Mathematical foundations of Econometrics

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

March 19, 2016

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

Mathematical foundations of Econometrics

March 19, 2016 1 / 19

・ロト ・回ト ・ヨト・

The axiomatic definition of Probability

Definition

A function $P: \mathscr{F} \to [0,1]$ from a σ -algebra \mathscr{F} of events of a set Ω into the unit interval is a probability measure on $\{\Omega, \mathscr{F}\}$ if it satisfies the following three conditions (axioms):

$$1 \ \, {\rm For \ all} \ \, {\rm A} \in \mathscr{F} \text{, } P({\rm A}) \geq 0$$

$$2 P(\Omega) = 1$$

3 For disjoint sets $A_j \in \mathscr{F}$, $P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j)$ (σ - additivity)

< ロ > < 同 > < 三 > < 三)

Note on Probability

The axiomatic definition of probability does not impose a particular probability measure for an experiment. Therefore, any function that satisfies the aforementioned conditions can be a probability. Consequently, the researcher must choice on the probability measure that is most appropriate for the problem-experiment.

Example: In the **"fair" coin tossing experiment**, suppose that the researcher thinks that:

$$P(A) = \begin{cases} 1 & \text{if} \quad A = \{H, T\} \\ 1 & \text{if} \quad A = \{H\} \\ 0 & \text{if} \quad A = \{T\} \end{cases}$$

According to the definition, such a mapping can be considered as a probability measure! The researcher must "choose" the appropriate probability which best describes the experiment, in particular:

$$P(A) = \begin{cases} 1 \text{ if } A = \{H, T\} \\ 1/2 \text{ if } A = \{H\} \\ 1/2 \text{ if } A = \{T\} \end{cases}$$

イロト イヨト イヨト イヨト

Probability space

The triplet $\{\Omega, \mathscr{F}, P\}$ is called a **probability space**, while $\{\Omega, \mathscr{F}\}$ is a **measurable space**.

Note: A probability rule is defined only inside a probability space. So, a measurable space $\{\Omega, \mathscr{F}\}$ must be defined first.

Example: Lets remember the example of asking ten people about their employment status. Assume that the unemployment rate is *p*.

Again, what is the sample space Ω and what can be a "suitable" σ -algebra for the experiment? After defining the above (*in practice they are implicit...*), we can then answer

questions as the following one:

What is the probability of the event

{At most one person surveyed is unemployeed}

The answer should be $P(\{0,1\}) = (1-p)^{10} + 10p(1-p)^9$ (Exercise: Why?)

イロト イヨト イヨト イヨト 二日

Question

Question

Why is the domain of P a σ -algebra? Why don't we just take all subsets of Ω as the domain of P?

Answer

The notion of "information" is introduced in our problem through the definition of a **suitably selected** σ -algebra, not restrictively through just the powerset $\mathscr{P}(\Omega)$ of Ω .

Question: Why the domain of *P* is a σ -algebra and not just an algebra?

< □ > < □ > < □ > < □ > < □ >

Properties of probabilities

Theorem

Let $\{\Omega,\mathscr{F},P\}$ be a probability space. The following hold for sets in \mathscr{F} :

- P(∅) = 0
- $P(\tilde{A}) = 1 P(A)$
- $A \subset B$ implies $P(A) \le P(B)$
- $P(A \cup B) + P(A \cap B) = P(A) + P(B)$
- If $A_n \subset A_{n+1}$ for n = 1, 2, ..., then $P(A_n) \uparrow P(\cup_{n=1}^{\infty} A_n)$
- If $A_n \supset A_{n+1}$ for $n = 1, 2, ..., then <math>P(A_n) \downarrow P(\cap_{n=1}^{\infty} A_n)$

•
$$P(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} P(A_n)$$

Exercise: Can we derive the first four properties?

Conditional probabilities

Consider the game of rolling a dice once.

- The sample space of the experiment is $\Omega = \{1, 2, 3, 4, 5, 6\}$.
- We choose σ -algebra \mathscr{F} to be the powerset $\mathscr{P}(\Omega)$ (i.e. all subsets of Ω) and
- We choose the probability rule to be $P(\{\omega\}) = 1/6$ for all $\omega = 1, 2, 3, 4, 5, 6$.

Let *B* be the event that the outcome is even, i.e. $B = \{2, 4, 6\}$. We would like to find the probability of $A = \{1, 2, 3\}$ given that *B* is true.

Common sense: If we know that the outcome is even, we know that the outcomes $\{1,3\}$ in A did not occur. Therefore, the probability that A occurs given that B occured is $P(A \cap B)/P(B) = 1/3$.

Definition

Let A, B be events in $\{\Omega, \mathscr{F}, P\}$ and P(B) > 0. The conditional probability of A given B is defined as:

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$

イロト イヨト イヨト イヨト

Conditional probability as a probability measure

Question: Is the conditional probability $P(\cdot|B) : \mathscr{F} \to [0,1]$ a probability according to Kolmogorov's axiomatic definition?

