Introduction to Econometrics

Third Edition

G.S. Maddala

Formerly of Ohio State University

JOHN WILEY & SONS, LTD

Chichester • New York • Weinheim • Brisbane • Toronto • Singapore

Contents

Fo Pro Pro Ob	Foreword Preface to the Second Edition Preface to the Third Edition Obituary		xvii xix xxiii xxv
PA	RT I	INTRODUCTION AND THE LINEAR REGRESSION MODEL	1
1	Wha	t is Econometrics?	3
	Wha	t is in this Chapter?	3
	1.1	What is Econometrics?	3
	1.2	Economic and Econometric Models	4
	1.3	The Aims and Methodology of Econometrics	· 6
	1.4	What Constitutes a Test of an Economic Theory?	9
	Sum	mary and an Outline of the Book	9
2	Stati	stical Background and Matrix Algebra	11
	Wha	t is in this Chapter?	11
	2.1	Introduction	12
	2.2	Probability	12
		Addition Rules of Probability	13
		Conditional Probability and the Multiplication Rule	14
		Bayes' Theorem	15
		Summation and Product Operations	15
	2.3	Random Variables and Probability Distributions	17
		Joint, Marginal, and Conditional Distributions	18
		Illustrative Example	18
	2.4	The Normal Probability Distribution and Related Distributions	19
		The Normal Distribution	19
		Related Distributions	20

.

	2.5	Classical Statistical Inference	21
		Point Estimation	22
	2.6	Properties of Estimators	23
		Unbiasedness	23
		Efficiency	24
		Consistency	24
		Other Asymptotic Properties	25
	2.7	Sampling Distributions for Samples from a Normal Population	26
	2.8	Interval Estimation	27
	2.9	Testing of Hypotheses	28
	2.10	Relationship Between Confidence Interval Procedures and Tests	
		of Hypotheses	32
	2.11	Combining Independent Tests	33
	Sumn	hary	33
	Exerc	ises	34
	Apper	ndix to Chapter 2	41
		Matrix Algebra	41
		Exercises on Matrix Algebra	56
3	Simp	e Regression	59
	What	is in this Chapter?	59
	3.1	Introduction	59
	3.2	Specification of the Relationships	61
	3.3	The Method of Moments	65
		Illustrative Example	66
	3.4	The Method of Least Squares	68
		Reverse Regression	71
		Illustrative Example	72
	3.5	Statistical Inference in the Linear Regression Model	75
		Illustrative Example	77
		Confidence Intervals for α , β , and σ^2	78
		Testing of Hypotheses	79
		Example of Comparing Test Scores from the GRE and	
		GMAT Tests	81
		Regression with No Constant Term	82
	3.6	Analysis of Variance for the Simple Regression Model	83
	3.7	Prediction with the Simple Regression Model	84
		Prediction of Expected Values	86
		Illustrative Example	87
	3.8	Outliers	88
		Some Illustrative Examples	89
	3.9	Alternative Functional Forms for Regression Equations	94
		Illustrative Example	97
	*3.10	Inverse Prediction in the Least Squares Regression Model	99
	*3.11	Stochastic Regressors	101

