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Topics covered:

1) Unobserved heterogeneity and endogeneity

2) Models with heterogeneous slopes

3) Unit roots (and co-integration) with panel

4) Dealing with cross sectional correlation



Day 1.

Introduction, the role of unobserved heterogeneity and endogeneity:

Fixed and random effects.

Application: production function.

Day 2.

Using the panel structure of the data to deal with a special kind of

endogeneity: selection bias. Policy evaluation in a non randomized

framework. Presentation of a research paper.

Models with heterogeneous slopes. Swamy, SURE, Mean Group,

Pooled Mean Group, Bayesian approach.

Day 3.

Models with heterogeneous slopes: application to a consumption

function

Unit roots (and co-integration) with panel.

Day 4.

Dealing with cross sectional correlation: spatial models, factor mod-

els (CCE).

Presentation of a research paper dealing with panel unit roots testing,

cross section correlation and heterogeneous slopes.
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Modelling heterogeneity with panel data

Introduction, the role of unobserved heterogeneity and endogeneity: Fixed and

random effects. Application: production function.

Models with heterogeneous slopes. Swamy, SURE, Mean Group, Pooled Mean

Group, Bayesian approach.



1 Introduction

• References: Matyas and Sevestre (2008, Pesaran, Hsiao, Heckman, etc),

Hsiao (2003), Wooldridge (2010), Baltagi (2008), Arellano (2003)

• Panel data: N individuals and T periods

• Advantages with respect to time series: lower collinearity, more degrees of

freedom (thanks to the CS dimension)

• Advantages with respect to cross section: dynamic models (AR), heteroge-

neous behaviours (thanks to the TS dimension)



2 The central role of heterogeneity

in panel data econometrics

• Heterogeneity is a central notion for panel data econometrics

• General model vs pooled model

 =  + 0 + ;

 = + 0 + ;

0 = (1  )



• Example: production function:

 = 
1
 

2
 exp()

in logs :

 = + 1 + 2 + 

• "the technological progress",; varying over individuals and/or

in time?

• "the production process", 1 and 2 varying over individuals

and/or in time?



3 Different kinds of heterogeneity

• No Heterogeneity (Pooled model: both intercept and slope co-

efficients are constant):

 = + 0 + 

0 = (1  )

• Slope coefficients are constant and the intercept varies over

individuals (and/or time):

 =  + 0 + 

 =  + 0 + 

 =  +  + 0 +  Note that  =  + 



If  () are fixed constants⇒  model

If  () are random variables with a probability distribution⇒
 (error component) / Bayesian model

→FE models allow to take into account to omitteed variability, i.e.

omitted variables that are time-invariant (sex, ability) for the model

with individual effects and individual-invariant (price, optimisme) for

the the model with time effects.

Fixed individual effects:  =  + 0 + ;

b Within is obtained runnining OLS estimator on:

( − ) = ( − ) +
³
0 − 0

´
 + ( − )

=
³
0 − 0

´
 + ( − )

(b is obtained as: b =  − 0)



b first-differences, FD, is otained runnining OLS on:

( − −1) = ( − ) +
³
0 − 0−1

´
 + ( − )

=
³
0 − 0−1

´
 + ( − −1)

for T=2⇒Within and FD give identical estimates and inference

Within is more efficient when  are serially uncor-

relatted

FD is more efficient when  follows a random walks

Within gives the same estimates and inference than running OLS on level equation

with indidvidual constant terms

According to Woldridge (2010) this is a "coincidence". Recall: exepet when

 → ∞ we cannot estimate consistently the parameters associated to the

individual fixed effects. In many cases (e.g. non linear panel) when estimating

a model containing both the fixed effects  and the  produces inconsistent

estimates of  too: Incidental parameter problem.

Greene has shown that this problem does not appear for other kinds of models

such as SFA and tobit.

