,xiT.

So correlation between ci and xi1, . . . ,xiT would invalidate the

assumption without conditioning on ci.

16



∙ But strict exogeneity conditional on ci rules out lagged dependent

variables and feedback. Written in terms of the idiosyncratic errors,

strict exogeneity is

Euit|xi1, . . . ,xiT,ci  0,

and so xi,th must be uncorrelated with uit for all h  0.

∙ In addition to ruling out feedback, strict exogeneity assumes we have

any distributed lag dynamics correct, too. For example, if

xit  zit,zi,t−1, then

Eyit|zi1, . . . ,zit, . . . ,ziT,ci  Eyit|zit,zi,t−1,ci.
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∙ A more reasonable assumption that we will use later is

Eyit|xit,xi,t−1, . . . ,xi1,ci  Eyit|xit,ci  xit  ci,

which is sequential exogeneity conditional on the unobserved effect.

∙ Sequential exogeneity assumes correct distributed lag dynamics but is

silent on feedback.
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3. ESTIMATION AND TESTING

∙ There are four common methods: pooled OLS, random effects, fixed

effects, and first differencing.
3.1. Pooled OLS

∙We already covered this. Now, we just recognize that the equation is

yit  xit  vit
vit  ci  uit

∙ Consistency (fixed T, N → ) of the POLS estimator is ensured by

Exit′ ci  0
Exit′ uit  0, t  1, . . . ,T.
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∙ Contemporaneous exogeneity is weaker than strict exogeneity, but it

buys us little in practice because POLS also uses Exit′ ci  0, which

cannot hold for lagged dependent variables and is unlikely for other

variables not strictly exogenous.

∙ Inference should be made robust to serial correlation and

heteroskedasticity.
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∙ Let v̂it  yit − xit̂POLS be the POLS residuals. Then

Avar̂POLS  ∑
i1

N

∑
t1

T

xit′ xit
−1

∑
i1

N

∑
t1

T

∑
r1

T

v̂itv̂irxit′ xir

 ∑
i1

N

∑
t1

T

xit′ xit
−1

,

or sometimes with an adjustment, such as multiply by N/N − 1.
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∙ Can also write this estimator as

Avar̂POLS  ∑
i1

N

Xi
′Xi

−1

∑
i1

N

Xi
′v̂iv̂i′Xi

−1

∑
i1

N

Xi
′Xi

−1

∙ In Stata:

reg y x1 x2 ... xK, cluster(id)
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3.2. Random Effects Estimation

∙ State assumptions in conditional mean terms so that second moment

derivations are are easier.

ASSUMPTION RE.1:

(a) Euit|xi1,xi2, . . . ,xiT,ci  0, t  1, . . . ,T
(b) Eci|xi1,xi2, . . . ,xiT  Eci

∙ Assume xit includes (at least) unity, and probably time dummies in

addition. Then Eci  0 is without loss of generality.
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∙ A GLS approach also leaves ci in the error term:

yit  xit  vit, t  1,2, . . . ,T

and we know the properties of feasible GLS when

Exis′ vit  0, all s, t  1, . . . ,T.

∙ This weaker version of strict exogeneity is implied by Assumption

RE.1.
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∙Write the equation in system form (for all time periods) as

yi  Xi  vi  Xi  cijT  ui

where jT′  1,1, . . . , 1.

∙ Define

TT
  Evivi′  Varvi.

ASSUMPTION RE.2:  is nonsingular and rank EXi
′−1Xi.
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∙ RE imposes a special structure on  (which could be wrong!). Under

RE.1(a), ci and uit are uncorrelated. Assume further that

Varuit  u2, t  1, . . . ,T
Covuit,uis  0, t ≠ s

Then

Varvit  Varci  uit  Varci  Varuit
v2  c2  u2
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∙ Further, for t ≠ s,

Covvit,vis  Covci  uit,ci  uis
 Varci  Covci,uis  Covuit,ci  Covuit,uis
 c2

∙ This leads to the “random effects” or “exchangeable” structure for :

  EcijTuicijTui′  Eci2jTjT′  Euiui′
 c2jTjT′  u2IT

or
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 

c2  u2  c2 c2

c2 c2  u2 c2

  

c2  c2 c2  u2

,

so the T  T matrix depends on only two parameters, c2 and u2 or,

more directly, v2 and c2.

∙ Feasible GLS requires estimating , that is, the two parameters.

∙ Actually, it would be enough to know   c2/c2  u2, the fraction

of the total variance accounted for by ci. Notice that   Corrvit,vis

for all t ≠ s.
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∙We can also write  as

  v2

1   

 1 

  

   1

which shows we only need to estimate  to proceed with FGLS.

∙ Typically, we estimate v2 and c2, but  is useful for summarizing the

importance of ci.
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∙We can use pooled OLS to get the residuals, v it, across all i and t.

Then a consistent estimator of v2 (not generally unbiased), as N gets

large for fixed T, is

̂v2  NT − K−1∑
i1

N

∑
t1

T

v it2  SSR/NT − K,

the usual variance estimator from OLS regression. This is based on, for

each i, v2  T−1∑t1
T Evit2 and then average across i, too. Then

replace population with sample average, and  with pooled OLS

estimates, and subtract K as a degrees-of-freedom adjustment.
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∙ For c2, note that

c2  TT − 1/2−1∑
t1

T−1

∑
st1

T

Evitvis.

So a consistent “estimator” would be

̃c2  NTT − 1/2−1∑
i1

N

∑
t1

T−1

∑
st1

T

vitvis.
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∙ An actual estimator replaces vit with the POLS residuals,

̂c2  NTT − 1/2 − K−1∑
i1

N

∑
t1

T−1

∑
st1

T

v itv is,

and subtracts K from NTT − 1/2 as a df adjustment. By the usual

argument,

N→
plim ̂c2  c2

with T fixed.
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∙ Now we can use

̂ 

̂v2  ̂c2 ̂c2

̂c2 ̂v2 ̂c2

  

̂c2  ̂c2 ̂v2

or ̂ 

1  ̂ ̂

̂ 1 ̂

  

̂  ̂ 1

where ̂  ̂c2/̂v2 in FGLS.
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∙ It is possible for ̂c2 to be negative, which means the basic unobserved

effects variance-covariance structure is faulty.

∙ Typically, ̂c2  0 unless the variables have been transformed in some

way – such as being first differenced – before applying GLS.

∙ The FGLS estimator that uses this particular structure of ̂ is the

random effects (RE) estimator.
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∙ Fully robust inference is available for RE, and there are good reasons

for doing so.

(1)  may not have the special (and restrictive, especially for large T)

RE structure, that is, Evivi need not have the RE form. Serial

correlation or changing variances in uit : t  1, . . . ,T invalidate the

RE structure.

(2) The system homoskedasticity requirement,

Evivi|Xi  Evivi

might not hold.
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∙ A fully robust estimator is

Avar̂RE  ∑
i1

N

Xi
′̂
−1Xi

−1

∑
i1

N

Xi
′̂
−1v̂iv̂i′̂

−1Xi

−1

 ∑
i1

N

Xi
′̂
−1Xi

−1

,

where v̂i  yi − Xi̂RE is the vector of RE (FGLS) residuals.

∙ Sometimes, an iterative procedure is used. These new residuals can be

used to obtain a new estimate of , and so on.
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∙ For first order asymptotics, no efficiency gain from iterating. Might

help with smaller N, though.

∙What is the advantage of RE, which imposes specific assumptions on

, and the unrestricted FGLS we discussed earlier? Theoretically,

nothing. We do not get more efficiency with large N and small T by

imposing restrictions on .

∙ If system homoskedasticity holds but  is not of the RE form, an

unrestricted FGLS analysis is more efficient than RE (again, fixed T,

N → ).

