Mathematical foundations of Econometrics

G.Gioldasis, UniFe \& prof. A.Musolesi, UniFe

April 7, 2016

Random variables

example: Lets consider the game of coin tossing. The sample space is $\Omega=\{H, T\}$, the involved σ-algebra is $\mathscr{F}=\{\emptyset, \Omega,\{H\},\{T\}\}$ and the corresponding probability measure is $P(\{H\})=P(\{T\})=1 / 2$ for a fair coin. Then, define a function X such that $X(\omega)=1$ if $\omega=H$ and $X(\omega)=0$ if $\omega=T$. X is a random variable with probabilities:

$$
\begin{align*}
& P(\{\omega \in \Omega: X(\omega)=1\}) \stackrel{\text { s.n. }}{=} P(X=1)=P(\{H\})=1 / 2 \text { and } \tag{1}\\
& P(\{\omega \in \Omega: X(\omega)=0\}) \stackrel{\text { s.n. }}{=} P(X=0)=P(\{T\})=1 / 2
\end{align*}
$$

For an arbitrary Borel set B we have:

$$
P(\{\omega \in \Omega: X(\omega) \in B\})\left\{\begin{array}{llll}
=P(\{H\}) & =1 / 2 \text { if } & 1 \in B \text { and } 0 \notin B \\
=P(\{T\}) & =1 / 2 \text { if } & 1 \notin B \text { and } 0 \in B \\
=P(\{H, T\}) & =1 \text { if } & 1 \in B \text { and } 0 \in B \\
=P(\{\emptyset\}) & =0 \text { if } & 1 \notin B \text { and } 0 \notin B
\end{array}\right.
$$

We need to confine the mapping $X: \Omega \rightarrow \mathbb{R}$ to those ω 's for which we can make probability statements, i.e. $\{\omega \in \Omega: X(\omega) \in B\} \in \mathscr{F}$, where B is an arbitrary Borel set.

Random variables

Definition

Let $\{\Omega, \mathscr{F}, P\}$ be a probability space. A function $X: \Omega \rightarrow \mathbb{R}$ is called a random variable defined on $\{\Omega, \mathscr{F}, P\}$ if for every Borel set $B,\{\omega \in \Omega: X(\omega) \in B\} \in \mathscr{F}$. So X is a random variable if it is \mathscr{F} measurable.

The space or range of X is the set of real numbers: $\mathbb{D}=\{x: x=X(\omega), \omega \in \Omega\}$. The set $\{\omega \in \Omega: X(\omega) \in B\}$ is called inverse image of B and is denoted by $X^{-1}(B)$, i.e.

$$
X^{-1}(B) \stackrel{\text { def }}{=}\{\omega \in \Omega: X(\omega) \in B\}
$$

Theorem
A function $X: \Omega \rightarrow \mathbb{R}$ is measurable \mathscr{F} if and only if for all $x \in \mathbb{R}$ the sets $\{\omega \in \Omega: X(\omega) \leq x\} \in \mathscr{F}$

Therefore, to verify that a real function $X: \Omega \rightarrow \mathbb{R}$ is \mathscr{F} measurable, it is not necessary to verify that for all Borel sets B, but only for Borel sets of the type $(-\infty, x]$

Exercise

Consider the health insurance example. Recall that $\Omega=\{Y H, Y S, O H, O S\}$. The insurance premium X has to take into account only public information, i.e. only the age of the client. Consequently, X has to be measurable with respect to

$$
\mathscr{F}=\{\emptyset, \Omega,\{Y H, Y S\},\{O H, O S\}\}
$$

So, for every $B \in \mathscr{B},\{\omega \in \Omega: X(\omega) \in B\} \in \mathscr{F}$.
Define a random variable X of an experiment. For all Borel sets B, find the corresponding inverse images $X^{-1}(B)$.

