Mathematical foundations of Econometrics

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

March 13, 2016

G.Gioldasis, UniFe & prof. A.Musolesi, UniFe

Mathematical foundations of Econometrics

March 13, 2016 1 / 9

Examples of σ -algebras

Question: Consider the following collection of events in Ω . Are they σ -algebras?Why?

Answer: All the sets below are σ -algebras of Ω :

•
$$\mathscr{F} = \{\emptyset, \Omega\}$$

• $\mathscr{F} = \{\emptyset, A, \tilde{A}, \Omega\}$, where A is a subset of Ω , i.e. $A \subset \Omega$ and $A \neq \emptyset, \Omega$.

- 𝔅 = 𝒫(Ω) ^{def} = {A : A ⊂ Ω} is the set of all subsets of Ω. It is called the powerset of Ω.
- Borel σ -algebra \mathscr{B} in $\Omega = \mathbb{R}$, which is essential for the definition of random variables (*it will be discussed later...*)

Exercise: Prove that the second one is a σ -algebra.

イロト イボト イヨト イヨト

Why do we need σ -algebras ?

 σ -algebras allow us to model "information". It can be considered as the *information* we can have access to. It contains all the events A for which one can ask: "What is the probability of A happening?"

Health insurance example

Select at random a person and categorize him/her according to their age (young or old) and health status (healthy or sick). The sample space of the experiment is:

$$\Omega = \{ YH, YS, OH, OS \}$$

Question: So, baring in mind that you can find the age and the health status of a person (e.g. if you were a doctor in a clinic) which is the σ -algebra which best describes the information you can have access to? Answer:

 $\begin{aligned} \mathscr{F} &= \mathbb{P}(\Omega) = \\ \{ \emptyset, \Omega, \{ YH \}, \{ YS \}, \{ OH \}, \{ OS \}, \{ YS, OH, OS \}, \{ YH, OH, OS \}, \{ YH, YS, OS \}, \\ \{ YH, YS, OH \}, \{ YH, YS \}, \{ OH, OS \}, \{ YH, OH \}, \{ YH, OS \}, \{ YS, OH \}, \{ YS, OS \} \} \end{aligned}$

< ロ > < 同 > < 回 > < 回 >

Why do we need σ -algebras ?

... example continued

Assume now that for an insurer only age is public information. Therefore in your experiment, the insurer can only know whether a person is young or old. Then, the information that the insurer can have access to is described by the following σ -algebra:

$$\mathscr{F}' = \{\emptyset, \Omega, \{YH, YS\}, \{OH, OS\}\}$$

Question: Can the insurer make inference about a person who is either young and sick or old?

Answer: If he does not have the information about health, he can not distinguish between a healthy and a sick person. More formally, the event $\{YS, OH, OS\}$ is not inside the σ -algebra \mathscr{F}' .

If the insurer could know the health status of a person, then the information he could acquire would be embodied in the biggest σ -algebra \mathscr{F} of all subsets of Ω (powerset of Ω)!

Question: In this example, whose information can the σ - algebra $\mathscr{F}'' = \{\emptyset, \Omega\}$ describe best?

Why do we need σ -algebras instead of algebras?

Question: Why don't we just stay with *algebras* instead of defining σ -*algebras* in the probability space?

Many useful results (like Strong Law of Large Numbers) would not apply if a probability space was not structured based on a σ -algebra. Simply, many problems could not be solved otherwise.

Consider for instance the following game; a fair coin is tossed constantly. We win one euro every time tails appears and nothing otherwise. Without σ -algebras, the probability of the event:

{the average winning converges to 1/2 as the coin tosses become (infinitely) many}

can not even be defined.

イロト イヨト イヨト

Properties of *algebras*

Theorem (1)

If an algebra contains a finite number of events, then it is also a σ -algebra. Consequently, an algebra of subsets of a finite set Ω is a σ -algebra.

Theorem (2)

If \mathscr{F} is an algebra, then $A, B \in \mathscr{F}$ implies $A \cap B \in \mathscr{F}$. Moreover, a collection \mathscr{F} of subsets of a non-empty set Ω is an algebra if it satisfies the first two requirements in the definition of algebra along with:

• If $A, B \in \mathscr{F}$, then $A \cap B \in \mathscr{F}$.

Properties of σ -algebras

Theorem (3)

If \mathscr{F} is a σ -algebra, then for any countable sequence of sets $A_j \in \mathscr{F}$, then $\bigcap_{j=1}^{\infty} A_j \in \mathscr{F}$. Moreover, a collection \mathscr{F} of subsets of a non-empty set Ω is a σ -algebra if it satisfies the first two requirements of the definition of σ -algebras along with:

• If
$$A_j \in \mathscr{F}, j = 1, 2, ...$$
, then $\bigcap_{j=1}^{\infty} A_j \in \mathscr{F}$.

A D > A B > A B > A

Example of generated σ -algebras

Definition

The smallest σ -algebra containing a given collection \mathscr{Q} of sets is called the σ -algebra generated by \mathscr{Q} and is denoted by $\sigma(\mathscr{Q})$.

Let us return to the health insurance example. Suppose that we have the following collection of events $\mathscr{Q} = \{\emptyset, \Omega, \{YH, YS\}\}$.

Question: Which can be a σ -algebra that contains the above collection? *Answer*:

 $\begin{aligned} \mathscr{F} &= \mathscr{P}(\Omega) = \\ \{ \emptyset, \Omega, \{ YH \}, \{ YS \}, \{ OH \}, \{ OS \}, \{ YH, YS \}, \{ YH, OH \}, \{ YH, OS \}, \\ \{ YS, OH \}, \{ YS, OS \}, \{ OH, OS \}, \{ YH, YS, OH \}, \{ YH, YS, OS \}, \\ \{ YS, OH, OS \}, \{ OH, OS, YH \} \} \end{aligned}$

Question: Is this the σ -algebra generated by the collection \mathcal{Q} ? *Answer*:

No, because it is not the smallest. The smallest is $\sigma(\mathcal{Q}) = \{\emptyset, \Omega, \{YH, YS\}, \{OH, OS\}\}$

A D A A B A A B A A B A

Lesson 2

Borel σ -algebras

An important special case of σ -algebras is when $\Omega = \mathbb{R}$ and \mathscr{Q} is a collection of all open intervals in \mathbb{R} , namely:

$$\mathscr{Q} = \{ (\alpha, \beta) : \forall \alpha < \beta, \alpha, \beta \in \mathbb{R} \}$$
(1)

Definition

The σ -algebra generated by the above collection \mathscr{Q} of all open intervals in \mathbb{R} is called the *Euclidean Borel field* \mathscr{B} or *Borel* σ -algebra. Its members are called *Borel sets.*

note: The Borel σ -algebra can be defined in different ways due to the following theorem.

Theorem

 $\mathscr{B} = \sigma(\{[\alpha, \beta] : \forall \alpha \leq \beta, \alpha, \beta \in \mathbb{R}\}) = \sigma(\{(-\infty, \alpha] : \forall \alpha \in \mathbb{R}\}), i.e. \ \sigma\text{-algebras}$ generated by the collection of open intervals, closed intervals and half-open intervals are the same.

イロト イヨト イヨト イヨ