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Topics covered:

1) Unobserved heterogeneity and endogeneity
2) Models with heterogeneous slopes

3) Unit roots (and co-integration) with panel

4) Dealing with cross sectional correlation



Day 1.

Introduction, the role of unobserved heterogeneity and endogeneity:

Fixed and random effects.
Application: production function.
Day 2.

Using the panel structure of the data to deal with a special kind of
endogeneity: selection bias. Policy evaluation in a non randomized

framework. Presentation of a research paper.

Models with heterogeneous slopes. Swamy, SURE, Mean Group,

Pooled Mean Group, Bayesian approach.
Day 3.

Models with heterogeneous slopes: application to a consumption

function
Unit roots (and co-integration) with panel.
Day 4.

Dealing with cross sectional correlation: spatial models, factor mod-

els (CCE).

Presentation of a research paper dealing with panel unit roots testing,

cross section correlation and heterogeneous slopes.
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Modelling heterogeneity with panel data

Introduction, the role of unobserved heterogeneity and endogeneity: Fixed and

random effects. Application: production function.

Models with heterogeneous slopes. Swamy, SURE, Mean Group, Pooled Mean

Group, Bayesian approach.



1

Introduction

References: Matyas and Sevestre (2008, Pesaran, Hsiao, Heckman, etc),

Hsiao (2003), Wooldridge (2010), Baltagi (2008), Arellano (2003)

Panel data: N individuals and T periods

Advantages with respect to time series: lower collinearity, more degrees of

freedom (thanks to the CS dimension)

Advantages with respect to cross section: dynamic models (AR), heteroge-

neous behaviours (thanks to the TS dimension)



2 The central role of heterogeneity

in panel data econometrics

® Heterogeneity is a central notion for panel data econometrics
® General model vs pooled model
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® Example: production function:

Yie = AKﬁlLZ? exp(u;t)
in logs

Yit = o+ Brkit + Boli + ui

® '"the technological progress", «; varying over individuals and /or

in time?

® "the production process", (31 and 35 varying over individuals

and/or in time?



3 Different kinds of heterogeneity

® No Heterogeneity (Pooled model: both intercept and slope co-

efficients are constant):

yit = o4z + ug,

Lit = (z1¢) .-, Tht)

® Slope coefficients are constant and the intercept varies over

individuals (and/or time):

it = o+ 5B + ui,
Yir = A+ x50+ ug,
Yit = o + A+ métﬂ + uj¢. Note that oy = oy + At



If o ()xt) are fixed constants= F'FY model
If oy ()\t) are random variables with a probability distribution =

RE (error component) / Bayesian model

—FE models allow to take into account to omitteed variability, i.e.
omitted variables that are time-invariant (sex, ability) for the model
with individual effects and individual-invariant (price, optimisme) for

the the model with time effects.

Fixed individual effects: y;; = oy + x;tﬁ + U,

{3 Within is obtained runnining OLS estimator on:

(it — i) = (i — i)+ (2 — ) B+ (wir — ui)
= (why —}) B+ (ust — us.)

(Qy; is obtained as: ai; = Y; — :B;Jﬁ)



B first-differences, FD, is otained runnining OLS on:

(it — vit—1) = (i — o)+ (2 — 2fy_1) B+ (wir — ;)
— (xét - w;t—l) B+ (wit — wit—1)

for T=2=—=>Within and FD give identical estimates and inference

Within is more efficient when u;; are serially uncor-
relatted

FD is more efficient when u;; follows a random walks

Within gives the same estimates and inference than running OLS on level equation

with indidvidual constant terms

According to Woldridge (2010) this is a "coincidence". Recall: exepet when
T" — 0O we cannot estimate consistently the parameters associated to the
individual fixed effects. In many cases (e.g. non linear panel) when estimating
a model containing both the fixed effects (¢; and the B produces inconsistent
estimates of 3 too: Incidental parameter problem.

Greene has shown that this problem does not appear for other kinds of models

such as SFA and tobit.