*3.12	The Regression Fallacy	102
	The Bivariate Normal Distribution	102
	Galton's Result and the Regression Fallacy	104
	A Note on the Term: "Regression"	104
Sumr	nary	105
Exerc	vises	106
Appe	ndix to Chapter 3	112
Mult	iple Regression	127
What	is in this Chapter?	127
4.1	Introduction	127
4.2	A Model with Two Explanatory Variables	129
	The Least Squares Method	130
	Illustrative Example	132
4.3	Statistical Inference in the Multiple Regression Model	134
	Illustrative Example	135
	Formulas for the General Case of k Explanatory Variables	139
	Some Illustrative Examples	140
4.4	Interpretation of the Regression Coefficients	143
	Illustrative Example	145
4.5	Partial Correlations and Multiple Correlation	146
4.6	Relationships Among Simple, Partial, and Multiple Correlation	–
	Coefficients	147
. –	Two Illustrative Examples	148
4.7	Prediction in the Multiple Regression Model	153
1.0	Illustrative Example	153
4.8	Analysis of Variance and lests of Hypotheses	154
	Nested and Nonnested Hypotheses	156
	lests for Linear Functions of Parameters	157
1.0	Illustrative Example	158
4.9	Unission of Relevant variables and inclusion of irrelevant	150
	Omission of Delevent Variables	159
	Example 1: Demand for Food in the United States	160
	Example 1: Demand for Food in the Office States	161
	Example 2: Production Functions and Management Blas	162
	The function of the leval to variables $\overline{\Sigma}^2$	103
4.10	Degrees of Freedom and R	164
4.11	Tests for Stability	168
	The Analysis of Variance Test	168
	Example 1: Stability of the Demand for Food Function	169
	Example 2: Stability of Production Functions	170
	Predictive lesis for Stability	173
* 1 10	Inustrative Example	1/3
*4.12	Ine LK, W, and LWI lests	1/6
	Illustrative Example	176

	Sumr	nary	177
	Exerc	ises	179
	Appe	ndix to Chapter 4	185
		The Multiple Regression Model in Matrix Notation	185
	Data	Sets	192
PA	ART II	VIOLATION OF THE ASSUMPTIONS OF THE BASIC MODEL	197
5	Hete	roskedasticity	199
	What	is in this Chapter?	199
	5.1	Introduction	199
		Illustrative Example	200
	5.2	Detection of Heteroskedasticity	202
		Illustrative Example	202
		Some Other Tests	203
		Illustrative Example	205
		An Intuitive Justification for the Breusch–Pagan Test	206
	5.3	Consequences of Heteroskedasticity	207
		Estimation of the Variance of the OLS Estimator Under	200
	- .	Heteroskedasticity	209
	5.4	Solutions to the Heteroskedasticity Problem	209
	~ ~	Illustrative Example	211
	5.5	Heteroskedasticity and the Use of Deflators	212
	* = (Illustrative Example: The Density Gradient Model	215
	*3.6	The Day Can Test	217
		The BOX-COX Test	217
		The DE Test	219
	Cum		219
	- Sullin Evor		220
	Anne	ndix to Chapter 5	221
	Appe	Generalized Least Squares	224
6	Auto	correlation	227
Ŭ	What	is in this Chapter?	227
	6.1	Introduction	227
	6.2	Durbin–Watson Test	228
		Illustrative Example	229
	6.3	Estimation in Levels Versus First Differences	230
		Some Illustrative Examples	232
	6.4	Estimation Procedures with Autocorrelated Errors	234
		Iterative Procedures	236
		Grid-Search Procedures	237
		Illustrative Example	238
	6.5	Effect of AR(1) Errors on OLS Estimates	238

	6.6	Some Further Comments on the DW Test	242
		The von Neumann Ratio	243
		The Berenblut–Webb Test	243
	6.7	Tests for Serial Correlation in Models with Lagged	
		Dependent Variables	245
		Durbin's h-Test	246
		Durbin's Alternative Test	246
		Illustrative Example	247
	6.8	A General Test for Higher-Order Serial Correlation: The LM Test	248
	6.9	Strategies When the DW Test Statistic is Significant	249
		Errors Not AR(1)	249
		Autocorrelation Caused by Omitted Variables	250
		Serial Correlation Due to Misspecified Dynamics	252
		The Wald Test	253
		Illustrative Example	254
	*6.10	Trends and Random Walks	255
		Spurious Trends	257
		Differencing and Long-Run Effects: The Concept of	
		Cointegration	258
	*6.11	ARCH Models and Serial Correlation	260
	6.12	Some Comments on the DW Test and Durbin's h -Test and t -Test	262
	Sumn	nary	262
	Exerc	1868	264
7	Multi	collinearity	267
-	What	is in this Chapter?	267
	7.1	Introduction	268
	7.2	Some Illustrative Examples	268
	7.3	Some Measures of Multicollinearity	272
	7.4	Problems with Measuring Multicollinearity	274
	7.5	Solutions to the Multicollinearity Problem: Ridge Regression	278
	7.6	Principal Component Regression	281
	7.7	Dropping Variables	286
	7.8	Miscellaneous Other Solutions	289
		Using Ratios or First Differences	289
		Using Extraneous Estimates	289
		Getting More Data	291
	Sumn	nary	291
	Exerc	ises	291
	Appe	ndix to Chapter 7	293
		Linearly Dependent Explanatory Variables	293
8	D	ny Variables and Truncated Variables	201
	Dum	ity variables and fruncated variables	201
	Dum What	is in this Chapter?	301

