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The Correlation Coefficient: An Overview
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Correlation and regression are different, but not mutually exclusive, techniques. Roughly, re-
gression is used for prediction (which does not extrapolate beyond the data used in the analysis)
whereas correlation is used to determine the degree of association. There situations in which the
x variable is not fixed or readily chosen by the experimenter, but instead is a random covariate
to the y variable. This paper shows the relationships between the coefficient of determination,
the multiple correlation coefficient, the covariance, the correlation coefficient and the coeffi-
cient of alienation, for the case of two related variables x and y. It discusses the uses of the
correlation coefficient r , either as a way to infer correlation, or to test linearity. A number of
graphical examples are provided as well as examples of actual chemical applications. The paper
recommends the use of z Fisher transformation instead of r values because r is not normally
distributed but z is (at least in approximation). For either correlation or for regression models,
the same expressions are valid, although they differ significantly in meaning.

Keywords multiple correlation coefficient, correlation coefficient, covariance, cause and effect
inference, lineariy, significance tests

INTRODUCTION
Although the concepts of correlation and regression are in-

timately related, they are nevertheless different (1). Correla-
tion may be described as the degree of association between
two variables, whereas regression expresses the form of the re-
lationship between specified values of one (the independent,
exogenous, explanatory, regressor, carrier or predictor) vari-
able and the means of all corresponding values of the second
(the dependent, outcome, response variable, the variable be-
ing explained) variable. In general, we can say that the study
of interdependence leads to the investigation of correlations
(2), while the study of dependence leads to the theory of re-
gression. When the x variable is a random covariate to the
y variable, that is, x and y vary together (continuous vari-
ables), we are more interested in determining the strength of
the linear relationship than in prediction, and the sample corre-
lation coefficient, rxy (r ), is the statistics employed (3) for this
purpose.

The Pearson (Product–Moment) correlation r was developed
by Pearson (1896) and was based on the work of others, includ-
ing Galton (1888), who first introduced the concept of correla-
tion (4, 5). As a matter of fact, correlation charts, also known
as scatter diagrams is one of the seven basic tools of statistical
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quality control (6). Empirical relationships can be used, i.e., to
determine yield vs. conditions, so process optimization can be
achieved (7), or in linear free-energy relationships (LFR), quan-
titative structure-activity relationships (QASR) and quantitative
structure property (QSPR) relationships (8, 9). The correlation,
however, is a concept of much wider applicability than just 2D
scatterplots. There is also “multiple correlation,” which is the
correlation of multiple independent variables with a single de-
pendent. Also there is “partial correlation,” which is the cor-
relation of one variable with another, controlling for a third or
additional variables (10).

If the parameter estimates associated with any one factor in
a multifactor design are uncorrelated with those of another, the
experiment design is to said to be orthogonal. This is the ba-
sic principle of the orthogonal design, which often permits (11)
simple formulas to be used to calculate effects, thus avoiding on
this way tedious manual calculations. Correlation and covari-
ance play a central role in clustering; correlation is used as such
to measure similarity between objects (12). Factor analysis, be-
havioural genetic models, structural equations models and other
related methodologies use the correlation coefficient as the basic
unit of data (5, 13). Canonical correlation analysis is a way of
measuring the linear relationship between two multidimensional
variables (10).

There are a number of different correlation coefficients to
handle the special characteristics of such types of variables as
dichotomies, and there are other measurements of association
for nominal and ordinal variables (and for time-series analysis

41



42 A. G. ASUERO ET AL.

as well). The literature provides a variety of measures of depen-
dence (i.e., Spearman’s ρ, the point biserial correlation and the
φ coefficient), which are either improved versions of the corre-
lation coefficient or based on complementary different concepts
(14).

SCATTERPLOTS
The mandatory first step in all data analysis is to make a

plot of the data in the most illustrative way possible. A two-
dimensional representation of n pairs of measurements (xi , yi )
made on two random variables x and y, is known as a scatter-
plot. The first bivariate scatterplot (5) showing a correlation was
given by Galton in 1885. Such plots are particularly useful tools
in exploratory analysis conveying information about the associ-
ation between x and y (15), the dependence of y on x where y
is a response variable, the clustering of the points, the presence
of outliers, etc.