>>> Most pepole use within



Fixed individual effects with time invariant variables: y;+ = o; +

x;tﬁ + z,g’y + w;¢; [ is obtained runnining OLS estimator on:

(it — i) = (ci— o)+ (afy— ) B+ (21— 20) v
+ (uit — uj.)
= <33th - 3/‘2) B+ (wit — uj;.)
Consequences:

Positive: The individual fixed effects specification capture also unobserved vari-
ables time-invariant (B is not biased due to the omission of relevant time-invariant

variables)

Negative: when z is observed we can not estimate 7y

® All coefficients vary over individuals (time): Y;¢ = ozi—l—a:fb-tﬁi—l—uit;

_ / .
Vit = o + T8 + uit;

Coefficients can be random (Random coefficient model) or fixed (SURE)



® All coefficients vary over individuals and time Y;+ =— Q3¢ + x;tﬁit +
Uqt

Coefficients can be random (Random coefficient model) or fixed. Let consider the

case of fixed coefficients:

Vit = oyt + TPt + Uit
i = 1,..N: t=1,..T

w;}t: (xlita IR xkit) and B/ (uzt) = 0; Var (uzt) — 027 Qi €
R

Identification problem: NT+kNT= NT(k+1) parameters to be estimated but only
NT observations: this model ca not be estimated. If we consider the parameters as

random variables with a probability distribution with constant means and variance:

Bit = B+ei
Qi = O+ Ut
where £;+ and Uj;¢ are random variables with with constant means and variances.

There is not now an identification problem and the model can be estimated.



4 Heterogeneity biases

® Trade-off between to much parameters to be estimated (esti-
mation not much accurate) and not enough parameters to be

estimated ( estimation bias).

o Case 1:

Estimate pooled model: y;; = & + ZC;tﬁ + Ut

True model: Slope coefficients are constant and the intercept varies
over individuals (and/or time) y;+ = o; + :U;Jtﬁ + Ut

P

8 > [3 (they have the same sign)



YA

B < B ( same sign)

v 4

B < [ (different signs)

Remark 1 B — [ has the same sign that Corr (Ozi, :13,/&)



e Case 2: both slope coefficients and

intercepts vary over

individuals (and/or time): y;+ = a; + x;tﬁz + U4y

VA
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Estimating a pooled model or a model with individual interceps give

nonsensical results



Estimating a pooled model give a curvilinear (polynomial) relation-

ship



5 fixed effects, random effects and

unobservable

model with individual effects:

/
Yit= i+ 0 + ugy
FE: a; € R

RE: o; : radom variable such that F/ (Q‘i | :B;t) =0

® Kind of data. exhaustive data— F'E; survey— RE (Con-

ditional Vs unconditional inference)

® Number of parameters. EF: N+K parameters. EA: 2 +K pa-

rameters



. . . _ /
® statistic /economic arguments. if F (Ozz | aiz-t) # 0 then

EFGLS is biased

example: Mundlak (1978) criticised the random effect formulation
because it nelects the correlation between ¢¢; and :E;;t. Production
function. y is the output and can be affected by unobserved mane-
giarial ability o;. Firm with more efficient manegiarial ability tend

to produce more and use more inputs x such that & (O%' | a:;t> >

O giving a bias of BFGLS-

«v; are unobservable and Mundlak (1978) suggests to approximate
E (Ozi | :Eét> by a linear function:

/
Qa; = I;7Y+ w;

with @ E (wi | :1:2) =0

Mundlak test:



See also Hausman test
Mundlak test is restrictive imposing linearity

Under Mundlak’s hypothesis we can write the unconstrainded model

(u):

/ /
Yit= Ty + x; v + wi + uy
estimation with FGLS— B, ~

and the constrainded model (c) (v = 0):

/
Yir= TiB + wi + w;y



we can easily test the null Hg : v = O using the Ficher's statistic

for nested hypotheses:

[ (RSQc — RSQu) /k
 RSQu/NT — 2k

df(u)=NT-2k; df(c)=NT-k

Mundlak also shows that the GLS estimator of 5 of the uncon-

strained model is equal to the within estimator:

BaLsu=Bwc

in the framework of unconstrained model (fixed effects correlated
with x) the BLUE of (3 is the within estimator (on the constrained

model) which correspond to apply GLS to unconstrained model.

