Mathematical foundations of Econometrics

G.Gioldasis, UniFe \& prof. A.Musolesi, UniFe

March 19, 2016

The axiomatic definition of Probability

Definition

A function $\mathrm{P}: \mathscr{F} \rightarrow[0,1]$ from a σ-algebra \mathscr{F} of events of a set Ω into the unit interval is a probability measure on $\{\Omega, \mathscr{F}\}$ if it satisfies the following three conditions (axioms):

1 For all $\mathrm{A} \in \mathscr{F}, P(\mathrm{~A}) \geq 0$
$2 \mathrm{P}(\Omega)=1$
3 For disjoint sets $A_{j} \in \mathscr{F}, \mathrm{P}\left(\bigcup_{j=1}^{\infty} \mathrm{A}_{j}\right)=\sum_{j=1}^{\infty} \mathrm{P}\left(\mathrm{A}_{j}\right)$ (σ - additivity)

Note on Probability

The axiomatic definition of probability does not impose a particular probability measure for an experiment. Therefore, any function that satisfies the aforementioned conditions can be a probability. Consequently, the researcher must choice on the probability measure that is most appropriate for the problem-experiment.

Example: In the "fair" coin tossing experiment, suppose that the researcher thinks that:

$$
P(A)=\left\{\begin{array}{lll}
1 & \text { if } & A=\{H, T\} \\
1 & \text { if } & A=\{H\} \\
0 & \text { if } & A=\{T\}
\end{array}\right.
$$

According to the definition, such a mapping can be considered as a probability measure! The researcher must "choose" the appropriate probability which best describes the experiment, in particular:

$$
P(A)= \begin{cases}1 \text { if } & A=\{H, T\} \\ 1 / 2 \text { if } & A=\{H\} \\ 1 / 2 \text { if } & A=\{T\}\end{cases}
$$

Probability space

The triplet $\{\Omega, \mathscr{F}, \mathrm{P}\}$ is called a probability space, while $\{\Omega, \mathscr{F}\}$ is a measurable space.

Note: A probability rule is defined only inside a probability space. So, a measurable space $\{\Omega, \mathscr{F}\}$ must be defined first.

Example: Lets remember the example of asking ten people about their employment status. Assume that the unemployment rate is p.

Again, what is the sample space Ω and what can be a "suitable" σ-algebra for the experiment?
After defining the above (in practice they are implicit...), we can then answer questions as the following one:

What is the probability of the event
\{At most one person surveyed is unemployeed\}
The answer should be $P(\{0,1\})=(1-p)^{10}+10 p(1-p)^{9}$ (Exercise: Why?)

Question

Question

Why is the domain of P a σ-algebra? Why don't we just take all subsets of Ω as the domain of P ?

Answer

The notion of "information" is introduced in our problem through the definition of a suitably selected σ-algebra, not restrictively through just the powerset $\mathscr{P}(\Omega)$ of Ω.

Question: Why the domain of P is a σ-algebra and not just an algebra?

Properties of probabilities

Theorem
Let $\{\Omega, \mathscr{F}, \mathrm{P}\}$ be a probability space. The following hold for sets in \mathscr{F} :

- $\mathrm{P}(\emptyset)=0$
- $\mathrm{P}(\tilde{\mathrm{A}})=1-\mathrm{P}(\mathrm{A})$
- $\mathrm{A} \subset \mathrm{B}$ implies $\mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\mathrm{B})$
- $\mathrm{P}(\mathrm{A} \cup \mathrm{B})+\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
- If $\mathrm{A}_{n} \subset \mathrm{~A}_{n+1}$ for $n=1,2, \ldots$, then $\mathrm{P}\left(\mathrm{A}_{n}\right) \uparrow \mathrm{P}\left(\cup_{n=1}^{\infty} \mathrm{A}_{n}\right)$
- If $\mathrm{A}_{n} \supset \mathrm{~A}_{n+1}$ for $n=1,2, \ldots$, then $\mathrm{P}\left(\mathrm{A}_{n}\right) \downarrow \mathrm{P}\left(\cap_{n=1}^{\infty} \mathrm{A}_{n}\right)$
- $\mathrm{P}\left(\cup_{n=1}^{\infty} \mathrm{A}_{n}\right) \leq \sum_{n=1}^{\infty} \mathrm{P}\left(\mathrm{A}_{n}\right)$

Exercise: Can we derive the first four properties?