∙ As we will see later, RE does have some appeal because of its

implicit transformation.
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∙ A nonrobust variance matrix estimator can be used if we add an

assumption:

ASSUMPTION RE.3:

(a) Euiui′|xi,ci  u2IT
(b) Eci2|xi  c2

∙ Under Assumptions RE.1 and RE.3,  has the RE structure and

system homoskedasticity holds. Part (a) is homoskedasticity and serial

uncorrelatedness of uit conditional on xi,ci, and (b) is

homoskedasticity of ci.
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∙ Under RE.1, RE.2, and RE.3,

Avar̂RE  ∑
i1

N

Xi
′̂
−1Xi

−1

is a valid estimator.

∙ Inference is straightforward. Typically use Wald or robust Wald

statistic for multiple restrictions.

∙ In Stata, fully robust inference uses the “cluster” option; for the

“usual” variance matrix estimator, drop this option:

xtreg y x1 x2 ... xK, re cluster(id)
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∙ Occasionally, one might want to test

H0 : c2  0
H1 : c2  0

It’s rare that one cannot strongly reject this because of the strong

positive serial correlation in the POLS residuals in most applications.

The formal test, derived under joint normality for ci,ui, is called the

Breusch-Pagan test.
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∙ A fully robust test does not add any additional assumptions, and

allows for heteroskedasticity. The key is that if v̂it now denotes the

POLS residuals – which is what the B-P test uses – then

N−1/2∑
i1

N

∑
t1

T−1

∑
st1

T

v̂itv̂is  N−1/2∑
i1

N

∑
t1

T−1

∑
st1

T

vitvis  op1
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∙ Therefore, under

H0 : Evitvis  0, all t ≠ s,

it follows that

N−1/2∑i1
N ∑t1

T−1∑st1
T v̂itv̂is

E ∑t1
T−1∑st1

T vitvis
2 1/2

d
→ Normal0,1
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∙ Now estimate the denominator and cancel the sample sizes:

∑i1
N ∑t1

T−1∑st1
T v̂itv̂is

∑i1
N ∑t1

T−1∑st1
T v̂itv̂is

2 1/2
d
→ Normal0,1.

∙ Later, show how to test uit for serial correlation allowing for ci,

which is more interesting.
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3.3 Fixed Effects Estimation

∙ Unlike POLS and RE, fixed effects estimation removes ci to form an

estimating equation.

∙ Average the original equation,

yit  xit  ci  uit, t  1, . . . ,T,

across t to get a cross-sectional equation:

ȳi  x̄i  ci  ūi,

where the overbar indicates time averages:

ȳi  T−1∑
t1

T

yit, x̄i  T−1∑
t1

T

xit, ūi  T−1∑
t1

T

uit
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∙ The equation ȳi  x̄i  ci  ūi is often called the between equation

because it relies on variation in the data between cross section

observations. The between estimator is the OLS estimator from the

cross section regression

ȳi on x̄i, i  1, . . . ,N.

[In practice, an intercept is included to account for nonzero Eci.]

∙ The between estimator is inconsistent unless

Covx̄i,ci  0, Covx̄i,ūi  0.
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∙ Instead, subtract off the time-averaged equation from the original

equation to eliminate ci:

yit − ȳi  xit − x̄i  uit − ūi, t  1, . . . ,T

or

ÿit  ẍit  üit, t  1, . . . ,T

where ÿit  yit − ȳi and so on.

∙We call this the time demeaned equation, and the transformation is

time demeaning, fixed effects, or within (time variation within each i is

used).
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∙ Key is that ci is gone from the time demeaned equation. So, we can

use pooled OLS:

ÿit on ẍit, t  1, . . . ,T; i  1, . . . ,N.

This is the fixed effects (FE) estimator or the within estimator.

̂FE  ∑
i1

N

∑
t1

T

ẍit′ ẍit
−1

∑
i1

N

∑
t1

T

ẍit′ ÿit

 ∑
i1

N

∑
t1

T

ẍit′ ẍit
−1

∑
i1

N

∑
t1

T

ẍit′ yit

because∑t1
T xit − x̄i′yit − ȳi  ∑t1

T xit − x̄i′yit.
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∙What is the weakest orthogonality assumption for consistency? We

can just apply the results for POLS, but it is useful to see it directly.

∙Write the estimator by substituting ÿit  ẍit  üit:

̂FE    ∑
i1

N

∑
t1

T

ẍit′ ẍit
−1

∑
i1

N

∑
t1

T

ẍit′ üit

   ∑
i1

N

∑
t1

T

ẍit′ ẍit
−1

∑
i1

N

∑
t1

T

ẍit′ uit
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∙ By the WLLN as N →  with fixed T, the key moment condition for

consistency is

∑
t1

T

Eẍit′ uit ∑
t1

T

Exit − x̄i′uit  0.

∙ In addition to contemporaneous exogeneity, Exit′ uit  0, we need a

kind of strict exogeneity:

Ex̄i′uit  T−1∑
s1

T

Exis′ uit  0, t  1,2, . . . ,T.
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ASSUMPTION FE.1: Same as RE.1(a), that is,

Euit|xi,ci  0, t  1, . . . ,T.

∙ This implies Exis′ uit  0, all s, t  1, . . . ,T, and so Eẍit′ uit  0,

t  1, . . . ,T.

∙ The rank condition is directly from POLS.2:

ASSUMPTION FE.2:

rank ∑
t1

T

Eẍit′ ẍit  K.
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∙ The rank condition rules out elements in xit that have no time

variation for any unit in the population. Such variables get swept away

by the within transformation.

∙ Under FE.1 and FE.2,

̂FE
p
→  as N → 

∙ The FE estimator works well for large T, too, but showing that

requires putting restrictions on the time series process

xit,yit : t  1,2, . . ..

51



∙What parameters can we identify with FE? Suppose we start with

yit  1  2d2t . . .TdTt  zi1  d2tzi2 . . .dTtziT
 wit  ci  uit

∙ Using FE, we cannot estimate 1 or 1, but all other parameters are

generally identified.

∙ FE allows ci to be arbitrarily correlated with zi,wit, and so we

cannot distinguish 1  zi1 from ci.
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∙We can estimate 2, . . . ,T and 2, . . . ,T. So we can estimate whether

the effect of the time constant variables has changed over time. We

cannot estimate the effect in any period t because it is 1 for t  1 and

1  t for t  2, . . . ,T.
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∙ As another example, suppose wit is a scalar policy variable and zi are

time-constant characteristics, and the model is

yit  1  2d2t . . .TdTt  zi1  d2tzi2 . . .dTtziT
 wit  witzi − z  ci  uit

where z  Ezi.

∙We can estimate  (the average partial effect) as well as , which

means we can see how the policy effects change with individual

characters (and test H0 :   0). As a practical matter, we would

replace the population mean z with the sample average,

z̄  N−1∑i1
N zi.
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∙We can obtain a variance matrix estimator valid under Assumptions

FE.1 and FE.2.

∙ Define the FE residuals as

üit  ÿit − ẍit̂FE, t  1, . . . ,T; i  1, . . . ,N

∙ These are “estimates” of the üit, not the uit. This has implications for

estimating the error variance, u2.
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∙Without additional assumptions, use the “cluster-robust” matrix

Avar̂FE  ∑
i1

N

∑
t1

T

ẍit′ ẍit
−1

∑
i1

N

∑
t1

T

∑
r1

T 
üit

üirẍit′ ẍir

 ∑
i1

N

∑
t1

T

ẍit′ ẍit
−1

.
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∙ In Stata, again use the “cluster” option:

xtreg y x1 x2 ... xK, fe cluster(id)

∙ Of course, a nonrobust form requires an extra assumption:

ASSUMPTION FE.3: Same as RE.3(a), that is,

Euiui′|xi,ci  u2IT.