However applying GLS to the constrained model yelds a biased esti-

mator



6 Example

® Hoch (1962) estimates a production function using panel data.
He estimates 3 specifications with the Cobb-Douglas formula-

tion:

Yit = o+ 33{“55 + gt
Yit A+ @B +uy, MER
Yit = Q;+ A+ x;tﬁ + wig, M, €ER

variables are in log.



LEeasT SQUARES ESTIMATES OF ELASTICITY BASED ON ALTERNATIVE ASSUMPTIONS

Assumption
Estimate of elasticity: k¢ and &} identical kq only keand k* different
ay to zero, all { and identical from zero (analysis
t (ordinary least to zero, of covariance)
squares) all ¢
Variable set 1:
d1, labor .256 .166 .043
ds, real estate 135 .230 .199
ds, machinery .163 .261 194
dq, feed, etc. .349 311 .289
Sum dyp .904 967 726
ook labor input: selection bias?
Y4
> X




CHARACTERISTICS OF FIRMs GROUPED ON THE Basis
oF THE FIrM CONSTANT

Firms classified by value of K
- R' i R i R i

Characteristic Al 1 Ko | g5 95 1os | K
firms | below up to up to up to 1.15 or
85 | o5 1.05 | 115 | over
Number of firms in group 63 6 17 19 14 7
Average value of:
K 4, firm constant 1.00 0.81 0.92 1.00 1.11 1.26
Yo, output (dollars) 15,602 {10,000 | 15,570 | 14,690 16,500 |24,140
Y, labor (dollars) 3,468 | 2,662 | 3,570 3.346 3,538 | 4,280

Y4, feed and fertilizer (dollars) | 3,217 | 2,457 3,681 3,064 2,621 5,014
Y5, current expenses (dollars) | 2,425 | 1,538 | 2,704 2,359 2,533 | 2,715

Y, fixed capital (dollars) 3,398 | 2,852 3,712 3,067 3,484 3,996
Profit (dollars) 3,094 491 1,903 2,854 4,324 8,135
Profit/output 0.20 0.05 0.12 0.19 0.26 0.33

The estimated individual fixed effects, &;, (K;) are positively re-

lated with inputs, for example labor input:

Corr (ay, L;) > 0

we can write the Mundlak auxilary regression o¢; = :Cé ¥+ w; and

test Hg : v = 0. we reject Hg and choose FE formulation.



7 Choosing between individual and

time effects

Yit
Yit
Yit
Yit

o + x;tﬁ + it

a; + x5y 8 + ugy,

At + Th B + uit,

o + At + 25y 8 + iy,

1C2,1C 3,1 C4,2C 43C 4

2 (3) is not nested in 3 (2)

For nested models we can use the Fisher test:

F

_(RSQc — RSQu) /dfe — dfu

RSQu/dfu

(1)
(2)
(3)
(4)

~ F (dfc — dfu, dfu)



for testing 1vs 2 (Hp : a1 = aip = ... = )y = @), we can

use:

_(RSQ1 — RSQ) /[NT —k—1— (NT — k — N)]

r RSQ,/ (NT — k — 1)

We can use the following strategy:

LI

:
\




8 Translog

in logs

vit = i+ Brkis+ Bilit+ Brrgks + Buzle + Brikilit+
Eit

it __
by kg = a%; = By, + 25Bkkit + Brilit

a%?i varies across cross sections
1

average of the "individual elasticities"

mean, median, etc, Kernel density estimation

average elasticity

Dyir | _ T y
(a%;) = Bi + 2581k + Bl



9 Variable slopes

Let consider the general model :Y;+ = métﬁit + U, 1= 1, ceny N;
t = ]., ceny T'. If parameters are fixed there are NTK parameters to be
estimated and only N'T observations. this model can not be estimated. For easy
of esposition we consider the following model in which coefficients vary
across cross sections but are constant over time:

/
Yit= T; B+ Ui,

Bi can be treated as fixed or random. We can also rewrite the model as :

yir= Ti(B + ;) + uyy

/ : i
5 = (51, ceeey Bk) can be viewed as the common mean coefficient vector
/ T L
and OY; — (O{Z']_, OlgDy eeny aik) are the individual deviations from the
common mean 5.If the interest is inthe performance of individual units from
data, the Q¢; can be treated as fixed. If the population characteristics are of

interests: Q¢; ra ndom.



10 Fixed-coefficient model (SURE)

Kronecker product

Definition: Two matrices A et B of dimension (m,n)
et (p, q), the Kronecker product A ® B, is a matrix of
dimension (mp, nq) defined by: A® B = (a;;B) where
a;; are the elements of matrix A.

(a b2a2b\

1 c d 2c 2d
3 4 | @ ( a b ) _ 3a 3b 4a 4b
5 1 c d 3c 3d 4c 4d
2a 2b a b

\26 2d ¢ d }

1) (A+B)®C =(A®C)+ (B O0).
2) (A® B).(C® D)= A.C ® B.D

4) (AR B = A'® B’



SURE (Seemingly unrelated regressions equations)
proposed by Zellner (1962). The N equations are relied via the cross-section
covariance of the error terms. In a model with N equations (each one with T
observations) and k regressors we can write the equationias: Y; — X,Lﬁz—l—
€4 1= 1, vouy N

where Y; £, are T X 1 vectors, Xz isa 1" X Kk matrix and 52 isa K X1

vector. The System can be write as:

o) N0 0 L x) (8. \en/

which can be written compactly:

y=X[+e
yisNTX]., XisNTXk‘N,

BiskNXl, gis NT x 1.



y=XB+e¢

The hypotheses are

1. E(e) =0
2. E(eh= Q = 5% @ 1
NTXNT  NxN TXT
(0111 ool . . . alnI\
o201l o0l . . . 09,1
\on1l opol . . . onnl)

with, > = {JZ]}



~1
3. <X’Q_1X) Is non singular,

- (xQix .
plim T is finite and non singular

(Recall: an n-by-n (square) matrix A s called nonsingular if there exists an n-by-n

matrix B such that AB = BA = I)

The GLS estimator:

~

B = (X’Q_lX)_lX’Q_ly
= (X' (z'eI) X)

1X’ (Z_l ®I>y

is BLUE (Best linear Unbiased Estimator) while OLS is only consistent.

AN

If the equations are not relied, 045 = O for 2 # ] = 6 = B

To test the null Hp of no cross-section correlation (zero non diagonal elements of

Z) —>Breush and Pagan (1980) test

It is possible to constrain BZ = 5 for all i with the exeption of constant

term—>model similar to FE



Theorem |If o;; = 0 for 7 # j then B=3.

Proof. If o;; = 0 for ¢« # j then L is a diagonal
matrix:¥X = diag (011..-0nn) and

> = diag(1/011...1/0nn)

X' (Z_l X I) X 158 abloc — diagonal matrix :

X' (271 ®@1) X = diag {(1/011) X1 X1..- (1/onn) X}, Xn |

—1
and (X’ (z—l ® I) X) — diag {allxixl...amxgxn} ,
X' (Z_l & I> Y is also a bloc vector with the i element eauqls to 1/0-7,7,Xf:y7,

consequently , 5 is a bloc vector:

B = oy (Xz(Xi)_l(l/aii)Xz{yi
— (x1x,) " XUy,

= B



11 Random-coefficient model

Random-coefficient model consider each coefficient as a random variable with a

probability distribution. The coefficients are treated as having constant means and

variance covariance. Swamy (1970) formulation:

E

!/

Lit O
Kx11x K

KxK

TxKKx1 Tx1

B + «
Kx1 Kx1
0,
Aifi= A
0ifi£j A

= E(B;) =8,
= E(BiB{i):{Oifi;éj

A if i=]



0,

o?Ip if i=)
0if i # j

2
g1

2

Stacking all NT observations

X p
NTXKKX].