	8.2	Dummy Variables for Changes in the Intercept Term	302
		Illustrative Example	305
		Two More Illustrative Examples	306
	8.3	Dummy Variables for Changes in Slope Coefficients	307
	8.4	Dummy Variables for Cross-Equation Constraints	310
	8.5	Dummy Variables for Testing Stability of Regression	
		Coefficients	313
	8.6	Dummy Variables Under Heteroskedasticity and	
		Autocorrelation	316
	8.7	Dummy Dependent Variables	317
	8.8	The Linear Probability Model and the Linear Discriminant	
		Function	318
		The Linear Probability Model	318
		The Linear Discriminant Function	320
	8.9	The Probit and Logit Models	322
		Illustrative Example	324
		The Problem of Disproportionate Sampling	325
		Prediction of Effects of Changes in the Explanatory Variables	327
		Measuring Goodness of Fit	327
	8.10	Illustrative Example	329
	8.11	Truncated Variables: The Tobit Model	333
		Some Examples	333
		Method of Estimation	334
		Limitations of the Tobit Model	335
		The Truncated Regression Model	336
	Sumr	nary	338
	Exerc	rises	339
9	Simu	Itaneous Equations Models	343
	What	is in this Chapter?	343
	9.1	Introduction	343
	9.2	Endogenous and Exogenous Variables	345
	9.3	The Identification Problem: Identification through Reduced Form	346
		Illustrative Example	348
	9.4	Necessary and Sufficient Conditions for Identification	351
		Illustrative Example	353
	9.5	Methods of Estimation: The Instrumental Variable Method	354
		Measuring R^2	356
		Illustrative Example ³	357
	9.6	Methods of Estimation: The Two-Stage Least Squares Method	360
		Computing Standard Errors	361
		Illustrative Example	363
	9.7	The Question of Normalization	366
	*9.8	The Limited-Information Maximum Likelihood Method	367
		Illustrative Example	368

	*9.9	On the Use of OLS in the Estimation of Simultaneous	
		Equations Models	369
		Working's Concept of Identification	371
		Recursive Systems	373
		Estimation of Cobb–Douglas Production Functions	373
	*9.10	Exogeneity and Causality	375
		Weak Exogeneity	378
		Superexogeneity	378
		Strong Exogeneity	378
		Granger Causality	379
		Granger Causality and Exogeneity	380
		Tests for Exogeneity	380
	9.11	Some Problems with Instrumental Variable Methods	381
	Sumn	nary	382
	Exerc	ises	383
	Appei	ndix to Chapter 9	386
10	Nonli	near Regressions, Models of Expectations, and Nonnormality	391
	What	is in this Chapter?	391
	10.1	Introduction	392
	10.2	The Newton–Raphson Method	392
	10.3	Nonlinear Least Squares	393
		The Gauss–Newton Method	393
	10.4	Models of Expectations	394
	10.5	Naive Models of Expectations	395
	10.6	The Adaptive Expectations Model	397
	10.7	Estimation with the Adaptive Expectations Model	399
		Estimation in the Autoregressive Form	399
	10.0	Estimation in the Distributed Lag Form	400
	10.8	Two Illustrative Examples	401
	10.9	Expectational variables and Adjustment Lags	405
	10.10	Alternative Distributed Lag Medale, Delenemial Lag	409
	10.11	Finite Less The Delynomial Less	411
		Illustrative Exemple	412
		Choosing the Degree of the Polynomial	415
	10.12	Rational Lage	410
	10.12	Rational Expectations	417
	10.13	Tests for Rationality	419
	10.14	Estimation of a Demand and Supply Model Under Rational	722
	10.15	Expectations	474
		Case 1	474
		Case 2	425
		Illustrative Example	428
	10.16	The Serial Correlation Problem in Rational Expectations Models	431
		Ł	