∙ To find the asymptotic variance under this assumption, remember the

general form for a pooled OLS estimator – in this case, on the time

demeaned data – is the sandwich form

EẌi
′Ẍi−1EẌi

′üiüi′ẌiEẌi
′Ẍi−1.
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Under FE.3, we can simplify the middle matrix. First, use

Ẍi
′üi ∑

t1

T

ẍit′ üit ∑
t1

T

ẍit′ uit  Ẍi
′ui.

Therefore,

EẌi
′üiüi′Ẍi  EẌi

′uiui′Ẍi  EEẌi
′uiui′Ẍi|Ẍi

 EẌi
′Euiui′|ẌiẌi  EẌi

′u2ITẌi

 u2EẌi
′Ẍi

because Euiui′|Ẍi  u2IT under FE.3.
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∙ So Avar N ̂FE −   u2EẌi
′Ẍi−1 under FE.1, FE.2, and

FE.3.

∙ Estimating u2 requires some care because we effectively observe üit,

not uit.

∙ Under the constant variance and no serial correlation assumptions on

uit,

Varüit  Varuit − ūi  u2  u2/T − 2Covuit,ūi
 u2  u2/T − 2u2/T  u21 − 1/T
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∙ So

∑
t1

T

Eüit2  T − 1u2.

∙ One degree of freedom is lost for each unit i because of the time

demeaning:∑t1
T üit  0.

60



∙ Therefore,

u2  NT − 1−1∑
i1

N

∑
t1

T

Eüit2

and now take away expectation, insert ̂FE for , and use a df

adjustment to account for estimating the K-vector :
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̂u2  NT − 1 − K−1∑
i1

N

∑
t1

T 
üit

2
 SSR/NT − 1 − K

∙ ̂u2 is actually unbiased under FE.1, FE.2, and FE.3. It is consistent as

N → .

∙ Under FE.1, FE.2, and FE.3,

Avar̂FE  ̂u2 ∑
i1

N

Ẍi
′Ẍi

−1

 ̂u2Ẍ
′Ẍ−1

and this is the “usual” asymptotic variance estimator.
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∙ If you do the time-demeaning and run pooled OLS, the usual statistics

do not reflect the lost degrees of freedom (N of them). The estimate of

u2 will be SSR/NT − K, which is too small. Canned FE packages

properly compute the statistics.

∙ The FE estimator ̂FE can also be obtained by running a long

regression on the original data, and including dummy variables for each

cross section unit:

yit on d1i,d2i, . . . ,dNi,xit, t  1, . . . ,T; i  1, . . . ,N,

often called the dummy variable regression. The statistics are properly

computed because the inclusion of the N dummy variables.
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∙ Only danger: treating the ci as parameters to estimate, while sensible

with “large” T, can lead to trouble later with nonlinear models. Here,

we get a consistent estimator of  for fixed T.

∙ Sometimes we want to estimate the ci using the T time periods. Do

not have to run the dummy variable regression:

ĉi  ȳi − x̄i̂FE, i  1, . . . ,N.

∙With small T, this is not a good “estimate” of ci, but it is unbiased.

We can estimate features of the distibution of ci well:
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̂c  N−1∑
i1

N

ĉi  N−1∑
i1

N

ȳi − x̄i̂FE  N−1∑
i1

N

ci  ūi  x̄i − ̂FE

 N−1∑
i1

N

ci  N−1∑
i1

N

ūi  N−1∑
i1

N

x̄i  − ̂FE

 N−1∑
i1

N

ci  op1  Op1op1
p
→ c.

∙ Stata, for example, reports ̂c as the “intercept” or “constant” in FE

regressions.

∙ This consistency argument uses only FE.1 and FE.2.

65



∙ Can estimate other features of the distribution, too, although some

“obvious” estimators are inconsistent. For example, we might try to

estimate c2 using the sample variance of ĉi : i  1, . . . ,N:

̃c2  N − 1−1∑
i1

N

ĉi − ̂c2.

But under FE.1 to FE.3 it can be shown that

plim̃c2  c2  Varūi  c2  u2/T.
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∙We can adjust for the “bias” using the estimate ̂u2:

̂c2  ̃c2 − ̂u2/T  N − 1−1∑
i1

N

ĉi − ̂c2 − ̂u2/T

is consistent for c2 for any T as N → .

∙ If we treat the ci as parameters, can test the null that they are the

same. This is easy to see if we add to FE.1 to FE.3 the assumption

uit|xi,ci~Normal0,u2. Then the classical linear model assumptions

hold, and so H0 : c1  c2 . . . cN can be tested using an F statistic

with N − 1 and NT − 1 − K degrees of freedom.
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∙We can also obtain an estimate of c2 using

c2  v2 − u2

We already have ̂u2  SSR/NT − 1 − K, which is consistent for u2

under FE.1 to FE.3. Also, vit  yit − xit and so a consistent estimator

of v2 is

̂v2  NT − K−1∑
i1

N

∑
t1

T

yit − xit̂FE − ̂v2,

where ̂v is the sample average of the yit − xit̂FE.
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∙ Recent work by Orme and Yamagata (2006, Econometric Reviews)

has shown that the F statistic is approximately valid if we drop the

normality assumption on uit, but it is still unknown how to test

constancy of the ci with serial correlation or heteroskedasticity in uit.
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Testing for Serial Correlation

∙ Because we can obtain fully robust inference, why should we test for

serial correlation in the uit? The answer is that we might be able to

improve efficiency using a GLS-type method.

∙We can test for serial correlation in uit, but it is tricky because we

effectively only have üit.

∙When uit is serially uncorrelated with constant variance, for t ≠ r

we have

Eüitüir  Euit − ūiuir − ūi
 −2u2/T  u2/T  −u2/T.
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Therefore,

Corrüit,üir  −u2/T
u2T − 1/T

 − 1
T − 1 .

∙ If the original errors are serially uncorrelated, the time-demeaned

errors have a negative correlation, which is smaller as T increases.

∙ Cannot (and need not) test for serial correlation when T  2 because

üi1  −üi2.

∙ But for T  2, can examine whether the fixed effects residuals are

consistent with correlation of roughly −T − 1−1.

71



∙ A simple test is based on a pooled AR(1) regression. First obtain the

FE residuals,

üit. (In Stata, use the “areg” command.) Then run the

pooled OLS regression

üit on


üi,t−1, t  3, . . . ,T; i  1, . . . ,N

and let the coefficient on

üi,t−1 be ̂. The tricky thing is that, under the

null, the üit are serially correlated.

∙We obtain a simple statistic using a fully robust standard error for ̂,

se̂ (available from the “cluster” option in POLS). The t statistic is

̂  T − 1−1
se̂

.
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∙ Typically observe ̂  0 if uit is positively serially correlated. A

positive, significant estimate of ̂ reveals some positive serial

correlation. If ̂ ≈ −T − 1−1, no serial correlation in uit might be

reasonable.

∙ If we find strong evidence of serial correlation in uit, we might

want to exploit it in estimation rather than just making FE inference

robust.
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Fixed Effects GLS

∙Write the T time periods for a random draw i as

yi  Xi  cijT  ui

and let the variance matrix of ui to be a T  T unrestricted matrix .

∙When we eliminate ci by demeaning we get

ÿi  Ẍi  üi

where, for example, üi  QTui and QT  IT − jTjT′ jT−1jT′ is

symmetric, idempotent with rank T − 1.
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∙ Because jT′ üi  0, we know the T  T matrix Eüiüi′ has rank less

than T. In fact, (unconditional) variance covariance matrix of üi is

 ≡ Eüiüi′  EQTuiui′QT  QTQT,

which has rank T − 1.

∙ Applying FGLS to

ÿi  Ẍi  üi

is tricky (generalized inverse required).
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∙ There is a simple solution. After demeaning to obtain ÿi and Ẍi using

all T time periods and obtaining

̂  N−1∑
i1

N 
ü i

ü i
′

drop one of the time periods. It does not matter which one is dropped

(but the first or last are easiest).