——

X Qo
NTxNKNKx1

ON

U
NTx1



NTx1

NTx1

NTxK

NTxXNK

(84
NKx1

U
NTx1

let define

E( v’ )
NTXNT

with

X p
NTXKKX].

(?/17 ooy yEV)/

X1

T xk

XN
[ X1
T xk

——

X o U
NTxXNKNKx1 NTx1
0 )
= diag (X1, ..., Xp

05,17 y XN
Kx1
/
i)
Tx1
U :X/a—l—u
NTx1
O] 0
;
0 b
;= X;,AX! + o°1



12 Estimation of the Swamy’s model

® Under Swamy's assumption, the regression of y on X will yeld an unbiased
and consistent estimator of B (see Hsiao, 2003). It is however inefficient
and usual LS computation of the variance-covariance matrix of the estima-

tor is incorrect leading invalid inference. The BLUE estimator of 6 is the

GLS estimator:

N
Bars = D Wib;
1=1
with Bi: (XéXq;)_qufyz'
N _17-1 -1
and : W;= Z [A—I—a% (X,L(XZ-) ]
1=1

x [A + o2 (X{Xi)_ll -

® BGLS is a weigheted average of the LS estimators B’L (’L = 1, cony N)



with th e weights LLZ that are inversely proportional the their variances-

~ —1
covariance matrices (var (51) = O',L2 (X;XQ) )

® The variance-covariance matrix of BGLS is

N —1
Va’r (BGLS) = Z X,gq)z-_le'
1=1
N 5 _17-1 -1
= 12 [A+Ji (X7X;) ]
1=1

® Problem: this estimator is impossible to use since A and O'% are unknown.

Swamy proposes uses the least squares estimators BZ and their residuals to

2

obtain ’(/J\,Z = Y;— XZBZ to obtain unbiased estimators of 2\ and gy

® Substituting A and 63 for A and O'Z2 yelds an asymptototically normal

and efficient estimator of 5

® Hsiao (1975) considers: Bit = B + €4 = 5 + oy + A¢.



13 Testing for coefficient variation

We can test for coefficient variation by testing wheter or
not the coefficient-vector 3; are all equal:

Ho:B1=0r=...=0BN=0F

If the different cross-sectional units have the same vari-
2
7

used (as for testing fixed effects):

ance, o o2, the conventional F test statistics can be



f a% differs across i (as assumed by Swamy), we can

apply a modified test statistic:

where

—1
B = 1) =XiX; > Xy
i=194 i=194

Under Hg ,is asymptotically x2 (K (N — 1))



14 Fixed or random coefficients

® wheter we are making inference conditional on individual char-
actersitics: fixed coefficients. or making unconditional infer-

ences on the population characteristics: random coefficients

® Extending his work on variable-coefficient model, Mundlak (1978b)
has questioned the random coefficients formulation since the
variable coefficients can be correlated with the
explanatory variables (CRC)— GLS estimator of

the mean coefficient vector (3 will b e biased.

Wooldridge (2005), Hsiao (2011)> FE "could be" consistent

in that case

® Mundlak (1978b) suggests to introduce auxiliary regressions of

the type

o = T;7Y 1w

with @ E (wi | xé) =0



15 Dynamic heterogeneous panels

Let a dynamic (AR1) homogeneous panel data model:

Yit = O + pYit—1 + x{itﬂ + ut

the inclusion of y;;__1 leads to inconsistent estimates both
in the FE and in the RE framework beaucause of the
correlation between the error term and the regressors (the

inconsistency does not occur in the same way in FE and
RE formulation)— IV approach — GM M (Arellano-
Bond, Blundell-Bond etc)

The problem is more transparent in the RE formulation
in which the lagged dependent variable is correlated with

o2

What appens if p is allowed to vary across individuals?