Scatterplots are much more informative (16) than the corre-
lation coefficient. This should be clear (17) from Figure 1. Each
of the four data yields the same standard output from a typical
regression program. Scatterplots can also be combined in mul-
tiple plots per page to help understanding higher-level structure
in data set with more than two variables. Thus, a scatterplot ma-
trix can be a better summary of data than a correlation matrix,
since the latter gives only a single number summary of the lin-
ear relationship between variables, while each scatterplot gives
a visual summary of linearity, nonlinearity, and separated points
(16, 18).

FIG. 1. Scatter diagrams of a four set of data showing the same
a0 = 0.520, a1 = 0.809, R2 = 0.617, sy/x = 3.26, N = 16.

THE LEAST-SQUARES METHOD
Suppose that estimates a0 and a1 of the model parameters α0

and α1 are found by using the principle of least squares concern-
ing the sum of squares of (weighted) vertical deviations (resid-
uals) from the regression line. Heteroscedasticity is assumed,
where the measuring quantity is determinable nor with constant
(homoscedastic condition), but with different variance depen-
dent on the size of the measuring quantity. The (weighted) least
squares method is based on a number of assumptions (19), i.e.,
(i) that the errors, εi , are random rather than systematic, with
mean zero and variances σ 2

i = σ 2/wi (σ is a constant and wi is
the weight of point i) and follow a Gaussian distribution; (ii) that
the independent variable, i.e., x , the abscissa, is known exactly
or can be set by the experimenter either; (iii) the observations,
yi , are in an effective sense uncorrelated and statistically inde-
pendent, i.e., for cov(εi , ε j ) = 0 for i �= j, with means equal to
their respective expectations or true values, E{yi}=ηi ; and (iv)
that the correct weights, wi are known. Normality is needed only
for tests of significance and construction of confidence intervals
estimates of the parameters. Formulae for calculating a0 and a1

and their standard errors by weighted linear regression are given
in Table 1, where the analogy with simple linear regression (20)
is evident.

Particular attention must be given on this respect to equations
in which one variable is involved on both sides (21, 22). Then,
the independent variable x is not an exact quantity and the inde-
pendence of errors is not fulfilled. If for any reason the precision
with which the xi values are known is not considerably better
than the precision of measurement of the yi values, the statistical
analysis based on the (ordinary) weighted least squares is not
valid and it is necessary a more general approach (23). Weights
in those cases are slope-dependent.

TABLE 1
Formulae for calculating statistics for weighted linear

regression

Equation: Slope
ŷi = a0 + a1 xi a1 = SXY/Sxx

Weights: Intercept
wi = 1/s2

i a0 = ȳ − a1 x̄
Explained sum of squares Weighted residuals
SSReg = ∑

wi (ŷi − ȳ)2 w
1/2
i (yi − ŷi )

Residual sum of squares Correlation coefficient
SSE = ∑

wi (yi − ŷi )2 r = SXY/
√

SXXSYY

Mean Standard errors

x̄ = ∑
wi xi/

∑
wi s2

y/x = SSE
n−2 = SYY−a2

1 SXX
n−2

ȳ = ∑
wi yi/

∑
wi s2

a0
= s2

y/x (
∑

wi x2
i )/(SXX

∑
wi )

Sum of squares about the mean s2
a1

= s2
y/x/SXX

SXX = ∑
wi (xi − x̄)2 cov(a0, a1) = −x̄s2

y/x/SXX

SYY = ∑
wi (yi − ȳ)2

SXY = ∑
wi (xi − x̄)(yi − ȳ)
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TABLE 2
Common data transformations

Transformation Comments

Reciprocal 1/y Linearizing data, particularly rate phenomena
Arcsine (angular) arcsin

√
y Proportions (0 > p > 1)

Logarithmic ln y Variance ∞ (mean)2

Probability probability Percentage responding
Logistic (probit) log( y

1−y ) Drug dose response curves and UV killing curves
Square root

√
y Counts, variance ∞ (mean)

Box Cox (y p − 1)/p p �= 0
ln p p = 0

Family of transformations for use when one has no prior
knowledge of an appropriate transformation to use