∙ Apply FGLS to the T − 1 remaining equations using ̂.

∙ Remember, can still make a case for robust inference because system

heteroskedasticity is always a possibility.
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Some Practical Hints in Applying Fixed Effects

∙ Possible confusion concerning the term “fixed effects.” Suppose i is a

firm. Then the phrase “firm fixed effect” corresponds to allowing ci in

the model to be correlated with the covariates. If ci is called a firm

“random effect” then it is being assumed to be uncorrelated with xit.

∙ Suppose that we cannot, or do not want to, use FE estimation. This

might occur because the key variable at the firm level is constant across

time for all firms – and so the FE transformation sweeps it away – or

there is little time variation within firm in the key variable, leading to

large standard errors.
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∙ Instead, we might use a random effects analysis at the firm level but

include industry dummy variables to account for systematic differences

across industries. So, we include in xit a set of industry dummy

variables while also allowing a firm effect ci in a “random effects”

analysis.

∙ If there are many firms per industry, the industry “fixed effects” – the

coefficients on the industry dummies – can be precisely estimated. So

the industry “fixed effects” are really parameters to estimate whereas

the ci are not.
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∙ Generally, including dummies for more aggregated levels and then

applying RE is common when the covariates of interest vary in the

cross section but not (much) over time.

∙ Keep in mind that an RE analysis at the firm level with industry

dummies need not be entirely convincing: the key elements of xit might

be correlated with unoberved firm features that are not adequately

captured by industry differences.
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Application

For N  1,149 U.S. air routes and the years 1997 through 2000, yit is

logfareit and the key explanatory variable is concenit, the

concentration ratio for route i. Other covariates are year dummies and

the time-constant variables logdisti and logdisti2. Note that what I

call ci Stata refers to as u_i.
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. use airfare

. tab year

1997, 1998, |
1999, 2000 | Freq. Percent Cum.

-----------------------------------------------
1997 | 1,149 25.00 25.00
1998 | 1,149 25.00 50.00
1999 | 1,149 25.00 75.00
2000 | 1,149 25.00 100.00

-----------------------------------------------
Total | 4,596 100.00

. sum fare concen dist

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

fare | 4596 178.7968 74.88151 37 522
concen | 4596 .6101149 .196435 .1605 1

dist | 4596 989.745 611.8315 95 2724
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. reg lfare concen ldist ldistsq y98 y99 y00

Source | SS df MS Number of obs  4596
------------------------------------------- F( 6, 4589)  523.18

Model | 355.453858 6 59.2423096 Prob  F  0.0000
Residual | 519.640516 4589 .113236112 R-squared  0.4062

------------------------------------------- Adj R-squared  0.4054
Total | 875.094374 4595 .190444913 Root MSE  .33651

------------------------------------------------------------------------------
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .3601203 .0300691 11.98 0.000 .3011705 .4190702

ldist | -.9016004 .128273 -7.03 0.000 -1.153077 -.6501235
ldistsq | .1030196 .0097255 10.59 0.000 .0839529 .1220863

y98 | .0211244 .0140419 1.50 0.133 -.0064046 .0486533
y99 | .0378496 .0140413 2.70 0.007 .010322 .0653772
y00 | .09987 .0140432 7.11 0.000 .0723385 .1274015

_cons | 6.209258 .4206247 14.76 0.000 5.384631 7.033884
------------------------------------------------------------------------------
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. reg lfare concen ldist ldistsq y98 y99 y00, cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .3601203 .058556 6.15 0.000 .2452315 .4750092

ldist | -.9016004 .2719464 -3.32 0.001 -1.435168 -.3680328
ldistsq | .1030196 .0201602 5.11 0.000 .0634647 .1425745

y98 | .0211244 .0041474 5.09 0.000 .0129871 .0292617
y99 | .0378496 .0051795 7.31 0.000 .0276872 .048012
y00 | .09987 .0056469 17.69 0.000 .0887906 .1109493

_cons | 6.209258 .9117551 6.81 0.000 4.420364 7.998151
------------------------------------------------------------------------------
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. xtreg lfare concen ldist ldistsq y98 y99 y00, re

Random-effects GLS regression Number of obs  4596
Group variable: id Number of groups  1149

R-sq: within  0.1348 Obs per group: min  4
between  0.4176 avg  4.0
overall  0.4030 max  4

Random effects u_i ~Gaussian Wald chi2(6)  1360.42
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000

------------------------------------------------------------------------------
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .2089935 .0265297 7.88 0.000 .1569962 .2609907

ldist | -.8520921 .2464836 -3.46 0.001 -1.335191 -.3689931
ldistsq | .0974604 .0186358 5.23 0.000 .0609348 .133986

y98 | .0224743 .0044544 5.05 0.000 .0137438 .0312047
y99 | .0366898 .0044528 8.24 0.000 .0279626 .0454171
y00 | .098212 .0044576 22.03 0.000 .0894752 .1069487

_cons | 6.222005 .8099666 7.68 0.000 4.6345 7.80951
-----------------------------------------------------------------------------

sigma_u | .31933841
sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. * The coefficient on the time-varying variable concen drops quite a bit.

. * Notice that the RE and POLS coefficients on the time-constant

. * distance variables are pretty similar, something that often occurs.

. xtreg lfare concen ldist ldistsq y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .2089935 .0422459 4.95 0.000 .126193 .2917939

ldist | -.8520921 .2720902 -3.13 0.002 -1.385379 -.3188051
ldistsq | .0974604 .0201417 4.84 0.000 .0579833 .1369375

y98 | .0224743 .0041461 5.42 0.000 .014348 .0306005
y99 | .0366898 .0051318 7.15 0.000 .0266317 .046748
y00 | .098212 .0055241 17.78 0.000 .0873849 .109039

_cons | 6.222005 .9144067 6.80 0.000 4.429801 8.014209
-----------------------------------------------------------------------------

sigma_u | .31933841
sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. * Robust standard error on concen is quite a bit larger.
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. * What if we do not control for distance in RE?

. xtreg lfare concen y98 y99 y00, re cluster(id)

Random-effects GLS regression Number of obs  4596
Group variable: id Number of groups  1149

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .0468181 .0427562 1.09 0.274 -.0369826 .1306188

y98 | .0239229 .0041907 5.71 0.000 .0157093 .0321364
y99 | .0354453 .0051678 6.86 0.000 .0253167 .045574
y00 | .0964328 .0055197 17.47 0.000 .0856144 .1072511

_cons | 5.028086 .0285248 176.27 0.000 4.972178 5.083993
-----------------------------------------------------------------------------

sigma_u | .40942871
sigma_e | .10651186

rho | .93661309 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. * The RE estimate is now much smaller than when ldist and ldistsq are

. * controlled for, and much smaller than the FE estimate. Thus, it can be

. * very harmful to omit time-constant variables in RE estimation.
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. * Allow an unrestricted unconditional variance-covariance matrix, but

. * make robust to system heteroskedasticity:

. xtgee lfare concen ldist ldistsq y98 y99 y00, corr(uns) robust

GEE population-averaged model Number of obs  4596
Group and time vars: id year Number of groups  1149
Link: identity Obs per group: min  4
Family: Gaussian avg  4.0
Correlation: unstructured max  4

Wald chi2(6)  1246.97
Scale parameter: .1135142 Prob  chi2  0.0000

(Std. Err. adjusted for clustering on id)
------------------------------------------------------------------------------

| Semi-robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .2364893 .0406545 5.82 0.000 .1568079 .3161706

ldist | -.8806104 .26696 -3.30 0.001 -1.403842 -.3573785
ldistsq | .0992803 .0197484 5.03 0.000 .0605741 .1379866

y98 | .0222287 .0041432 5.37 0.000 .0141082 .0303492
y99 | .0369008 .0051386 7.18 0.000 .0268293 .0469724
y00 | .0985136 .0055411 17.78 0.000 .0876533 .109374