16 Alternative estimators of dynamic

panels

® small N and Large T. "Time series literature"
If N=1 (Time Series): "traditional"ARDL Vs cointegration
N>1 : SURE. allows for cross-section correlation

® large N and small T. "Dynamic panel literature"

Arellano-Bond, Anderson-Hsiao, Arellano-Bover, Blundell-Bond... GMM

approach

® Large N and Large T. "Heterogeneous dynamic panels"



Why?

For large T, Pesaran-Smith (1995) show showed that the GMM

approach can produce inconsistent and very misleading estimates

Coice between fixed and random coefficients (Sampling Vs bayesian

approach)
Fixed coefficients: Pesaran et al; 1999: PMG
Random coefficients (sampling): Pesaran-Smith, 1995: MG

Random coefficiens (Bayes): Hsiao-Tahmiscioglu (1997), Hsiao et
al. (1999)



17 The Mean Group estimator

Pesaran-Smith, 1995: MG. Consider a dynamic model of the form:

Yit— sz‘t—1+$§t5i+uz‘t

Let 0, = (pi, be)/ and assume that 0 is independently distributed

across 1 with:

E(6;) = 0
E((6;—6)(6; —0)) = A

Random coefficients: 6; = 0 + a;. The Mean Group estimator is:

R 1 N
6 - E 0
MG Ni:1 7



The 07 is consistent when both T and N— 00. Pesearan-Smith
make some quite strong assumptions: The group-specific parameters
are distributed indipendently of the regressors and the regressors are

strictly exogenous



18 The Pooled Mean Group esti-

mator

Pesaran et al. (1999).

The PMG estimator is an "intermediate estimator: it allows the
intercepts, short-run coefficients and error vriances to differ freely
across cross-section while the long-run coefficients are constrained

to be the same.
ARDL(p, q, q, ..., q) with individual fe:

all quantities are scalars exept a?;;t and O that are K-vector

p q
/
Yit = '21 NijYit—j+ Zo Tir— ;045 ates
j= j=

Re-parametrisation

p—1 q—1
Ayir= diyir—1+T B+ '21 TANTT 'Zo Axgy_ 675+
j= j=



with

p
¢; = — (1_ Z Azy)
j=1
q
B = Z 57;]
j=0
N p
m=j5+1
N q
5’&3 - Z 5’1,?’)’1, .]:1727 ,q—1
m=j5+1

stack the time series observation for each group:

p—1 q—1
Ay;= ¢;yi—1+Xi0;i+ Zl Ay;_ A+ 'Zo AX ;655
j= j=

(5)

y; and g5 are T" X 1, X;isT" X k, B; and 5;} are k X 1, vp

is T" X 1 et o; and ij are scalars.



Hypotheses

1. €;+ are indipendently distributed across i: €;4%.%.d (0, Jg)
with O'% > 0and g+ L xjt.

g;+ L ;4 is needed for consistency ot the estimator of short-run

parameters

2. (bz < 0 and hence there exists a long-run relationship defined by

yit=— (Bi/ i) Tit 03
where 7);4 is a stationary process.

3. The long run coefficients Qi:—ﬁi/(bi are homogeneous across

individuals, i.e. 8; = 6.

ML approach to the estimation



19 Bayesian Approach

v, = X; B; + uy 1=1,..., N
Tx1 TxKKx1 1Tx1

B = Bty

All quantities including the parameters are random variables

Prior probability distributions are introduced for the para-
meters (state of knowledge or ignorance about the parameters before

obtaining the data)

«; is normally distributed with mean 0 and covariance matrix A

This prior information is combined with the model and the data to
revise the probability distribution of o;, which is called posterior
distribution

Inference is made from this posterior distribution

Empirical Bayes, lterative empirical Bayes, Hierarchical Bayes



20 Swamy and Bayesian: some re-

marks

The Swamy formulation of 3; having mean 8 and covari-
ance A is equivalent to specifying an informative prior
for the parameters 3,

