Mathematical foundations of Econometrics

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

April 7, 2016

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

Mathematical foundations of Econometrics

April 7, 2016 1 / 13

イロト イヨト イヨト イヨト

Lessons 5-6

Random variables

example: Lets consider the game of coin tossing. The sample space is $\Omega = \{H, T\}$, the involved σ -algebra is $\mathscr{F} = \{\emptyset, \Omega, \{H\}, \{T\}\}$ and the corresponding probability measure is $P(\{H\}) = P(\{T\}) = 1/2$ for a fair coin. Then, define a function X such that $X(\omega) = 1$ if $\omega = H$ and $X(\omega) = 0$ if $\omega = T$. X is a random variable with probabilities:

$$P(\{\omega \in \Omega : X(\omega) = 1\}) \stackrel{s.n.}{=} P(X = 1) = P(\{H\}) = 1/2 \text{ and}$$

$$P(\{\omega \in \Omega : X(\omega) = 0\}) \stackrel{s.n.}{=} P(X = 0) = P(\{T\}) = 1/2$$
(1)

For an arbitrary Borel set B we have:

$$P(\{\omega \in \Omega : X(\omega) \in B\}) \begin{cases} = P(\{H\}) = 1/2 \text{ if } 1 \in B \text{ and } 0 \notin B \\ = P(\{T\}) = 1/2 \text{ if } 1 \notin B \text{ and } 0 \in B \\ = P(\{H,T\}) = 1 \text{ if } 1 \in B \text{ and } 0 \in B \\ = P(\{\emptyset\}) = 0 \text{ if } 1 \notin B \text{ and } 0 \notin B \end{cases}$$

We need to confine the mapping $X : \Omega \to \mathbb{R}$ to those ω 's for which we can make probability statements, i.e. $\{\omega \in \Omega : X(\omega) \in B\} \in \mathscr{F}$, where B is an arbitrary Borel set.

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

Random variables

Definition

Let $\{\Omega, \mathscr{F}, P\}$ be a probability space. A function $X : \Omega \to \mathbb{R}$ is called a random variable defined on $\{\Omega, \mathscr{F}, P\}$ if for every Borel set B, $\{\omega \in \Omega : X(\omega) \in B\} \in \mathscr{F}$. So X is a random variable if it is \mathscr{F} measurable.

The space or range of X is the set of real numbers: $\mathbb{D} = \{x : x = X(\omega), \omega \in \Omega\}$. The set $\{\omega \in \Omega : X(\omega) \in B\}$ is called **inverse image** of B and is denoted by $X^{-1}(B)$, i.e.

$$X^{-1}(B) \stackrel{def}{=} \{\omega \in \Omega : X(\omega) \in B\}$$

Theorem

A function $X : \Omega \to \mathbb{R}$ is measurable \mathscr{F} if and only if for all $x \in \mathbb{R}$ the sets $\{\omega \in \Omega : X(\omega) \le x\} \in \mathscr{F}$

Therefore, to verify that a real function $X : \Omega \to \mathbb{R}$ is \mathscr{F} measurable, it is not necessary to verify that for all Borel sets B, but only for Borel sets of the type $(-\infty, x]$

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

Exercise

Consider the health insurance example. Recall that $\Omega = \{YH, YS, OH, OS\}$. The insurance premium X has to take into account only public information, i.e. only the age of the client. Consequently, X has to be measurable with respect to

$$\mathscr{F} = \{\emptyset, \Omega, \{YH, YS\}, \{OH, OS\}\}$$

So, for every $B \in \mathscr{B}$, $\{\omega \in \Omega : X(\omega) \in B\} \in \mathscr{F}$.

Define a random variable X of an experiment. For all Borel sets B, find the corresponding inverse images $X^{-1}(B)$.

< □ > < □ > < □ > < □ > < □ >

Solution

Answer

Suppose that the random variable $X : \Omega \to \mathbb{R}$ equals X = 50 for a young client and X = 100 for an old one. According to this X, there are only four types of borel sets B. Therefore:

$$X^{-1}(B) = \begin{cases} \emptyset & \text{if} & 50 \notin B \text{ and } 100 \notin B \\ \{OH, OS\} \text{ if} & 50 \notin B \text{ and } 100 \in B \\ \{YH, YS\} \text{ if} & 50 \in B \text{ and } 100 \notin B \\ \Omega & \text{if} & 50 \in B \text{ and } 100 \in B \end{cases}$$

< □ > < □ > < □ > < □ > < □ >

 σ -algebra \mathcal{F}_{X}

Definition

Let X be a random variable. The σ -algebra $\sigma(X) = \mathscr{F}_X = \{X^{-1}(B), \forall B \in \mathscr{B}\}$ is called the σ -algebra generated by X.