Answer: Yes, because all 3 axioms are met*.

Therefore, the arrival of a "new" information B updates the probability rule from $P(\cdot)$ to $P(\cdot|B)$, reflecting the fact that our expectation for an event to happen or not changes according to the information we have. Hence, the probability space from $\{\Omega, \mathscr{F}, P\}$ becomes $\{\Omega, \mathscr{F}, P(\cdot|B)\}$.

*Exercise: Can we prove that $P(\cdot|B) : \mathscr{F} \to [0,1]$ is a probability in $\{\Omega, \mathscr{F}\}$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Simple exercise

Select two persons at random. What is the probability of both being female given that at least one is female? Is it 1/2?

Answer

The initial sample space is $\Omega = \{MM, FF, FM, MF\}$. We condition with respect to $B = \{FF, FM, MF\}$. If $A = \{FF\}$, then the probability of interest is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1}{3}$$

So, instead of the initial probability space $\{\Omega, \mathscr{P}(\Omega), P\}$ we used another one $\{\Omega, \mathscr{P}(\Omega), P(\cdot|B)\}$.

< □ > < □ > < □ > < □ > < □ >

General question

Question: Apart from the probability space $\{\Omega, \mathscr{F}, P(\cdot|B)\}$, can we define another probability space where the sample space, the σ - algebra and the probability are different?

Answer: Given an "information" B, we can also create another sample space $\Omega' = B$ and another respective σ -algebra $\mathscr{F}' \subset \mathscr{F}$ are **also** as follows:

$$\mathscr{F}' = \mathscr{F} \cap B \stackrel{\mathsf{def.}}{=} \{ \mathsf{all} \ A \cap B \text{ so that } A \in \mathscr{F} \}$$

As already been told, also the probability measure becomes $P':\mathscr{F}' o [0,1]$ so that

$$P'(A) = P(A|B) = P(A \cap B)/P(B)$$
 for every $A \in \mathscr{F}'$

Therefore, we can think that conditioning on $B \in \mathscr{F}$, not only $\{\Omega, \mathscr{F}, P(\cdot|B)\}$ but also another probability space $\{B, \mathscr{F} \cap B, P(\cdot|B)\}$ is created.

イロン イヨン イヨン イヨン 三日

Exercise continued

We recall that in the experiment of selecting two persons, the sample space is $\Omega = \{MM, FF, FM, MF\}$. Moreover, we chose for σ -algebra the powerset $\mathscr{F} = \mathscr{P}(\Omega) = \{$ all events in $\Omega\} = \{\Omega, \emptyset, \{MM\}, \{FM\}, \{MF\}, \{FF\}, \{MM, FM\}, \{MM, MF\}, \{MM, FF\}, \{FM, MF\}, \{FM, FF\}, \{MF, FF\}, \{MM, FM, MF\}, \{MM, FM, FF\}, \{FM, MF, FF\}, \{MF, FF, MM\}\}$

After the "arrival" of the information $B = \{FF, FM, MF\}$, we can also define a different experiment, namely:

"We peak a pair of persons from which at least one is a female"

In this new experiment, the sample space is B and our information is described by:

 $\mathscr{F}' = \mathscr{F} \cap B = \{B, \emptyset, \{FM\}, \{MF\}, \{FF\}, \{FM, MF\}, \{FM, FF\}, \{MF, FF\}, \{FF, FF\},$

Obviously $\mathscr{F}' \subset \mathscr{F}$

The probability defined in $\{B, \mathscr{F} \cap B\}$ is: $P(\cdot|B) = P(\cdot \cap B)/P(B)$

Conclusion: After the arrival of information *B*, apart from $\{\Omega, \mathscr{F}, P(\cdot|B)\}$ we can also consider another probability space $\{B, \mathscr{F} \cap B, P(\cdot|B)\}$.

Properties

All properties of probability measures described before carry to conditional probabilities. So, for example:

•
$$P(\tilde{A}|B) = 1 - P(A|B)$$

•
$$A \subset B$$
 implies $P(A|C) \leq P(B|C)$

•
$$P(A \cup B|C) + P(A \cap B|C) = P(A|C) + P(B|C)$$

• If
$$A_n \subset A_{n+1}$$
 for $n = 1, 2, ...,$ then $P(A_n|B) \uparrow P(\cup_{n=1}^{\infty} A_n|B)$

• If
$$A_n \supset A_{n+1}$$
 for $n = 1, 2, ...,$ then $P(A_n|B) \downarrow P(\cap_{n=1}^{\infty} A_n|B)$

•
$$P(\bigcup_{n=1}^{\infty} A_n | B) \leq \sum_{n=1}^{\infty} P(A_n | B)$$

< □ > < □ > < □ > < □ > < □ >

Law of total probability

Suppose a probability space $\{\Omega, \mathscr{F}, P\}$. Also, assume a **finite or countably infinite partition of** Ω , i.e. $\{A_n : n = 1, 2, ...\}$ with $A_n \in \mathscr{F}$. Then, according to the *Law of total probability*, for an event $B \in \mathscr{F}$, it holds that:

$$P(B) = \sum_{n} P(B|A_n) P(A_n)$$

The above is depicted in the following graph.