Solution

Answer

Suppose that the random variable $X: \Omega \rightarrow \mathbb{R}$ equals $X=50$ for a young client and $X=100$ for an old one. According to this X, there are only four types of borel sets B. Therefore:

$$
X^{-1}(B)=\left\{\begin{array}{lll}
\emptyset & \text { if } & 50 \notin B \text { and } 100 \notin B \\
\{O H, O S\} & \text { if } & 50 \notin B \text { and } 100 \in B \\
\{Y H, Y S\} & \text { if } & 50 \in B \text { and } 100 \notin B \\
\Omega & \text { if } & 50 \in B \text { and } 100 \in B
\end{array}\right.
$$

σ-algebra $\mathscr{F} X$

Definition

Let X be a random variable. The σ-algebra $\sigma(X)=\mathscr{F}_{X}=\left\{X^{-1}(B), \forall B \in \mathscr{B}\right\}$ is called the σ-algebra generated by X.

Example 1: In the previous exercise, the σ-algebra generated by the random variable X is $\mathscr{F}_{X}=\{\emptyset, \Omega,\{O H, O S\},\{Y H, Y S\}\}=\mathscr{F}$.

Example 2: Roll a dice and let $X=1$ if the outcome is even and $X=0$ if the outcome is odd. Then

$$
\mathscr{F}_{X}=\{\{1,2,3,4,5,6\}, \emptyset,\{2,4,6\},\{1,3,5\}\} \subset \mathscr{F}
$$

whereas \mathscr{F} consists of all subsets of $\Omega=\{1,2,3,4,5,6\}$.
Note: Random variables "carry" information through $\sigma(X)=\mathscr{F}_{X}$. Therefore, they create a new measurable space $\left\{\Omega, \mathscr{F}_{X}\right\}$.

Example: Grades in an American high school

Suppose the performance of a student in an American high school exam. Let us assume then that the sample space of this "game" is $\Omega=[0,100)(100$ corresponds to excellence A^{\prime}). A σ-algebra \mathscr{F} could be the Borel subsets in $[0,100)$, i.e.

$$
\mathscr{F}=\mathscr{B} \cap[0,100) \stackrel{\text { def. }}{=}\{B \cap[0,100): B \in \mathscr{B}\}
$$

The grade of the student in the exam is a random variable $X: \Omega \rightarrow \mathbb{R}$ such that

$$
X(\omega)= \begin{cases}0 \text { if } & \omega \in[0,20)(\text { grade } F) \\ 1 \text { if } & \omega \in[20,40)(\text { grade } D) \\ 2 \text { if } & \omega \in[40,60)(\text { grade } C) \\ 3 \text { if } & \omega \in[60,80)(\text { grade } B) \\ 4 \text { if } & \omega \in[80,100)(\text { grade } A)\end{cases}
$$

Grades A, B and C is a PASS while D and F means failure. The failure or pass of the examination can be described by another random variable $Y: \Omega \rightarrow \mathbb{R}$ such that:

$$
Y(\omega)= \begin{cases}-1 \text { if } & \omega \in[0,40)(\text { FA/L }) \\ +1 \text { if } & \omega \in[40,100)(\text { PASS })\end{cases}
$$

Example: Grades in an American high school

Therefore, if one knows the value of X (grade of the examination), he also knows the value of Y (pass or failure). Therefore, X conveys more information than Y. In other words, the σ-algebra $\sigma(X)$ generated by X contains $\sigma(Y)$. Indeed, $\sigma(X) \supset \sigma(Y)$ because:

$$
\begin{aligned}
\sigma(X)= & \left\{X^{-1}(A): A \in \mathscr{B}\right\}= \\
& \{\Omega, \emptyset,[0,20),[20,40),[40,60),[60,80),[80,100),[0,40),[0,20) \cup[40,60), \\
& {[0,20) \cup[60,80),[0,20) \cup[80,100),[20,60),[20,40) \cup[60,80), } \\
& {[20,40) \cup[80,100),[40,80),[40,60) \cup[80,100),[60,100),[0,60), } \\
& {[0,40) \cup[60,80),[0,40) \cup[80,100),[20,80),[20,60) \cup[80,100),[40,100), } \\
& {[0,20) \cup[60,100),[20,40) \cup[60,100),[0,80),[0,60) \cup[80,100),[20,100), } \\
& {[0,20) \cup[40,100),[0,40) \cup[60,100),[0,20) \cup[40,60) \cup[80,100), } \\
& {[0,20) \cup[40,80)\} \text { (notice there are } 2^{5} \text { sets) } }
\end{aligned}
$$

and

$$
\sigma(Y)=\left\{Y^{-1}(A): A \in \mathscr{B}\right\}=\{\Omega, \emptyset,[0,40),[40,100)\}
$$

probability measure μ_{X}

Given a random variable X, we define for every Borel set $B \in \mathscr{B}$:

$$
\mu_{X}(B) \stackrel{\text { def. }}{=} P\left(X^{-1}(B)\right)=P(\{\omega \in \Omega: X(\omega) \in B\}) \stackrel{\text { s.n. }}{=} P(X \in B)
$$

It is proven that μ_{X} is a probability measure on $\{\mathbb{R}, \mathscr{B}\}$.