 Most pepole use within



Fixed individual effects with time invariant variables:  = +

0 + 0 + ;
b is obtained runnining OLS estimator on:

( − ) = ( − ) +
³
0 − 0

´
 +

³
0 − 0

´


+( − )

=
³
0 − 0

´
 + ( − )

Consequences:

Positive: The individual fixed effects specification capture also unobserved vari-

ables time-invariant (b is not biased due to the omission of relevant time-invariant

variables)

Negative: when z is observed we can not estimate 

• All coefficients vary over individuals (time):  = +
0
+;

 =  + 0 + ;

Coefficients can be random (Random coefficient model) or fixed (SURE)



• All coefficients vary over individuals and time  = +0+


Coefficients can be random (Random coefficient model) or fixed. Let consider the

case of fixed coefficients:

 =  + 0 + 

 = 1   ;  = 1  

0=(1  ) and () = 0;  () = 2  ∈
R

Identification problem: NT+kNT= NT(k+1) parameters to be estimated but only

NT observations: this model ca not be estimated. If we consider the parameters as

random variables with a probability distribution with constant means and variance:

 =  + 

 = + 

where  and  are random variables with with constant means and variances.

There is not now an identification problem and the model can be estimated.



4 Heterogeneity biases

• Trade-off between to much parameters to be estimated (esti-

mation not much accurate) and not enough parameters to be

estimated ( estimation bias).

• Case 1:

Estimate pooled model:  = + 0 + 

True model: Slope coefficients are constant and the intercept varies

over individuals (and/or time)  =  + 0 + 

b   (they have the same sign)



b   ( same sign)

b   (different signs)

Remark 1 b −  has the same sign that 
³
 

0


´



• Case 2: both slope coefficients and intercepts vary over

individuals (and/or time):  =  + 0 + 

Estimating a pooled model or a model with individual interceps give

nonsensical results



Estimating a pooled model give a curvilinear (polynomial) relation-

ship



5 fixed effects, random effects and

unobservable

model with individual effects:

= +
0
 + 

FE:  ∈ R

RE:  : radom variable such that 
³
 | 0

´
= 0

• Kind of data. exhaustive data→ ; survey→  (Con-

ditional Vs unconditional inference)

• Number of parameters. EF: N+K parameters. EA: 2 +K pa-

rameters



• statistic /economic arguments. if 
³
 | 0

´
6= 0 thenb is biased

example: Mundlak (1978) criticised the random effect formulation

because it nelects the correlation between  and 
0
 Production

function. y is the output and can be affected by unobserved mane-

giarial ability  Firm with more efficient manegiarial ability tend

to produce more and use more inputs x such that 
³
 | 0

´


0 giving a bias of b.
 are unobservable and Mundlak (1978) suggests to approximate

E
³
 | 0

´
by a linear function:

 = 0 + 

 : E
³
 | 0

´
= 0

Mundlak test:



0 :  = 0

0 :  6= 0

See also Hausman test

Mundlak test is restrictive imposing linearity

Under Mundlak’s hypothesis we can write the unconstrainded model

(u):

= 0 + 0 +  + 

estimation with FGLS→ b b
and the constrainded model (c) ( = 0):

= 0 +  + 



we can easily test the null 0 :  = 0 using the Ficher’s statistic

for nested hypotheses:

 =
( −) 

 − 2

df(u)=NT-2k; df(c)=NT-k

Mundlak also shows that the GLS estimator of  of the uncon-

strained model is equal to the within estimator:

b=b

in the framework of unconstrained model (fixed effects correlated

with x) the BLUE of  is the within estimator (on the constrained

model) which correspond to apply GLS to unconstrained model.

However applying GLS to the constrained model yelds a biased esti-

mator



6 Example

• Hoch (1962) estimates a production function using panel data.

He estimates 3 specifications with the Cobb-Douglas formula-

tion:

 = + 0 + 

 =  + 0 +   ∈ R
 =  +  + 0 +    ∈ R

variables are in log.



Look labor input: selection bias?



The estimated individual fixed effects, b (c) are positively re-

lated with inputs, for example labor input:

 (b ) 0

we can write the Mundlak auxilary regression  = 0+ and

test 0 :  = 0 we reject H0 and choose FE formulation.