Example 1: In the previous exercise, the σ -algebra generated by the random variable X is $\mathscr{F}_X = \{\emptyset, \Omega, \{OH, OS\}, \{YH, YS\}\} = \mathscr{F}$.

Example 2: Roll a dice and let X = 1 if the outcome is even and X = 0 if the outcome is odd. Then

 $\mathscr{F}_X = \{\{1, 2, 3, 4, 5, 6\}, \emptyset, \{2, 4, 6\}, \{1, 3, 5\}\} \subset \mathscr{F}$

whereas \mathscr{F} consists of all subsets of $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Note: Random variables "carry" information through $\sigma(X) = \mathscr{F}_X$. Therefore, they create a new measurable space $\{\Omega, \mathscr{F}_X\}$.

イロト イヨト イヨト イヨト

Example: Grades in an American high school

Suppose the performance of a student in an American high school exam. Let us assume then that the sample space of this "game" is $\Omega = [0, 100)$ (100 corresponds to excellence A'). A σ -algebra \mathscr{F} could be the Borel subsets in [0, 100), i.e.

$$\mathscr{F}=\mathscr{B}\cap [0,100)\stackrel{{\it def.}}{=}\{B\cap [0,100):B\in \mathscr{B}\}$$

The grade of the student in the exam is a random variable $X:\Omega \to \mathbb{R}$ such that

$$X(\omega) = \begin{cases} 0 \text{ if } & \omega \in [0, 20) \text{ (grade } F \text{)} \\ 1 \text{ if } & \omega \in [20, 40) \text{ (grade } D \text{)} \\ 2 \text{ if } & \omega \in [40, 60) \text{ (grade } C \text{)} \\ 3 \text{ if } & \omega \in [60, 80) \text{ (grade } B \text{)} \\ 4 \text{ if } & \omega \in [80, 100) \text{ (grade } A \text{)} \end{cases}$$

Grades A, B and C is a PASS while D and F means failure. The failure or pass of the examination can be described by another random variable $Y : \Omega \to \mathbb{R}$ such that:

$$Y(\omega) = \begin{cases} -1 \text{ if } \omega \in [0, 40) \ (FAIL) \\ +1 \text{ if } \omega \in [40, 100) \ (PASS) \end{cases}$$

Example: Grades in an American high school

Therefore, if one knows the value of X (grade of the examination) , he also knows the value of Y (pass or failure). Therefore, X conveys more information than Y. In other words, the σ -algebra $\sigma(X)$ generated by X contains $\sigma(Y)$. Indeed, $\sigma(X) \supset \sigma(Y)$ because:

$$\begin{split} \sigma(X) =& \{X^{-1}(A) : A \in \mathscr{B}\} = \\ & \{\Omega, \emptyset, [0, 20), [20, 40), [40, 60), [60, 80), [80, 100), [0, 40), [0, 20) \cup [40, 60), \\ & [0, 20) \cup [60, 80), [0, 20) \cup [80, 100), [20, 60), [20, 40) \cup [60, 80), \\ & [20, 40) \cup [80, 100), [40, 80), [40, 60) \cup [80, 100), [60, 100), [0, 60), \\ & [0, 40) \cup [60, 80), [0, 40) \cup [80, 100), [20, 80), [20, 60) \cup [80, 100), [40, 100), \\ & [0, 20) \cup [60, 100), [20, 40) \cup [60, 100), [0, 80), [0, 60) \cup [80, 100), [20, 100), \\ & [0, 20) \cup [40, 100), [0, 40) \cup [60, 100), [0, 20) \cup [40, 60) \cup [80, 100), \\ & [0, 20) \cup [40, 80)\} \text{ (notice there are } 2^5 \text{ sets)} \\ & \text{and} \end{split}$$

 $\sigma(Y) = \{Y^{-1}(A) : A \in \mathscr{B}\} = \{\Omega, \emptyset, [0, 40), [40, 100)\}$

イロト 不得 トイヨト イヨト

Lessons 5-6

probability measure μ_X

Given a random variable X, we define for every Borel set $B \in \mathscr{B}$:

$$\mu_X(B) \stackrel{\text{def.}}{=} P(X^{-1}(B)) = P(\{\omega \in \Omega : X(\omega) \in B\}) \stackrel{\text{s.n.}}{=} P(X \in B)$$

It is proven that μ_X is a probability measure on $\{\mathbb{R}, \mathscr{B}\}$.