Definition

The probability measure μ_{X} defined above is called the probability measure induced by X.

Note: The random variable X maps the probability space $\{\Omega, \mathscr{F}, P\}$ into a new probability space $\left\{\mathbb{R}, \mathscr{B}, \mu_{X}\right\}$. This approach is more accessible to the researcher because it describes events in the \mathbb{R} space rather than in an Ω space. The random variable is mapped back into the probability space $\{\Omega, \mathscr{F} X, P\}$.

Cumulative distribution functions

Definition

Let X be a random variable with induced probability measure μ_{X}. The function $F(x)=\mu_{X}((-\infty, x]) \stackrel{\text { def. }}{=} P(X \leq x), x \in \mathbb{R}$ is called the cumulative distribution function of X.

Theorem
A cumulative distribution function of a random variable is always right continuous, i.e. $\forall x \in \mathbb{R}, \lim _{\delta \downarrow 0} F(x+\delta)=F(x)$ and monotonic non decreasing, i.e. $F\left(x_{1}\right) \leq F\left(x_{2}\right)$ if $x_{1}<x_{2}$ with $\lim _{x \downarrow-\infty} F(x)=0$, $\lim _{x \uparrow+\infty} F(x)=1$.

Theorem

The set of discontinuity points of a distribution function of a random variable is countable.

Discrete, continuous and mixed random variables

Definition

A random variable X is discrete if its corresponding cumulative distribution F_{X} is a step function. X is continuous if F_{X} is absolutely continuous for all x in \mathbb{R}. X is mixed if it is neither discrete nor continuous.

Definition (Alternative)
A random variable X is discrete if the range \mathbb{D} of X is finite or countably infinite.
Therefore, if the range of a random variable X is uncountably infinite, then X is not discrete.

Examples:

- The number of everyday crashes in a city is a discrete random variable.
- An estimate of the surface of Mars is a continuous random variable.
- The point where a telescope focuses or the point where a missile hits the ground are continuous random variables.

Question: What type is the daily rainfall in a district, measured in mm ?

Discrete, continuous and mixed random variables

Figure 1: Cumulative distribution of discrete and continuous random variable

Figure 2: Cumulative distribution of mixed random variable

Independence of random variables

Definition

Let X_{j} be a sequence of random variables or vectors defined on a common probability space $\{\Omega, \mathscr{F}, P\} . X_{1}$ and X_{2} are pairwise independent if for all Borel sets B_{1}, B_{2}, the sets $A_{1}=\left\{\omega \in \Omega: X_{1}(\omega) \in B_{1}\right\}$ and $A_{2}=\left\{\omega \in \Omega: X_{2}(\omega) \in B_{2}\right\}$ are independent. The sequence X_{j} is independent if for all Borel sets B_{j} the sets $A_{j}=\left\{\omega \in \Omega: X_{j}(\omega) \in B_{j}\right\}$ are independent.

Theorem

Let X_{1}, \ldots, X_{n} be random variables and denote, for $x \in \mathbb{R}$ and $j=1, \ldots n$, $A_{j}(x)=X^{-1}((-\infty, x])=\left\{\omega \in \Omega: X_{j}(\omega) \leq x\right\}$. Then X_{1}, \ldots, X_{n} are independent iff for arbitrary $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ the sets $A_{1}\left(x_{1}\right), \ldots, A_{n}\left(x_{n}\right)$ are independent.

Theorem

The random variables X_{1}, \ldots, X_{n} are independent if and only if the joint distribution function $F(x)$ of $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ can be written as the product of the distribution functions $F_{j}\left(x_{j}\right)$ of the X_{j} 's., i.e. $F(x)=\prod_{j=1}^{n} F_{j}\left(x_{j}\right)$, where $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$.