7 Choosing between individual and

time effects

 = + 0 +  (1)

 =  + 0 +  (2)

 =  + 0 +  (3)

 =  +  + 0 +  (4)

1 ⊂ 21⊂ 3 1 ⊂ 42⊂ 43⊂ 4

2 (3) is not nested in 3 (2)

For nested models we can use the Fisher test:

 =
( −)  − 


∼  ( −  )



for testing 1 vs 2 (H0 : 1 = 2 =  =  = ) we can

use:

 =
(1 −2)  [ −  − 1− ( −  −)]

2 ( −  − 1)

We can use the following strategy:



8 Translog

in logs

 = +++
1
2
2+

1
2
2++



 =



=  + 2
1
2
 + 




varies across cross sections

average of the "individual elasticities"

mean, median, etc, Kernel density estimation

average elasticityµ



¶
=  + 2

1
2
 + 



9 Variable slopes

Let consider the general model : = 0 +   = 1   ;

 = 1   If parameters are fixed there are NTK parameters to be

estimated and only NT observations. this model can not be estimated. For easy

of esposition we consider the following model in which coefficients vary

across cross sections but are constant over time:

= 0+

 can be treated as fixed or random. We can also rewrite the model as :

= 0( + ) + 

 = (1  )
0
can be viewed as the common mean coefficient vector

and  = (1 2  )
0
are the individual deviations from the

common mean If the interest is inthe performance of individual units from

data, the  can be treated as fixed. If the population characteristics are of

interests:  random.



10 Fixed-coefficient model (SURE)

Kronecker product

Definition: Two matrices  et  of dimension ()

et ( ), the Kronecker product  ⊗ , is a matrix of

dimension () defined by: ⊗ = () where

 are the elements of matrix .

⎛⎜⎝ 1 2

3 4

2 1

⎞⎟⎠⊗ Ã
 

 

!
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

  2 2

  2 2

3 3 4 4

3 3 4 4

2 2  

2 2  

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠


1) (+)⊗  = (⊗ ) + ( ⊗ )

2) (⊗)( ⊗) =  ⊗

4) (⊗)0 = 0 ⊗0



SURE (Seemingly unrelated regressions equations)

proposed by Zellner (1962). The N equations are relied via the cross-section

covariance of the error terms. In a model with N equations (each one with T

observations) and k regressors we can write the equation i as:  = +

  = 1  

where   are  ×1 vectors, is a  × matrix and  is a×1
vector The System can be write as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2








⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0    0

0 2    0







0 0    

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2








⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2








⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
which can be written compactly:

 =  + 

 is × 1  is × 

 is  × 1  is × 1



 =  + 

The hypotheses are

1.  () = 0

2. 
¡
0
¢
= Ω

×
= Σ

×
⊗ I

×

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

11I 12I    1I

21I 22I    2I







1I 2I    I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

with, Σ =
n


o



3
³
 0Ω−1

´−1
is non singular,

 lim

Ã
0Ω−1



!
is finite and non singular

(Recall: an n-by-n (square) matrixA is called nonsingular if there exists an n-by-n

matrixB such that AB = BA = I )

The GLS estimator:

e =
³
0Ω−1

´−1
 0Ω−1

=
³
0 ³Σ−1 ⊗ I´´−1 0 ³Σ−1 ⊗ I´ 

is BLUE (Best linear Unbiased Estimator) while OLS is only consistent.

If the equations are not relied,  = 0 for  6=  ⇒ e = b
To test the null Hp of no cross-section correlation (zero non diagonal elements of

Σ)→Breush and Pagan (1980) test

It is possible to constrain  =  for all i with the exeption of constant

term→model similar to FE



Theorem If  = 0 for  6=  then e = b
Proof. If  = 0 for  6=  then Σ is a diagonal

matrix:Σ =  (11) and

Σ−1 =  (1111)

 0 ³Σ−1 ⊗ I´   −   :

 0 ³Σ−1 ⊗ I´ = 
n
(111)

0
11 (1)

0


o
and

³
 0 ³Σ−1 ⊗ I´´−1 = 

n
11

0
11

0


o


 0 ³Σ−1 ⊗ I´  is also a bloc vector with the i element eauqls to1 0


consequently , e is a bloc vector:

e = 

³
 0


´−1
(1)

0


=
³
 0


´−1
0


= b



11 Random-coefficient model

Random-coefficient model consider each coefficient as a random variable with a

probability distribution. The coefficients are treated as having constant means and

variance covariance. Swamy (1970) formulation:


×1

= 
×


×1

+ 
×1

 = 1  


×1

= 
×1

+ 
×1

E

Ã

×1

!
= 0

E

Ã


0


×

!
=

(
∆ if i=j

0 if i 6= 
=

⎛⎜⎝ ∆

∆

∆

⎞⎟⎠
⇒ E () = 

⇒ E
³


0


´
=

(
∆ if i=j

0 if i 6= 

E

⎛⎜⎜⎜⎝ 
×1

0
1×

×

⎞⎟⎟⎟⎠ = 0



E

Ã

×1

!
= 0

E

⎛⎝0
×

⎞⎠ =

(
2 I if i=j

0 if i 6= 
=

⎛⎜⎝ 21
2

2

⎞⎟⎠
Stacking all NT observations


×1

= 
×


×1

+ f
×


×1

+ 
×1




×1

= 
×


×1

+ f
×


×1

+ 
×1


×1

=
³
01  0

´0


×

=

⎛⎜⎜⎝
1
×




⎞⎟⎟⎠

f
×

=

⎛⎜⎜⎜⎜⎜⎝
1
×

0

2

0 

⎞⎟⎟⎟⎟⎟⎠ =  (1 


×1

=

Ã
01
×1

  0

!0


×1

=

Ã
01
×1

  0

!0
let define : 

×1
= f+ 

E

µ
0

×

¶
=

⎛⎜⎜⎝
Φ1 0

Φ

0 Φ

⎞⎟⎟⎠
with : Φ = ∆0

 + 2I



12 Estimation of the Swamy’s model

• Under Swamy’s assumption, the regression of y on X will yeld an unbiased

and consistent estimator of  (see Hsiao, 2003). It is however inefficient

and usual LS computation of the variance-covariance matrix of the estima-

tor is incorrect leading invalid inference. The BLUE estimator of  is the

GLS estimator:

b =
X
=1


b

 : b = ³
 0


´−1
0


 :  =

⎧⎨⎩
X
=1

∙
∆+ 2

³
 0


´−1¸−1⎫⎬⎭
−1

×
"∙
∆+ 2

³
 0


´−1¸−1#

• b is a weigheted average of the LS estimators b ( = 1  )



with th e weights that are inversely proportional the their variances-

covariance matrices (var (b) = 2

³
0


´−1
)

• The variance-covariance matrix of b is

 
³b´ =

⎛⎝ X
=1

 0
Φ
−1
 

⎞⎠−1

=

⎧⎨⎩
X
=1

∙
∆+ 2

³
 0


´−1¸−1⎫⎬⎭
−1

• Problem: this estimator is impossible to use since∆ and 2 are unknown.

Swamy proposes uses the least squares estimators b and their residuals to
obtain b = −

b to obtain unbiased estimators of∆ and 2 

• Substitutingc∆ and b2 for∆ and 2 yelds an asymptototically normal

and efficient estimator of 

• Hsiao (1975) considers:  =  +  =  +  + 



13 Testing for coefficient variation

We can test for coefficient variation by testing wheter or

not the coefficient-vector  are all equal:

0 : 1 = 2 =  =  = 

If the different cross-sectional units have the same vari-

ance, 2 = 2 the conventional F test statistics can be

used (as for testing fixed effects):



If 2 differs across i (as assumed by Swamy), we can

apply a modified test statistic:

 ∗=
X
=1

³b − b∗´0 0


³b − b∗´b2
where

b∗ =
⎡⎣ X
=1

1b2  0


⎤⎦−1 ⎡⎣ X
=1

1b2  0


⎤⎦

Under H0 is asymptotically 
2 (( − 1))



14 Fixed or random coefficients

• wheter we are making inference conditional on individual char-

actersitics: fixed coefficients. or making unconditional infer-

ences on the population characteristics: random coefficients

• Extending his work on variable-coefficient model, Mundlak (1978b)

has questioned the random coefficients formulation since the

variable coefficients can be correlated with the

explanatory variables (CRC)→  estimator of

the mean coefficient vector  will b e biased.

Wooldridge (2005), Hsiao (2011) FE "could be" consistent

in that case

• Mundlak (1978b) suggests to introduce auxiliary regressions of

the type

 = 0 + 

 : E
³
 | 0

´
= 0



15 Dynamic heterogeneous panels

Let a dynamic (AR1) homogeneous panel data model:

 =  + −1 + 0 + 

the inclusion of −1 leads to inconsistent estimates both
in the FE and in the RE framework beaucause of the

correlation between the error term and the regressors (the

inconsistency does not occur in the same way in FE and

RE formulation)→  approach →  (Arellano-

Bond, Blundell-Bond etc)

The problem is more transparent in the RE formulation

in which the lagged dependent variable is correlated with



What appens if  is allowed to vary across individuals?