Figure 1: Law of total probability

ヘロト ヘヨト ヘヨト ヘ

Bayes' rule

Let A and B be sets in \mathscr{F} . According to the definition of conditional probabilities:

$$P(A|B) = P(A \cap B)/P(B) \tag{1}$$

Moreover, A and \tilde{A} form a partition of the Ω sample space. Therefore $B \cap A$, $B \cap \tilde{A}$ are disjoint and, moreover, $B = (B \cap A) \cup (B \cap \tilde{A})$. Therefore

$$P(B) = P(B \cap A) + P(B \cap \tilde{A})$$
⁽²⁾

Substituting (2) in (1) and applying the definition of conditional probability again:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\tilde{A})P(\tilde{A})}$$

More generally,

Theorem (Bayes' rule)

If $A_j, j = 1, 2, ..., n$ is a partition of the sample space Ω and $A_j, B \in \mathscr{F}$, then:

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^n P(B|A_j)P(A_j)}$$

Example on Bayes' rule

Consider the previous example of selecting two persons at random. Obviously, a partition of the sample space can be $\{A_1, A_2\}$, where: $A_1 = \{FF\} = \{\text{both persons are females}\}$ $A_2 = \{FM, MF, MM\} = \{\text{not all persons are females}\}$ Conditioning on the new information

 $B = \{FF, FM, MF\} = \{at least one is female\}$

Bayes' rule dictates that:

$$P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B|A_1)P(A_1) + P(B|A_2)P(A_2)} = \frac{1 \cdot 1/4}{1 \cdot 1/4 + 2/3 \cdot 3/4} = \frac{1}{3}$$

Note: Bayes rule updates the probability of an event from P(A) to P(A|B) according to the new information *B* that is provided to us.

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

イロト 不得 トイヨト イヨト

Pairwise independence

Definition (Pairwise independence)

Sets A and B in \mathscr{F} are (pairwise) independent if $P(A \cap B) = P(A)P(B)$. If P(B) > 0 then A and B are independent if P(A|B) = P(A).

Note: The transitive property does not hold, i.e. if A and B are independent and B and C are independent, this does not mean that A and C are independent.

For example, consider the case where A and B are independent, $C = \tilde{A}$ and 0 < P(A) < 1. Then, also B and C are independent (why?) but A and \tilde{A} are not!

Exercise

Show that the following hold:

- If P(A) = 0 or P(B) = 0 then A and B are independent
- If A and B are independent, then so are \tilde{A} and B, \tilde{A} and \tilde{B} , A and \tilde{B} .

Independence

Definition

A sequence A_j of sets in \mathscr{F} is independent if for any subsequence A_{j_i} , i = 1, 2, ..., n, $P(\bigcap_{i=1}^n A_{j_i}) = \prod_{i=1}^n P(A_{j_i})$.

For example, if 3 set A_1 , A_2 and A_3 are independent, then:

- $P(A_1 \cap A_2) = P(A_1)P(A_2)$
- $P(A_1 \cap A_3) = P(A_1)P(A_3)$
- $P(A_2 \cap A_3) = P(A_2)P(A_3)$ and
- $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$

Therefore independence implies pairwise independence. Nevertheless, the inverse does not hold; a group of pairwise independent sets may not be independent.

Example of independent events

Consider the example of tossing a fair coin twice. The probability space can be $\{\Omega, \mathscr{F}, p\}$, with $\Omega = \{HH, HT, TH, TT\}$, $\mathscr{F} = \mathscr{P}(\Omega)$ and the usual probability measure P.

Let us consider also the following events:

$$A = \{\text{head appears in the first toss}\} = \{HH, HT\}$$

$$B = \{\text{head appears in the second toss}\} = \{TH, HH\} \text{ and }$$

$$C = \{\text{both tosses yield heads or both tosses yield tails}\} = \{HH, TT\}$$

Then obviously $P(A \cap B) = P(A)P(B)$, $P(A \cap C) = P(A)P(C)$ and
 $P(B \cap C) = P(B)P(C)$ but $P(A \cap B \cap C) \neq P(A)P(B)P(C)$.

Therefore, the 3 sets are pairwise independent but **not** independent.

Conditional independence

Definition (Conditional independence)

Sets A and B in \mathscr{F} are conditionally independent given $C \in \mathscr{F}$, if $P(A \cap B|C) = P(A|C)P(B|C)$.

Note: Conditional independence does not imply independence. Also, independence does not imply conditional independence. This holds because conditioning alters the sample space. See for instance the following graph.

Figure 2: Conditional but not unconditional independence

Obviously, $P(B \cap R|Y) = P(B|Y)P(R|Y)$, but $P(B \cap R) \neq P(B)P(R)$.