Conditional probabilities

Consider the game of rolling a dice once.

- The sample space of the experiment is $\Omega=\{1,2,3,4,5,6\}$.
- We choose σ-algebra \mathscr{F} to be the powerset $\mathscr{P}(\Omega)$ (i.e. all subsets of Ω) and
- We choose the probability rule to be $P(\{\omega\})=1 / 6$ for all $\omega=1,2,3,4,5,6$.

Let B be the event that the outcome is even, i.e. $B=\{2,4,6\}$. We would like to find the probability of $A=\{1,2,3\}$ given that B is true.

Common sense: If we know that the outcome is even, we know that the outcomes $\{1,3\}$ in A did not occur. Therefore, the probability that A occurs given that B occured is $P(A \cap B) / P(B)=1 / 3$.

Definition

Let A, B be events in $\{\Omega, \mathscr{F}, P\}$ and $P(B)>0$. The conditional probability of A given B is defined as:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Conditional probability as a probability measure

Question: Is the conditional probability $P(\cdot \mid B): \mathscr{F} \rightarrow[0,1]$ a probability according to Kolmogorov's axiomatic definition?

Answer: Yes, because all 3 axioms are met*.
Therefore, the arrival of a "new" information B updates the probability rule from $P(\cdot)$ to $P(\cdot \mid B)$, reflecting the fact that our expectation for an event to happen or not changes according to the information we have. Hence, the probability space from $\{\Omega, \mathscr{F}, P\}$ becomes $\{\Omega, \mathscr{F}, P(\cdot \mid B)\}$.
*Exercise: Can we prove that $P(\cdot \mid B): \mathscr{F} \rightarrow[0,1]$ is a probability in $\{\Omega, \mathscr{F}\}$?

Simple exercise

Select two persons at random. What is the probability of both being female given that at least one is female? Is it $1 / 2$?

Answer

The initial sample space is $\Omega=\{M M, F F, F M, M F\}$. We condition with respect to $B=\{F F, F M, M F\}$. If $A=\{F F\}$, then the probability of interest is:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1}{3}
$$

So, instead of the initial probability space $\{\Omega, \mathscr{P}(\Omega), P\}$ we used another one $\{\Omega, \mathscr{P}(\Omega), P(\cdot \mid B)\}$.

General question

Question: Apart from the probability space $\{\Omega, \mathscr{F}, P(\cdot \mid B)\}$, can we define another probability space where the sample space, the σ - algebra and the probability are different?

Answer: Given an "information" B, we can also create another sample space $\Omega^{\prime}=B$ and another respective σ-algebra $\mathscr{F}^{\prime} \subset \mathscr{F}$ are also as follows:

$$
\mathscr{F}^{\prime}=\mathscr{F} \cap B \stackrel{\text { def. }}{=}\{\text { all } A \cap B \text { so that } A \in \mathscr{F}\}
$$

As already been told, also the probability measure becomes $P^{\prime}: \mathscr{F}^{\prime} \rightarrow[0,1]$ so that

$$
P^{\prime}(A)=P(A \mid B)=P(A \cap B) / P(B) \text { for every } A \in \mathscr{F}^{\prime}
$$

Therefore, we can think that conditioning on $B \in \mathscr{F}$, not only $\{\Omega, \mathscr{F}, P(\cdot \mid B)\}$ but also another probability space $\{B, \mathscr{F} \cap B, P(\cdot \mid B)\}$ is created.