16 Alternative estimators of dynamic

panels

• small N and Large T. "Time series literature"

If N=1 (Time Series): "traditional"ARDL Vs cointegration

N1 : SURE. allows for cross-section correlation

• large N and small T. "Dynamic panel literature"

Arellano-Bond, Anderson-Hsiao, Arellano-Bover, Blundell-Bond... GMM

approach

• Large N and Large T. "Heterogeneous dynamic panels"



Why?

For large T, Pesaran-Smith (1995) show showed that the GMM

approach can produce inconsistent and very misleading estimates

Coice between fixed and random coefficients (Sampling Vs bayesian

approach)

Fixed coefficients: Pesaran et al; 1999: PMG

Random coefficients (sampling): Pesaran-Smith, 1995: MG

Random coefficiens (Bayes): Hsiao-Tahmiscioglu (1997), Hsiao et

al. (1999)



17 The Mean Group estimator

Pesaran-Smith, 1995: MG. Consider a dynamic model of the form:

= −1+0+

Let  =
¡
 

0


¢0
and assume that  is independently distributed

across i with:

 () = 


³
( − ) ( − )0

´
= ∆

Random coefficients:  = + The Mean Group estimator is:

b=
1



X
=1

b



The b is consistent when both T and N→∞. Pesearan-Smith
make some quite strong assumptions: The group-specific parameters

are distributed indipendently of the regressors and the regressors are

strictly exogenous



18 The Pooled Mean Group esti-

mator

Pesaran et al. (1999).

The PMG estimator is an "intermediate estimator: it allows the

intercepts, short-run coefficients and error vriances to differ freely

across cross-section while the long-run coefficients are constrained

to be the same.

ARDL(    ) with individual fe:

all quantities are scalars exept 0 and  that are K-vector

=
P

=1
−+

P
=0

0−++

Re-parametrisation

∆= −1+0+
−1P
=1

∗∆−+
−1P
=0

∆0−∗++



with

 = −
Ã
1−

P
=1



!

 =
P

=0


∗ = −
P

=+1
  = 1 2  − 1

∗ = −
P

=+1
  = 1 2   − 1

stack the time series observation for each group:

∆= −1++
−1P
=1

∆−∗+
−1P
=0

∆−∗++

(5)

 and  are  × 1  is  ×   and 
∗
 are  × 1 

is  × 1 et  and ∗ are scalars.



Hypotheses

1.  are indipendently distributed across i: 
³
0 2

´
,

with 2  0 and  ⊥ .

 ⊥  is needed for consistency ot the estimator of short-run

parameters

2.   0 and hence there exists a long-run relationship defined by

= − ()+

where  is a stationary process.

3. The long run coefficients =- are homogeneous across

individuals, i.e.  = .

..

..

ML approach to the estimation



19 Bayesian Approach


×1

= 
×


×1

+ 
×1

 = 1  

 =  + 

All quantities including the parameters are random variables

Prior probability distributions are introduced for the para-

meters (state of knowledge or ignorance about the parameters before

obtaining the data)

 is normally distributed with mean 0 and covariance matrix∆

. . . . . . SWAMY. . . . . .

This prior information is combined with the model and the data to

revise the probability distribution of , which is called posterior

distribution

Inference is made from this posterior distribution

Empirical Bayes, Iterative empirical Bayes, Hierarchical Bayes



20 Swamy and Bayesian: some re-

marks

The Swamy formulation of  having mean  and covari-

ance ∆ is equivalent to specifying an informative prior

for the parameters 

Swamy: sampling approach predictor of  = +

is the LS estimator. The Bayes predictor of  is

a weighted average between the LS estimator of 
and the overall mean  ⇒ the individual estimates

 shrinks towards the mean 

As  → ∞ the Bayes estimator approaches the least

squares estimator c



21 Some empirical studies

Baltagi-Bresson-Pirotte (2002)









Baltagi-bresson-Pirotte (2004)

q is the ratio of the market value of new investment goods

to their replacement cost.

273 firms over a longer time period 1973—1992.





Mazzanti and Musolesi (2013)

Environmental Kuznets Curve

02 = +1()+2()2++

Heterogeneous estimators suggest a linear CO2-income

relation

Heterogeneous estimators Bayesian or not provide a very

robust picture (probably due to the large time series di-

mension, T=40)

Introducing unobserved common factors destroys the ECK

relation. . .