_cons | 6.313734 .8977898 7.03 0.000 4.554098 8.07337
------------------------------------------------------------------------------
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. xtreg lfare concen ldist ldistsq y98 y99 y00, fe

Fixed-effects (within) regression Number of obs  4596
Group variable: id Number of groups  1149

R-sq: within  0.1352 Obs per group: min  4
between  0.0576 avg  4.0
overall  0.0083 max  4

F(4,3443)  134.61
corr(u_i, Xb)  -0.2033 Prob  F  0.0000

------------------------------------------------------------------------------
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0294101 5.74 0.000 .1111959 .226522

ldist | (dropped)
ldistsq | (dropped)

y98 | .0228328 .0044515 5.13 0.000 .0141048 .0315607
y99 | .0363819 .0044495 8.18 0.000 .0276579 .0451058
y00 | .0977717 .0044555 21.94 0.000 .089036 .1065073

_cons | 4.953331 .0182869 270.87 0.000 4.917476 4.989185
-----------------------------------------------------------------------------

sigma_u | .43389176
sigma_e | .10651186

rho | .94316439 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i0: F(1148, 3443)  36.90 Prob  F  0.0000
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. xtreg lfare concen ldist ldistsq y98 y99 y00, fe cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0494587 3.41 0.001 .0718194 .2658985

ldist | (dropped)
ldistsq | (dropped)

y98 | .0228328 .004163 5.48 0.000 .0146649 .0310007
y99 | .0363819 .0051275 7.10 0.000 .0263215 .0464422
y00 | .0977717 .0055054 17.76 0.000 .0869698 .1085735

_cons | 4.953331 .0296765 166.91 0.000 4.895104 5.011557
-----------------------------------------------------------------------------

sigma_u | .43389176
sigma_e | .10651186

rho | .94316439 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. * Let the effect of concen depend on route distance.

. sum ldist if y00

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

ldist | 1149 6.696482 .6595331 4.553877 7.909857

. gen ldistconcen  (ldist - 6.7)*concen
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. xtreg lfare concen ldistconcen y98 y99 y00, fe cluster(id)

Fixed-effects (within) regression Number of obs  4596
Group variable: id Number of groups  1149

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .1652538 .0482782 3.42 0.001 .0705304 .2599771

ldistconcen | -.2498619 .0828545 -3.02 0.003 -.4124251 -.0872987
y98 | .0230874 .0041459 5.57 0.000 .014953 .0312218
y99 | .0355923 .0051452 6.92 0.000 .0254972 .0456874
y00 | .0975745 .0054655 17.85 0.000 .0868511 .1082979

_cons | 4.93797 .0317998 155.28 0.000 4.875578 5.000362
-----------------------------------------------------------------------------

sigma_u | .50598296
sigma_e | .10605257

rho | .95791776 (fraction of variance due to u_i)
------------------------------------------------------------------------------
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. * Effect at the average of ldist is similar to before. But at one standard

. * deviation of ldist above its mean, the effect of concen is zero:

. lincom concen  .66*ldistconcen

( 1) concen  .66 ldistconcen  0

------------------------------------------------------------------------------
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
(1) | .0003449 .0554442 0.01 0.995 -.1084383 .1091281

------------------------------------------------------------------------------

. count if ldist  6.7  .66 & y00
209

. di 209/1149

.1818973

. * So about 18.2* of the routes of ldist greater than one standard deviation

. * above the mean.
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3.4. First-Differencing Estimation

∙ Like FE, FD removes ci. But it does it by differencing adjacent

observations. FE and FD are the same when T  2, but differ

otherwise. Again, start with the original equation:

yit  xit  ci  uit, t  1, . . . ,T.

For FD, we explicitly lose the first time period:

Δyit  Δxit  Δuit, t  2, . . . ,T.

The FD estimator is pooled OLS on the first differences.

∙ In practice, might not difference period dummies, unless interested in

the year intercepts in the original levels.
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∙ FD also requires a kind of strict exogeneity. The weakest assumption

is

EΔxit′ Δuit  0, t  2, . . . ,T.

∙ Failure of strict exogeneity will cause different inconsistencies in FE

and FD when T  2.

∙ (For later: In unbalanced cases, FD requires that data exists in

adjacent time periods. FE does not.)
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∙ A sufficient condition is

ASSUMPTION FD.1: Same as FE.1, Euit|xi,ci  0, t  1, . . . ,T.

ASSUMPTION FD.2: Let ΔXi be the T − 1  K matrix with rows

Δxit. Then,

rank EΔXi
′ΔXi  K.

∙ Should make inference robust to serial correlation and

heteroskedasticity in the differenced errors, eit ≡ uit − ui,t−1. For

example, if uit is uncorrelated, Correit,ei,t1  −. 5.
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∙ After POLS on the first differences, let

êit  Δyit − Δxit̂FD, t  2, . . . ,T; i  1, . . . ,N

and let êi  êi2, . . . ,êiT′ be the T − 1  1 residuals. Then

Avar̂FD  ∑
i1

N

ΔXi
′ΔXi

−1

∑
i1

N

ΔXi
′êiêi′ΔXi

−1

∑
i1

N

ΔXi
′ΔXi

−1

is the fully robust variance matrix estimator.

∙ Use pooled OLS, on the first differences and then use a “cluster”

option.
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ASSUMPTION FD.3:

Eeiei′|ΔXi  e2IT

where e2  Eeit2 for all t.

∙ Under Assumption FE.3, the usual POLS statistics in the FD

regression are asymptotically valid.

∙ If we believe FD.3, then uit  ui,t−1  eit is a random walk. In a pure

time series setting, this means the regression would be “spurious.”
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∙ For a given i, the time series “model” would be

yit  ci  xit  uit
uit  ui,t−1  eit,

where ci is the intercept for unit i. This does not define a sensible time

series regression because uit is not “mean reverting.” One way to see

this is Varuit  e2t, and so the idiosyncratic error variance grows as a

linear function of t.
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∙ Here we can allow random walk behavior in uit with a short T

because we have cross section variation driving the large-sample

analysis.
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∙ Testing for serial correlation in eit  Δuit is easy. If we start with

T ≥ 3, then use a t test or heteroskedasticity-robust version for ̂, where

̂ is the coefficient on êi,t−1 in the pooled dynamic OLS regression

êit on êi,t−1, t  3, . . . ,T; i  1, . . . ,N.

∙We can also use this regression to test whether Correit,ei,t−1  −. 5,

as implied by FE.3. But then the standard error of ̂ should be made

robust to serial correlation. The t statistic in this case is

̂ . 5
se̂

.
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∙ Can use the FD residuals to recover an estimate of  if we think

uit : t  1,2, . . .T follows a stationary AR(1) process. Then

Covuit,ui,t−h  hu2, h  0, 1 , . . . . Therefore

Coveit,ei,t−1  Covuit − ui,t−1,ui,t−1 − ui,t−2
 u2 − 2u2 − u2  u2

 −u21 − 2  2

 −u21 − 2
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∙ Further,

Vareit  u2 − 2Covuit,ui,t−1  u2

 2u21 − 

∙ It follows that

Correit,ei,t−1 
−u21 − 2

2u21 − 

 − 1

2 .

Letting  ≡ Correit,ei,t−1, we can write

  1  2
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∙ Notice we get the right answer when   0: namely,   1 (so that

uit follows a random walk). So we can use

̂  1  2̂

as a consistent estimator of  for  ≤ 0.

∙ If ̂L, ̂U is a 95% CI for , then we get a 95% CI for  by finding

̂L  1  2̂L and ̂U  1  2̂U.
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∙ Applying feasible GLS after differencing is especially easy because

the lost degree of freedom for each i is automatically incorporated by

losing the first time period.