Exercise continued

We recall that in the experiment of selecting two persons, the sample space is $\Omega=\{M M, F F, F M, M F\}$. Moreover, we chose for σ-algebra the powerset $\mathscr{F}=\mathscr{P}(\Omega)=\{$ all events in $\Omega\}=$
$\{\Omega, \emptyset,\{M M\},\{F M\},\{M F\},\{F F\},\{M M, F M\},\{M M, M F\},\{M M, F F\}$, $\{F M, M F\},\{F M, F F\},\{M F, F F\},\{M M, F M, M F\},\{M M, F M, F F\}$, $\{F M, M F, F F\},\{M F, F F, M M\}\}$

After the "arrival" of the information $B=\{F F, F M, M F\}$, we can also define a different experiment, namely:
"We peak a pair of persons from which at least one is a female"
In this new experiment, the sample space is B and our information is described by:
$\mathscr{F}^{\prime}=\mathscr{F} \cap B=\{B, \emptyset,\{F M\},\{M F\},\{F F\},\{F M, M F\},\{F M, F F\},\{M F, F F\}$
Obviously $\mathscr{F}^{\prime} \subset \mathscr{F}$
The probability defined in $\{B, \mathscr{F} \cap B\}$ is: $P(\cdot \mid B)=P(\cdot \cap B) / P(B)$
Conclusion: After the arrival of information B, apart from $\{\Omega, \mathscr{F}, P(\cdot \mid B)\}$ we can also consider another probability space $\{B, \mathscr{F} \cap B, P(\cdot \mid B)\}$.

Properties

All properties of probability measures described before carry to conditional probabilities. So, for example:

- $\mathrm{P}(\tilde{\mathrm{A}} \mid \mathrm{B})=1-\mathrm{P}(\mathrm{A} \mid B)$
- $\mathrm{A} \subset \mathrm{B}$ implies $\mathrm{P}(\mathrm{A} \mid C) \leq \mathrm{P}(\mathrm{B} \mid C)$
- $\mathrm{P}(\mathrm{A} \cup \mathrm{B} \mid C)+\mathrm{P}(\mathrm{A} \cap \mathrm{B} \mid C)=\mathrm{P}(\mathrm{A} \mid C)+\mathrm{P}(\mathrm{B} \mid C)$
- If $\mathrm{A}_{n} \subset \mathrm{~A}_{n+1}$ for $n=1,2, \ldots$, then $\mathrm{P}\left(\mathrm{A}_{n} \mid B\right) \uparrow \mathrm{P}\left(\cup_{n=1}^{\infty} \mathrm{A}_{n} \mid B\right)$
- If $\mathrm{A}_{n} \supset \mathrm{~A}_{n+1}$ for $n=1,2, \ldots$, then $\mathrm{P}\left(\mathrm{A}_{n} \mid B\right) \downarrow \mathrm{P}\left(\cap_{n=1}^{\infty} \mathrm{A}_{n} \mid B\right)$
- $\mathrm{P}\left(\cup_{n=1}^{\infty} \mathrm{A}_{n} \mid B\right) \leq \sum_{n=1}^{\infty} \mathrm{P}\left(\mathrm{A}_{n} \mid B\right)$

Law of total probability

Suppose a probabilty space $\{\Omega, \mathscr{F}, P\}$. Also, assume a finite or countably infinite partition of Ω, i.e. $\left\{A_{n}: n=1,2, \ldots\right\}$ with $A_{n} \in \mathscr{F}$. Then, according to the Law of total probability,for an event $B \in \mathscr{F}$, it holds that:

$$
P(B)=\sum_{n} P\left(B \mid A_{n}\right) P\left(A_{n}\right)
$$

The above is depicted in the following graph.

Figure 1: Law of total probability

Bayes' rule

Let A and B be sets in \mathscr{F}. According to the definition of conditional probabilities:

$$
\begin{equation*}
P(A \mid B)=P(A \cap B) / P(B) \tag{1}
\end{equation*}
$$

Moreover, A and \tilde{A} form a partition of the Ω sample space. Therefore $B \cap A$, $B \cap \tilde{A}$ are disjoint and, moreover, $B=(B \cap A) \cup(B \cap \tilde{A})$. Therefore

$$
\begin{equation*}
P(B)=P(B \cap A)+P(B \cap \tilde{A}) \tag{2}
\end{equation*}
$$

Substituting (2) in (1) and applying the definition of conditional probability again:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \tilde{A}) P(\tilde{A})}
$$