CONTENTS

	10.17	7 Nonnormality of Errors	431
		Tests for Normality	432
	10.18	B Data Transformations	433
	Sumi	nary	433
	Exer	cises	435
11	Erro	rs in Variables	437
	What	t is in this Chapter?	437
	11.1	Introduction	437
	11.2	The Classical Solution for a Single-Equation Model with One	
		Explanatory Variable	438
	11.3	The Single-Equation Model with Two Explanatory Variables	441
		Two Explanatory Variables: One Measured with Error	441
		Illustrative Example	444
		Two Explanatory Variables: Both Measured with Error	446
	11.4	Reverse Regression	449
	11.5	Instrumental Variable Methods	451
	11.6	Proxy Variables	454
		Coefficient of the Proxy Variable	456
	11.7	Some Other Problems	457
		The Case of Multiple Equations	458
	C	Correlated Errors	459
	Sumr	nary	459
	Exerc	cises	461
PA	RT III	SPECIAL TOPICS	463
12	Diag	nostic Checking, Model Selection, and Specification Testing	465
	What	is in this Chapter?	465
	12.1	Introduction	465
	12.2	Diagnostic Tests Based on Least Squares Residuals	466
		Tests for Omitted Variables	467
		Tests for ARCH Effects	468
	12.3	Problems with Least Squares Residuals	469
	12.4	Some Other Types of Residuals	470
		Predicted Residuals and Studentized Residuals	470
		Dummy Variable Method for Studentized Residuals	471
		BLUS Residuals	472
		Recursive Residuals	472
		Illustrative Example	474
	12.5	DFFITS and Bounded Influence Estimation	476
	10 1	Illustrative Example	478
	12.6	Model Selection	479
		Hypothesis-Testing Search	480
		Interpretive Search	481

	Simplification Search	481
	Proxy Variable Search	481
	Data Selection Search	482
	Post-Data Model Construction	482
	Hendry's Approach to Model Selection	483
12.7	Selection of Regressors	484
	Theil's \overline{R}^2 Criterion	486
	Criteria Based on Minimizing the Mean-Squared	
	Error of Prediction	486
	Akaike's Information Criterion	488
12.8	Implied F-Ratios for the Various Criteria	488
	Bayes' Theorem and Posterior Odds for Model Selection	491
12.9	Cross-Validation	492
12.10	Hausman's Specification Error Test	494
	An Application: Testing for Errors in Variables or Exogeneity	496
	Some Illustrative Examples	497
	An Omitted Variable Interpretation of the Hausman Test	498
12.11	The Plosser–Schwert–White Differencing Test	501
12.12	Tests for Nonnested Hypotheses	502
	The Davidson and MacKinnon Test	502
	The Encompassing Test	505
	A Basic Problem in Testing Nonnested Hypotheses	506
	Hypothesis Testing Versus Model Selection as a Research	507
C	Strategy	506
Sum	nary	500
Exerc	rises	508
Appe	nuix to Chapter 12	510
13 Intro	duction to Time-Series Analysis	513
What	is in this Chapter?	513
13.1	Introduction	513
13.2	Two Methods of Time-Series Analysis: Frequency Domain and	
	Time Domain	514
13.3	Stationary and Nonstationary Time Series	514
	Strict Stationarity	515
	Weak Stationarity	516
	Properties of Autocorrelation Function	517
12.4	Nonstationarity	517
13.4	Some Useful Models for Time Series	517
	Purely Random Process	517
	Kandom Walk	518
	Moving Average Process	519
	Autoregressive Process	520
	Autoregressive Integrated Maying Average Process	522
	Autoregressive integrated moving Average Process	524