Swamy: sampling approach predictor of 3, = 5+ «;
is the LS estimator. The Bayes predictor of (3, is
a weighted average between the LS estimator of 3,
and the overall mean 3 = the individual estimates
B; shrinks towards the mean (3

As T' — oo the Bayes estimator approaches the least
squares estimator 3,



21 Some empirical studies

Baltagi-Bresson-Pirotte (2002)

Abstract

Maddala et al. [Journal of Business and Economic Statistics, 15 (1997) 90] obtained short-run and long-run
elasticities of energy demand for each of 49 US states over the period 1970-1990. They showed that
heterogeneous time series estimates for each state vield inaccurate signs for the coefficients, while panel data
estimates are not valid because the hypothesis of homogeneity of the coefficients was rejected. Their preferred
estimates are those obtained using the shrinkage estimator. This paper contrasts the out-of-sample forecast
performance of heterogeneous, panel and shrinkage estimators using the Maddala et al. [Journal of Business and
Economic Statistics 15 (1997) 90] electricity and natural gas data sets. Our results show that the homogeneous
panel data estimates give the best out-of-sample forecasts.

Maddala et al. (1997) considered the following standard dynamic linear regression (DLR) model
for energy demand

Vii=Bio T BaVieer T BaX i T BisXiiimy T BaXass T BisXaiimy
+ BiXsis T Bia¥ais T Bis¥sis T,



where 7=1,2,...,49 (states) and r=2,3,...,21 (years) spanning the period 1970-1990. The
variables for the electricity regression are:

v, ,» the logarithm of residential electricity per capita consumption;
x,,,» the logarithm of real per capita personal income:

X, , . the logarithm of real residential electricity price;

X5, ,, the logarithm of real residential natural-gas price;

X,,,» heating degree days; 0

, cooling degree days.

e o e o o o
-

For the natural-gas regression, we have:

¥, .. the logarithm of residential natural-gas per capita consumption;
X, ;. the logarithm of real per capita personal income;
X, ,,. the logarithm of real residential natural-gas price;
X, ,» the logarithm of real residential electricity price:



Comparison of forecast performance for US electricity demand

Ranking st year 5th year S-year average
Estimator RMSE®  Estimator RMSE® Estimator RMSE"
L. Empirical iterative Bayes ~ 3.032  GLS 4733  GLS 4.207
2. Tterative Bayes 3.230  Within 5.092  Within 4.482
3. GLS 3.252  2SLS-KR® 5.552  Within-2SLS 4.817
4. Individual ML 3.352  2SLS 5.609  2SLS-KR® 4.892
5. Within 3355 OLS 5.676  Empirical iterative Bayes ~ 4.981
6. Within-2SLS 3.441  Within-2SLS 5829  2SLS 5.019
7. FD2SLS-KR*® 3.603  Empirical iterative Bayes  6.544  OLS 5.020
8. Empirical Bayes 3.622  Individual ML 8.420  TIrterative Bayes 5.998
9. FDGMM 3.624  Tterative Bayes 8.774  FDGMM 6.236
10 FD2SLS" 3.842  FDGMM 8.917  Individual ML 6.465
11. 2SLS-KR® 3.846  Empirical Bayes 9.407 FD2SLS" 7.045
12. OLS 3.879  FD2SLS® 10.826  Empirical Bayes 7.275
13. 2SLS 3905 GMM 10.899 GMM 8.084
14. Individual OLS 4886  FD2SLS-KR® 15.157  FD2SLS-KR*® 8.598
15. GMM 5.286  Individual OLS 15.594  Indivividual OLS 11.913
16. Individual 2SLS 5.521  Swamy 18933  Swamy 16.239
17. Swamy 12.427  Average 2SLS 21.829  Individual 2SLS 16.397
18. Average 2SLS 16.408  Average OLS 21.830  Average 2SLS 19.665
19. Average OLS 17.208  Individual 2SLS 24288  Average OLS 20.009