∙ Resulting estimator is the FDGLS estimator. It uses an unrestricted

T − 1  T − 1 variance matrix in the FD equation

Δyi  ΔXi  Δui

where Δui is T − 1  1.

∙ Easy to use the xtgee command in Stata.
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. sort id year

. gen clfare  lfare - lfare[_n-1] if year  1997
(1149 missing values generated)

. gen cconcen  concen - concen[_n-1] if year  1997
(1149 missing values generated)

. reg clfare cconcen y99 y00

Source | SS df MS Number of obs  3447
------------------------------------------- F( 3, 3443)  45.61

Model | 2.14076964 3 .71358988 Prob  F  0.0000
Residual | 53.8669392 3443 .01564535 R-squared  0.0382

------------------------------------------- Adj R-squared  0.0374
Total | 56.0077088 3446 .016252963 Root MSE  .12508

------------------------------------------------------------------------------
clfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
cconcen | .1759764 .0284387 6.19 0.000 .1202181 .2317348

y99 | -.0091019 .0052688 -1.73 0.084 -.0194322 .0012284
y00 | .0386441 .0052301 7.39 0.000 .0283897 .0488985

_cons | .0227692 .0036988 6.16 0.000 .0155171 .0300212
------------------------------------------------------------------------------

. predict eh, resid
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. * Fairly close to FE estimate of .169, but standard errors are probably

. * not correct. The R-squared gives us a measure of how well changes

. * in concentration explain changes in lfare.

. reg clfare cconcen y99 y00, cluster(id)

Linear regression Number of obs  3447
F( 3, 1148)  34.36
Prob  F  0.0000
R-squared  0.0382
Root MSE  .12508

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
clfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
cconcen | .1759764 .0430367 4.09 0.000 .0915371 .2604158

y99 | -.0091019 .0058305 -1.56 0.119 -.0205416 .0023378
y00 | .0386441 .0055658 6.94 0.000 .0277239 .0495643

_cons | .0227692 .0041573 5.48 0.000 .0146124 .030926
------------------------------------------------------------------------------

. * We can estimate the intercepts in the original model, too, by

. * differencing the year dummies.

. gen cy98  y98 - y98[_n-1] if year  1997
(1149 missing values generated)
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. gen cy99  y99 - y99[_n-1] if year  1997
(1149 missing values generated)

. gen cy00  y00 - y00[_n-1] if year  1997
(1149 missing values generated)

. reg clfare cconcen cy98 cy99 cy00, nocons cluster(id)

Linear regression Number of obs  3447
F( 4, 1148)  118.18
Prob  F  0.0000
R-squared  0.0952
Root MSE  .12508

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
clfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
cconcen | .1759764 .0430367 4.09 0.000 .0915371 .2604158

cy98 | .0227692 .0041573 5.48 0.000 .0146124 .030926
cy99 | .0364365 .005153 7.07 0.000 .026326 .0465469
cy00 | .0978497 .0055468 17.64 0.000 .0869666 .1087328

------------------------------------------------------------------------------

. * All estimates are now similar to FE. This R-squared is less useful

. * than when a constant is included because it does not remove the average.

. * It is the "uncentered" R-squared.
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. * Test for serial correlation using FD.

. predict eh, resid
(1149 missing values generated)

. gen eh_1  eh[_n-1] if year  1998
(2298 missing values generated)

. reg eh eh_1, robust

Linear regression Number of obs  2298
F( 1, 2296)  21.60
Prob  F  0.0000
R-squared  0.0197
Root MSE  .1169

------------------------------------------------------------------------------
| Robust

eh | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

eh_1 | -.1275163 .0274343 -4.65 0.000 -.1813148 -.0737177
_cons | -3.30e-11 .0024386 -0.00 1.000 -.0047821 .0047821

------------------------------------------------------------------------------

. * We can reject zero correlation in FD errors. (Robust to heteroskedasticity.)
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. * Can use xtgee to obtain the FGLS estimator on the FD equation:

. xtgee clfare cconcen y99 y00, corr(uns)

GEE population-averaged model Number of obs  3447
Group and time vars: id year Number of groups  1149
Link: identity Obs per group: min  3
Family: Gaussian avg  3.0
Correlation: unstructured max  3

Wald chi2(3)  119.43
Scale parameter: .0156274 Prob  chi2  0.0000

------------------------------------------------------------------------------
clfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
cconcen | .169649 .0285421 5.94 0.000 .1137076 .2255904

y99 | -.0092635 .0054855 -1.69 0.091 -.0200149 .001488
y00 | .0385667 .0054062 7.13 0.000 .0279707 .0491627

_cons | .0228257 .0036967 6.17 0.000 .0155802 .0300712
------------------------------------------------------------------------------
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. xtgee clfare cconcen y99 y00, corr(uns) robust

GEE population-averaged model Number of obs  3447
Group and time vars: id year Number of groups  1149
Link: identity Obs per group: min  3
Family: Gaussian avg  3.0
Correlation: unstructured max  3

Wald chi2(3)  101.68
Scale parameter: .0156274 Prob  chi2  0.0000

(Std. Err. adjusted for clustering on id)
------------------------------------------------------------------------------

| Semirobust
clfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
cconcen | .169649 .042983 3.95 0.000 .0854038 .2538942

y99 | -.0092635 .0058158 -1.59 0.111 -.0206622 .0021352
y00 | .0385667 .0055622 6.93 0.000 .0276651 .0494683

_cons | .0228257 .0041575 5.49 0.000 .0146771 .0309743
------------------------------------------------------------------------------

. * The robust standard error for FGLS is about 50% larger than the nonrobust

. * one.
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. reg eh eh_1, cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
eh | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
eh_1 | -.1275163 .0272003 -4.69 0.000 -.1808841 -.0741485

_cons | -3.30e-11 .0023264 -0.00 1.000 -.0045644 .0045644
------------------------------------------------------------------------------

. lincom eh_1  .5

( 1) eh_1  -.5

------------------------------------------------------------------------------
eh | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
(1) | .3724837 .0272003 13.69 0.000 .3191159 .4258515

------------------------------------------------------------------------------

. * And we can easily reject -.5, too, which is what would happen under FE.3.

. * If we believe u(i,t) follows an AR(1), then we can use

. * rho  1  2*Corr(eh,eh_1)

. di 1  2*(-.128)

.744

. * So the estimated rho is pretty high at .744.
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. * Test for serial correlation using FE. Use "areg" to get the FE

. * residuals.

. areg lfare concen y98 y99 y00, absorb(id)

Linear regression, absorbing indicators Number of obs  4596
F( 4, 3443)  134.61
Prob  F  0.0000
R-squared  0.9554
Adj R-squared  0.9404
Root MSE  .10651

------------------------------------------------------------------------------
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0294101 5.74 0.000 .1111959 .226522

y98 | .0228328 .0044515 5.13 0.000 .0141048 .0315607
y99 | .0363819 .0044495 8.18 0.000 .0276579 .0451058
y00 | .0977717 .0044555 21.94 0.000 .089036 .1065073

_cons | 4.953331 .0182869 270.87 0.000 4.917476 4.989185
-----------------------------------------------------------------------------

id | F(1148, 3443)  60.521 0.000 (1149 categories)

. predict udh, resid

. sort id year

. gen udh_1  udh[_n-1] if year  1998
(2298 missing values generated)
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. reg udh udh_1, cluster(id)

Linear regression Number of obs  2298
F( 1, 1148)  0.87
Prob  F  0.3498
R-squared  0.0006
Root MSE  .08806

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
udh | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
udh_1 | -.0285168 .0304886 -0.94 0.350 -.0883364 .0313028
_cons | 1.45e-11 .0019846 0.00 1.000 -.0038938 .0038938

------------------------------------------------------------------------------

. lincom udh_1  .333

( 1) udh_1  -.333

------------------------------------------------------------------------------
udh | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
(1) | .3044832 .0304886 9.99 0.000 .2446636 .3643028

------------------------------------------------------------------------------

.* -1/(T-1)  -.333 when T  4. Strongly reject FE.3; appears to be positive

. * serial correlation, as we already concluded using FD.