Definition

The probability measure μ_X defined above is called the *probability measure induced by* X.

Note: The random variable X maps the probability space $\{\Omega, \mathscr{F}, P\}$ into a new probability space $\{\mathbb{R}, \mathscr{B}, \mu_X\}$. This approach is more accessible to the researcher because it describes events in the \mathbb{R} space rather than in an Ω space. The random variable is mapped back into the probability space $\{\Omega, \mathscr{F}_X, P\}$.

イロト イヨト イヨト

Cumulative distribution functions

Definition

Let X be a random variable with induced probability measure μ_X . The function $F(x) = \mu_X((-\infty, x]) \stackrel{\text{def.}}{=} P(X \le x), x \in \mathbb{R}$ is called the cumulative distribution function of X.

Theorem

A cumulative distribution function of a random variable is always **right** continuous, i.e. $\forall x \in \mathbb{R}$, $\lim_{\delta \downarrow 0} F(x + \delta) = F(x)$ and monotonic non decreasing, i.e. $F(x_1) \leq F(x_2)$ if $x_1 < x_2$ with $\lim_{x \downarrow -\infty} F(x) = 0$, $\lim_{x \uparrow +\infty} F(x) = 1$.

Theorem

The set of discontinuity points of a distribution function of a random variable is **countable**.

イロト イヨト イヨト イヨ

Discrete, continuous and mixed random variables

Definition

A random variable X is **discrete** if its corresponding cumulative distribution F_X is a step function. X is **continuous** if F_X is absolutely continuous for all x in \mathbb{R} . X is **mixed** if it is neither discrete nor continuous.

Definition (Alternative)

A random variable X is **discrete** if the range \mathbb{D} of X is finite or countably infinite.

Therefore, if the range of a random variable X is uncountably infinite, then X is not discrete.

Examples:

- The number of everyday crashes in a city is a discrete random variable.
- An estimate of the surface of Mars is a continuous random variable.
- The point where a telescope focuses or the point where a missile hits the ground are continuous random variables.

Question: What type is the daily rainfall in a district, measured in mm?,

Lessons 5-6

Discrete, continuous and mixed random variables

Figure 1: Cumulative distribution of discrete and continuous random variable

Figure 2: Cumulative distribution of mixed random variable

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

Mathematical foundations of Econometrics

April 7, 2016 12 / 13

Independence of random variables

Definition

Let X_j be a sequence of random variables or vectors defined on a common probability space $\{\Omega, \mathscr{F}, P\}$. X_1 and X_2 are pairwise independent if for all Borel sets B_1 , B_2 , the sets $A_1 = \{\omega \in \Omega : X_1(\omega) \in B_1\}$ and $A_2 = \{\omega \in \Omega : X_2(\omega) \in B_2\}$ are independent. The sequence X_j is independent if for all Borel sets B_j the sets $A_j = \{\omega \in \Omega : X_j(\omega) \in B_j\}$ are independent.

Theorem

Let X_1, \ldots, X_n be random variables and denote, for $x \in \mathbb{R}$ and $j = 1, \ldots n$, $A_j(x) = X^{-1}((-\infty, x]) = \{\omega \in \Omega : X_j(\omega) \le x\}$. Then X_1, \ldots, X_n are independent iff for arbitrary (x_1, x_2, \ldots, x_n) the sets $A_1(x_1), \ldots, A_n(x_n)$ are independent.

Theorem

The random variables X_1, \ldots, X_n are independent if and only if the joint distribution function F(x) of $X = (X_1, \ldots, X_n)^T$ can be written as the product of the distribution functions $F_j(x_j)$ of the X_j 's., i.e. $F(x) = \prod_{j=1}^n F_j(x_j)$, where $x = (x_1, \ldots, x_n)^T$.