Comparison of forecast performance for US natural-gas demand

Ranking st year 5th year 5-year average
Estimator RMSE®  Estimator RMSE® Estimator RMSE®

1. Within-2SLS 6.062 Within-2SLS 10.049 Within-2SLS 8.730
2. OLS 6.460 OLS 10.517 OLS 9.060
3. GLS 6.682 GLS 10.788 GLS 9.295
4. Within 7.071 Within 11.132 Within 9.637
5. 2SLS 7.084 2SLS 12.564 2SLS 10.325
6. Iterative Bayes 7.130 2SLS-KR* 14.440 2SLS-KR* 11.036
7. 2SLS-KR* 7.146 FDGMM 15.319 FDGMM 12.627
8. Individual ML 7.706 Empirical iterative Bayes 17.919 Empirical iterative Bayes 14.189
9. Empirical iterative Bayes 7.788 Iterative Bayes 21.493 Tterative Bayes 17.061
10 Empirical Bayes 8.045 Individual ML 21.845 Individual ML 17.717
11. FDGMM 8.273 Empirical Bayes 24.096 Empirical Bayes 19.394
12. FD2SLS" 9.608 FD2SLS*® 40.215 FD2SLS* 23.897
13. Individual OLS 9.628 GMM 40.943 Indivividual OLS 30.777
14. Individual 2SLS 12.707 Individual OLS 41.110 GMM 33.840
15. FD2SLS-KR* 14.109 Swamy 49.616 FD2SLS-KR* 40.204
16. GMM 23.108 Average OLS 53.308 Swamy 47.826
17. Swamy 44.197 Average 2SLS 53.828 Average 2SLS 50.424
18. Average 2SLS 44.721 FD2SLS-KR*® 69.431 Average OLS 52.906
19. Average OLS 52.611 Individual 2S1LS 100.281 Individual 25LS 54.399

4. Summary and conclusions

better forecasts.

This paper confirms again the value of panel data sets and the emphasis given to pooled estimators
using two US panel data sets on residential electricity and natural-gas demand across 49 states over
the period 1970-1990. Our results show that when the data 1s used to estimate heterogeneous models
across states, individual estimates offer the worst out-of-sample forecasts. Despite the fact that
shrinkage estimators outperform these individual estimates. they are outperformed by simple
homogeneous panel data estimates i out-of-sample forecasts. Admittedly. this 1s another case study
using US data, but it does add to the evidence that simplicity and parsimony in model estimation offer



Baltagi-bresson-Pirotte (2004)

Following Hsiao et al. (1999), we consider a simple dynamic version of the
classical Tobin-¢ investment model:

() -o(3), oo
— | = a4 T 0\ = Cidir T Ui
K it K it—1

where /;, denotes investment expenditures by firm 7/ during period 7 . Kj; 1s the
replacement value of the capital stock and ¢;; 1s Tobin’s ¢ of the firm. Tobin’s

q is the ratio of the market value of new investment goods
to their replacement cost.

273 firms over a longer time period 1973-1992.
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consistent finding in all these studies including this one is that homogeneous
panel data estimators perform well in forecast performance mostly due to
their simplicity, their parsimonious representation and the stability of the
parameter estimates. Average heterogeneous estimators perform badly due to
parameter estimate instability caused by the estimation of several parameters
with short time series. Shrinkage estimators did well for this application,
especially iterative Bayes and iterative empirical Bayes. For this empirical
example, the hierarchical Bayes estimator performs very well and gives the
best RMSE forecast for the five year average.



Mazzanti and Musolesi (2013)

Environmental Kuznets Curve

C02;; = ai—Fﬁl(i)GDPPCit—Fﬁz(i)GDPPCZ%—F..-—|‘Uit

Heterogeneous estimators suggest a linear CO2-income
relation

Heterogeneous estimators Bayesian or not provide a very
robust picture (probably due to the large time series di-
mension, T=40)

Introducing unobserved common factors destroys the ECK
relation. ..