113



3.5. Prediction

∙ For prediction with unobserved effects models, we might include only

lags of explanatory variables in xit – so we do not have to forecast

future values of the covariates – and then try to forecast yi,T1 based on

data observed up through time T. Can show under the full RE

assumptions

Eyi,T1|Xi,xi,T1,yi1, . . . ,yiT  xi,T1  c2/c2  u2/Tv̄i
v̄i  ȳi − x̄i,

so the prediction for RE is
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xi,T1̂RE  ̂c
2/̂c2  ̂u2/Tȳi − x̄i̂RE.

∙ For fixed effects, the prediction would be

xi,T1̂FE  ȳi − x̄i̂FE,

which does not shrink the influence of the second term. As ̂c2 increases

relative to ̂u2, or for large T, the two predictions are similar.

∙ Seems unlikely that either of these can match dynamic models

estimated by pooled OLS. The RE and FE methods each give the same

weight to the most recent and earliest outcomes on y.
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4. COMPARISON OF ESTIMATORS

FE versus FD.

∙ Estimates and inference are identical when T  2. Generally, can see

differences as T increases.

∙ Usually think a significant difference signals violation of

Covxis,uit  0, all s, t. FE has some robustness if Covxit,uit  0 but

Covxit,uis  0, some s ≠ t: The “bias” is of order 1/T. FD does not

average out the bias over T.
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∙ To see this, maintain contemporaneous exogeneity:

Exit′ uit  0.

∙ Generally, under Assumption FE.2, we can write

N→
plim ̂FE    T−1∑

t1

T

Eẍit′ ẍit
−1

T−1∑
t1

T

Eẍit′ uit .
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∙ Under contemporaneous exogeneity,

Eẍit′ uit  −Ex̄i′uit

and so

T−1∑
t1

T

Eẍit′ uit  T−1∑
t1

T

Ex̄i′uit  −Ex̄i′ūi.
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∙ Under stationarity and weak dependence, Ex̄i′ūi  OT−1 because,

by the Cauchy-Schwartz inequality, for each j,

|Covx̄ij,ūi|≤ sdx̄ijsdūi

and sdx̄ij, sdūi are OT−1/2 where each series is weakly dependent.

(If uncorrelated with constant variance, sdūi  u/ T .)
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∙ Further, T−1∑t1
T Eẍit′ ẍit is bounded as a function of T. It follows

that

N→
plim ̂FE    O1  OT−1    OT−1.

∙ For the first difference estimator, the general probability limit is

N→
plim ̂FD    T − 1−1∑

t2

T

EΔxit′ Δxit
−1

 T − 1−1∑
t2

T

EΔxit′ Δuit
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∙ If xit : t  1,2, . . . is weakly dependent, so is Δxit, and so the first

average is generally bounded. (In fact, under stationarity this average

does not depend on T.

∙ As for the second average,

EΔxit′ Δuit  −Exit′ ui,t−1  Exi,t−1′ uit

which is constant under stationarity (and generally nonzero). So

N→
plim ̂FD    O1

even if Exi,t−1′ uit  0 (so the dynamics given the elements of xit are

correct).
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∙ Can show the previous results hold even if xit is I1 as a time

series process (has a “unit root”), but it is crucial that uit is I0

(weakly dependent). If the regression is “spurious” in levels, it is better

to first difference!

∙ In simple cases, such as the AR(1) model with xit  yi,t−1, can find

what the OT−1 term is for FE. If write the model as

yit  yi,t−1  1 − ai  uit

for −1   ≤ 1, then plimN→(̂FE    OT−1. When   1, the

second term is −3/T  1.
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∙ Simple test for feedback when the model does not contain lagged

dependent variables, that is, Covxi,t1,uit ≠ 0. Estimate

yit  xit  wi,t1  ci  uit, t  1, . . . ,T − 1

by FE and test H0 :   0 (fully robust, as usual).

∙ Only useful for T ≥ 3 because lose last time period.
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. * We found that the FE and FD estimates of concen coefficient were

. * pretty close.

. sort id year

. gen concenp1  concen[_n1] if year  2000

. xtreg lfare concen concenp1 y98 y99 y00, fe cluster(id)

Fixed-effects (within) regression Number of obs  3447
Group variable: id Number of groups  1149

R-sq: within  0.0558 Obs per group: min  3
between  0.0535 avg  3.0
overall  0.0347 max  3

F(4,1148)  25.63
corr(u_i, Xb)  -0.2949 Prob  F  0.0000

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. t P|t| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .2983988 .054797 5.45 0.000 .1908854 .4059122

concenp1 | -.0659259 .0467578 -1.41 0.159 -.1576663 .0258145
y98 | .0205809 .0042341 4.86 0.000 .0122735 .0288883
y99 | .0360638 .0050754 7.11 0.000 .0261058 .0460218
y00 | (dropped)

_cons | 4.914953 .0478488 102.72 0.000 4.821072 5.008834
-----------------------------------------------------------------------------
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∙ If do not reject strict exogeneity, can use serial correlation properties

of uit to choose between FE and FD. Generally a good idea to do FE

and FD and report robust standard errors.

∙ If we maintain system homoskedasticity (sufficient is

Varui|xi,ci  Varui), then unrestricted FDGLS and FEGLS (with a

time period dropped) are asymptotically equivalent.
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FE versus RE.

∙ Time-constant variables drop out of FE estimation. On the

time-varying covariates, are FE and RE so different after all? Define

the parameter

  1 − 1
1  Tc2/u2

1/2

,

which is consistently estimated (for fixed T) by ̂. (Some authors use 

as the symbol.) The, the RE estimate can be obtained from the pooled

OLS regression

yit − ̂ȳi on xit − ̂x̄i, t  1, . . . ,T; i  1, . . . ,N.
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∙ Call yit − ̂ȳi a “quasi-time-demeaned” variable: only a fraction of the

mean is removed.

̂ ≈ 0  ̂RE ≈ ̂POLS
̂ ≈ 1  ̂RE ≈ ̂FE

 increases to unity as (i) c2/u2 increases or (ii) T increases. With large

T, FE and RE are often similar.

∙ If xit includes time-constant variables zi, then 1 − ̂zi appears as a

regressor.
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. * Can get the quasi-time-demeaning parameter, which Stata calls “theta.”

. xtreg lfare concen ldist ldistsq y98 y99 y00, re cluster(id) theta

Random-effects GLS regression Number of obs  4596
Group variable: id Number of groups  1149

Random effects u_i ~Gaussian Wald chi2(7)  386792.52
corr(u_i, X)  0 (assumed) Prob  chi2  0.0000
theta  .83550226

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .2089935 .0422459 4.95 0.000 .126193 .2917939

ldist | -.8520921 .2720902 -3.13 0.002 -1.385379 -.3188051
ldistsq | .0974604 .0201417 4.84 0.000 .0579833 .1369375

y98 | .0224743 .0041461 5.42 0.000 .014348 .0306005
y99 | .0366898 .0051318 7.15 0.000 .0266317 .046748
y00 | .098212 .0055241 17.78 0.000 .0873849 .109039

_cons | 6.222005 .9144067 6.80 0.000 4.429801 8.014209
-----------------------------------------------------------------------------

sigma_u | .31933841
sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)
------------------------------------------------------------------------------

.* The value .836 makes it clear why FE and RE are pretty close.
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Testing for Serial Correlation after RE

∙ Can show that under the RE variance matrix assumptions,

rit ≡ vit − v̄i  1 − ci  uit − ūi has constant (unconditional)

variance and is serially uncorrelated.