More generally,
Theorem (Bayes' rule)
If $A_{j}, j=1,2, \ldots, n$ is a partition of the sample space Ω and $A_{j}, B \in \mathscr{F}$, then:

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{n} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}
$$

Example on Bayes' rule

Consider the previous example of selecting two persons at random. Obviously, a partition of the sample space can be $\left\{A_{1}, A_{2}\right\}$, where:
$A_{1}=\{F F\}=\{$ both persons are females $\}$
$A_{2}=\{F M, M F, M M\}=\{$ not all persons are females $\}$
Conditioning on the new information

$$
B=\{F F, F M, M F\}=\{\text { at least one is female }\}
$$

Bayes' rule dictates that:

$$
P\left(A_{1} \mid B\right)=\frac{P\left(B \mid A_{1}\right) P\left(A_{1}\right)}{P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)}=\frac{1 \cdot 1 / 4}{1 \cdot 1 / 4+2 / 3 \cdot 3 / 4}=\frac{1}{3}
$$

Note: Bayes rule updates the probability of an event from $P(A)$ to $P(A \mid B)$ according to the new information B that is provided to us.

Pairwise independence

Definition (Pairwise independence)
Sets A and B in \mathscr{F} are (pairwise) independent if $P(A \cap B)=P(A) P(B)$. If $P(B)>0$ then A and B are independent if $P(A \mid B)=P(A)$.

Note: The transitive property does not hold, i.e. if A and B are independent and B and C are independent, this does not mean that A and C are independent.

For example, consider the case where A and B are independent, $C=\tilde{A}$ and $0<P(A)<1$. Then, also B and C are independent (why?) but A and \tilde{A} are not!

Exercise

Show that the following hold:

- If $P(A)=0$ or $P(B)=0$ then A and B are independent
- If A and B are independent, then so are \tilde{A} and B, \tilde{A} and \tilde{B}, A and \tilde{B}.

Independence

Definition

A sequence A_{j} of sets in \mathscr{F} is independent if for any subsequence $A_{j i}$, $i=1,2, \ldots, n, P\left(\bigcap_{i=1}^{n} A_{j i}\right)=\prod_{i=1}^{n} P\left(A_{j i}\right)$.

For example, if 3 set A_{1}, A_{2} and A_{3} are independent, then:

- $P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right)$
- $P\left(A_{1} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{3}\right)$
- $P\left(A_{2} \cap A_{3}\right)=P\left(A_{2}\right) P\left(A_{3}\right)$ and
- $P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)$

Therefore independence implies pairwise independence. Nevertheless, the inverse does not hold; a group of pairwise independent sets may not be independent.

Example of independent events

Consider the example of tossing a fair coin twice. The probability space can be $\{\Omega, \mathscr{F}, p\}$, with $\Omega=\{H H, H T, T H, T T\}, \mathscr{F}=\mathscr{P}(\Omega)$ and the usual probability measure P.
Let us consider also the following events:
$A=\{$ head appears in the first toss $\}=\{H H, H T\}$
$B=\{$ head appears in the second toss $\}=\{T H, H H\}$ and
$C=\{$ both tosses yield heads or both tosses yield tails $\}=\{H H, T T\}$ Then obviously $P(A \cap B)=P(A) P(B), P(A \cap C)=P(A) P(C)$ and $P(B \cap C)=P(B) P(C)$ but $P(A \cap B \cap C) \neq P(A) P(B) P(C)$.

Therefore, the 3 sets are pairwise independent but not independent.

Conditional independence

Definition (Conditional independence)
Sets A and B in \mathscr{F} are conditionally independent given $C \in \mathscr{F}$, if $P(A \cap B \mid C)=P(A \mid C) P(B \mid C)$.

Note: Conditional independence does not imply independence. Also, independence does not imply conditional independence. This holds because conditioning alters the sample space. See for instance the following graph.

Figure 2: Conditional but not unconditional independence

Obviously, $P(B \cap R \mid Y)=P(B \mid Y) P(R \mid Y)$, but $P(B \cap R) \neq P(B) P(R)$.