	13.5	Estimation of AR, MA, and ARMA Models	524
		Estimation of MA Models	524
		Estimation of ARMA Models	525
		Residuals from the ARMA Models	526
		Testing Goodness of Fit	527
	13.6	The Box–Jenkins Approach	529
		Forecasting from Box–Jenkins Models	531
		Illustrative Example	532
		Trend Elimination: The Traditional Method	534
		A Summary Assessment	535
		Seasonality in the Box-Jenkins Modeling	535
	13.7	R^2 Measures in Time-Series Models	536
	Summ	ary	540
	Exerci	ises	540
	Data S	Sets	541
14	Vecto	r Autoregressions, Unit Roots, and Cointegration	543
	What	is in this Chapter?	543
	14.1	Introduction	543
	14.2	Vector Autoregressions	544
	14.3	Problems with VAR Models in Practice	546
	14.4	Unit Roots	547
	14.5	Unit Root Tests	548
		Dickey–Fuller Test	548
		The Serial Correlation Problem	549
		The Low Power of Unit Root Tests	550
		The DF-GLS Test	550
		What are the Null and Alternative Hypotheses in Unit Root Tests?	550
		Tests with Stationarity as Null	552
		Confirmatory Analysis	553
		Panel Data Unit Root Tests	554
		Structural Change and Unit Roots	555
	14.6	Cointegration	556
	14.7	The Cointegrating Regression	557
	14.8	Vector Autoregressions and Cointegration	560
	14.9	Cointegration and Error Correction Models	564
	14.10	Tests for Cointegration	565
	14.11	Cointegration and Testing of the REH and MEH	566
	14.12	A Summary Assessment of Cointegration	568
	Summ	hary	569
	Exerc	ises	570

15	Panel	l Data Analysis	573
	What	is in this Chapter?	573
	15.1	Introduction	573
	15.2	The LSDV or Fixed Effects Model	574
	15.3	The Random Effects Model	575
	15.4	Fixed Effects Versus Random Effects	578
		Hausman Test	578
		Breusch and Pagan Test	579
	15.5	The SUR Model	579
	15.6	Dynamic Panel Data Models	580
	15.7	The Random Coefficient Model	581
	Summ	nary	583

16	Larg	e-Sample Theory	585
	What	is in this Chapter?	585
	16.1	The Maximum Likelihood Method	585
	16.2	Methods of Solving the Likelihood Equations	586
	16.3	The Cramer-Rao Lower Bound	588
	16.4	Large-Sample Tests Based on ML	588
	16.5	GIVE and GMM	589
	Sumn	nary	591

17	Small-Sample Inference: Resampling Methods		593
	What is in this Chapter?		
	17.1	Introduction	593
	17.2	Monte Carlo Methods	594
		More Efficient Monte Carlo Methods	595
		Response Surfaces	595
	17.3	Resampling Methods: Jackknife and Bootstrap	595
		Some Illustrative Examples	597
		Other Issues Relating to Bootstrap	598
	17.4	Bootstrap Confidence Intervals	599
	17.5	Hypothesis Testing with the Bootstrap	599
	17.6	Bootstrapping Residuals Versus Bootstrapping the Data	600
	17.7	NonIID Errors and Nonstationary Models	601
		Heteroskedasticity and Autocorrelation	601
		Unit Root Tests Based on the Bootstrap	601
		Cointegration Tests	601
	17.8	Miscellaneous Other Applications	602

Summary	602	
Appendices	605	
Appendix A: Data Sets	605	
Appendix B: Data Sets on the Web	613	
Appendix C: Computer Programs	615	
Index	617	