∙ Suggests a way to test uit for serial correlation. After RE

estimation, obtain r̂it from the regression on the quasi-time-demeaned

data, and use a standard test for, say, AR(1) serial correlation. (Can

ignore estimation of parameters.)
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Efficiency of RE

∙ Can show that RE is asymptotically more efficient than FE under

RE.1, RE.2, FE.2, and RE.3. Assume, for simplicity, xit has all

time-varying elements. (See text Section 10.7.2 for more general case.)

∙ Then

Avar̂FE  u2EẌi
′Ẍi−1/N

∙ Let x̆it  xit − x̄i be the quasi-time demeaned time-varying

covariates. Then

Avar̂RE  u2EX̆i
′X̆i−1/N
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∙ Using∑t1
T ẍit  0 we have

X̆i
′X̆i ∑

t1

T

x̆it′ x̆it ∑
t1

T

ẍit  1 − x̄i ′ẍit  1 − x̄i

∑
t1

T

ẍit′ ẍit  1 − 2x̄i′x̄i

 Ẍi
′Ẍi  1 − 2Tx̄i′x̄i

EX̆i
′X̆i − EẌi

′Ẍi  1 − 2TEx̄i′x̄i

which is positive semidefinite.
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Testing the Key RE Assumption

∙ Recall the key RE assumption is Covxit,ci  0. With lots of good

time-constant controls (“observed heterogeneity”) might be able to

make this condition roughly true.

∙ a. The traditional Hausman Test: Compare the coefficients on the

time-varying explanatory variables, and compute a chi-square statistic.

∙ Caution: Usual Hausman test maintains RE.3 – second moment

assumptions – yet has no systematic power for detecting violations

from this assumption.

∙With time effects, must use generalized inverse. Easy to get the

degrees of freedom wrong.
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∙ b. Variable addition test. Write the model as

yit  gt  zi  wit  ci  uit.

Obvious we cannot compare FE and RE estimates of  because the

former is not defined. Less obvious we cannot compare FE and RE

estimates of  (because FE and RE both allow estimation). But it turns

out we can only compare ̂FE and ̂RE.
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∙ Let wit be 1  J. Use a correlated random effects (CRE) formulation

due to Mundlak (1978):

ci    w̄i  ai
Eai|zi,wi  0.

This allows ci to be correlated with the time-varying explanatory

variables through its average level over time. (We might think of this as

a long-run component of wit : t  1, . . . ,T.
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∙ If we substitute ci    w̄i  ai into the original equation we get

yit  gt  zi  wit    w̄i  ai  uit.

Estimate this model using RE and test H0 :   0 using RE estimation.

Should make test fully robust if have any doubt about RE.3 (which we

almost always should).

∙ The RE estimate of  when w̄i is included is actually the FE estimate.

For that matter, so is the POLS estimate. Including w̄i effectively

proxies for ci. (The remaining heterogeneity, ai, is uncorrelated with all

explanatory variables.)
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∙When we use the CRE formulation to obtain a test of

Eci|zi,wi  Eci

there is no mean relationship between ci and wi1,wi2, . . . ,wiT. The

alternative Eci|zi,wi  Eci|w̄i    w̄i is a convenient way to

obtain a test.

∙ Nevertheless, if we believe Eci|zi,wi    w̄i (or use linear

projections) then the CRE formulation has the benefit of allowing us to

estimate the coefficients on zi, the time-consant variables.
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∙ Guggenberger (2010, Journal of Econometrics) has recently pointed

out the pre-testing problem in using the Hausman test to decide

between RE and FE. The regression-based version of the test shows it

is related to the classic problem of pre-testing on a set of regressors –

w̄i in this case – in order to decide whether or not to include them.

∙ If  ≠ 0 but the test has low power, we will omit w̄i when we should

include it. That is, we will incorrectly opt for RE.

∙ As always, need to distinguish between a statistical and practical

rejection.
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Airfare Example
. * First use the Hausman test that maintains all of the RE assumptions under
. * the null and directly compares the RE and FE estimates:

. qui xtreg lfare concen ldist ldistsq y98 y99 y00, fe

. estimates store b_fe

. qui xtreg lfare concen ldist ldistsq y98 y99 y00, re

. estimates store b_re
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. hausman b_fe b_re

---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| b_fe b_re Difference S.E.

-----------------------------------------------------------------------------
concen | .168859 .2089935 -.0401345 .0126937

y98 | .0228328 .0224743 .0003585 .
y99 | .0363819 .0366898 -.000308 .
y00 | .0977717 .098212 -.0004403 .

------------------------------------------------------------------------------
b  consistent under Ho and Ha; obtained from xtreg

B  inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(4)  (b-B)’[(V_b-V_B)^(-1)](b-B)
 10.00

Probchi2  0.0405
(V_b-V_B is not positive definite)

.

. di -.0401/.0127
-3.1574803

. * This is the nonrobust H t test based just on the concen variable. There is

. * only one restriction to test, not four. The p-value reported for the

. * chi-square statistic is incorrect. Notice that the rejection using the

. * correct df is much stronger than if we act as if there are four restrictions.
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. * Using the same variance matrix estimator solves the problem of wrong df.

. * The next command uses the matrix of the relatively efficient estimator.

. hausman b_fe b_re, sigmamore

Note: the rank of the differenced variance matrix (1) does not equal the
number of coefficients being tested (4); be sure this is what you expect,
or there may be problems computing the test. Examine the output of your
estimators for anything unexpected and possibly consider scaling your
variables so that the coefficients are on a similar scale.

---- Coefficients ----
| (b) (B) (b-B) sqrt(diag(V_b-V_B))
| b_fe b_re Difference S.E.

-----------------------------------------------------------------------------
concen | .168859 .2089935 -.0401345 .0127597

y98 | .0228328 .0224743 .0003585 .000114
y99 | .0363819 .0366898 -.000308 .0000979
y00 | .0977717 .098212 -.0004403 .00014

------------------------------------------------------------------------------
b  consistent under Ho and Ha; obtained from xtreg

B  inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(1)  (b-B)’[(V_b-V_B)^(-1)](b-B)
 9.89

Probchi2  0.0017
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. * The regression-based test is better: it gets the df right AND is fully

. * robust to violations of the RE variance-covariance matrix:

. egen concenbar  mean(concen), by(id)

. xtreg lfare concen concenbar ldist ldistsq y98 y99 y00, re cluster(id)

(Std. Err. adjusted for 1149 clusters in id)
------------------------------------------------------------------------------

| Robust
lfare | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
concen | .168859 .0494749 3.41 0.001 .07189 .2658279

concenbar | .2136346 .0816403 2.62 0.009 .0536227 .3736466
ldist | -.9089297 .2721637 -3.34 0.001 -1.442361 -.3754987

ldistsq | .1038426 .0201911 5.14 0.000 .0642688 .1434164
y98 | .0228328 .0041643 5.48 0.000 .0146708 .0309947
y99 | .0363819 .0051292 7.09 0.000 .0263289 .0464349
y00 | .0977717 .0055072 17.75 0.000 .0869777 .1085656

_cons | 6.207889 .9118109 6.81 0.000 4.420773 7.995006
-----------------------------------------------------------------------------

sigma_u | .31933841
sigma_e | .10651186

rho | .89988885 (fraction of variance due to u_i)
------------------------------------------------------------------------------

. * So the robust t statistic is 2.62 --- still a rejection, but not as strong.
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. * Using the CRE formulation, we get the FE estimate on the time-varying

. * covariate concen. In this case, the coefficients on the time-constant

. * variables are close to the usual RE estimates, and even closer to the

. * POLS estimates.
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