Tukey {pλ − (1 − p)λ}/λ

HETEROSCEDASTICITY AND TRANSFORMATION
There are many examples and methods for heteroscedastic re-

gression: those based on counting measurements and also pho-
tometric, chromatographic and capillary electrophoresis anal-
ysis under certain conditions (24, 25). With calibration over
moderate-to-wide calibration ranges, the assumption of constant
variance is almost always false (26). On the other hand, when we
plot our initial results on a graph, it will be usually clear whether
they best fit a linear relationship or a logarithmic relationship or;
something else, like a sigmoid curve. We can analyse all these
relationships if we transform the x and y values as appropriate
so that the relationship between xand y become linear (Table
2). Nevertheless, when the outcome is not a direct experimental
value but has been transformed, its error can vary substantially.
When experimental data y are converted into transformed data
Y for subsequent use in a least squares analysis, one should
introduce a weighting factor given by (21)

wi = 1

/(
∂Y

∂y

)2

. [1]

The objective of a transformation is to rescale the data so
that the variability becomes constant, allowing the original un-
weighted least squares regression to be used. Therefore, it is
often true that a variance-stabilizing transformation is also ef-
fective in transforming a skew, nonnormal variable into a rea-
sonably symmetric and approximate normal one (27).

COEFFICIENT OF DETERMINATION R2 AND
CORRELATION COEFFICIENT rxy

In addition to graphing, many numerical tools are available
that you can use to determine how well a regression equation
fits the data. A useful statistics to check is the sample coefficient
of determination, R2, of a linear regression fit (with any number
of predictor). R2 is equal to the ratio of the sum of squares ac-
counted for by the regression (SSReg) to the total sum of squares
of deviation about the mean (SY Y ) for a model with constant
term (homoscedastic case, wi = 1)

R2 = SSReg

SYY
= SYY − SSE

SYY
= 1− SSE

SYY
= 1−

∑
(yi − ŷi )2∑
(yi − ȳ)2

, [2]

where ŷ denotes the predicted value of y and as usual ȳ is the
mean of y′s values and both summations are over i = 1,2, . . . n.
SSE is the residual sum of squares. In a model without constant
term, R2 = 1 − SSE/SST, where SST is the total sum of squares∑

y2 (28). R2 in Eq. (2) measures the proportion of total vari-
ation about the mean ȳ explained by the regression. Thus, the
large is R2, the more is the total variation of ȳ reduced by in-
troducing the independent variable x . It is often expressed as a
percentage by multiplying by 100. Since 0 ≤ SSE ≤ SSYY, it
follows that 0 ≤ R2 ≤ 1. In fact, R is the correlation between y
and ŷ

R = ry ŷ =
∑

(ŷi − ¯̂yi )(yi − ȳ)

[
∑

(yi − ¯̂yi )2]1/2[
∑

(yi − ȳ)2]1/2
[3]

and is usually called the multiple correlation coefficient. It is
not appropriate to compare R2 of different equations containing
different numbers of coefficients derived from the same data set
(29,30). In spite of this we continue to like R2 as a useful thing
to look at in a regression printout.

In the case of simple regression with constant term, the co-
efficient of determination equals the square of the correlation
coefficient between x and y, which explain the notation. Then,
for a straight line only it holds that (20)

rxy = ±
√

R2 =
√

1 − SYY − a2
1 SXX

SYY
= a1

√
SXX

SYY
= SXY√

SXXSYY
.

[4]

A plus or minus sign is attached to this measure according to
whether the slope, a1, of the fitted regression line is positive or
negative. The variability decomposition is depicted in Figure 2.
If R2 is the unity, all variation has been explained and we have a
perfect fit with all the points lying on the regression line. If the
coefficient is zero, the regression line does not explain anything;
i.e., it is horizontal and y is not a function of x .
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FIG. 2. Decomposition of variability in the least-squares
straight line case.

Taking into account that ŷi = a0 +a1 x and ¯̂yi = a0 +a1 x̄ = ȳ
if we substitute for ŷi − ¯̂yi = a1 (x − x̄) in Eq. (3) and cancel
out at top and bottom we get with rxy in Eq. (4). Equation (3)
is true for any linear regression with any number of predictors
whereas Eq. (4) holds only for the straight-line case. In more
general regression problems, the regression coefficients are also
related to correlation of the type rxy but in a more complicated
manner (3).

COVARIANCE
The covariance between two random variables x and y, with

a joint normal distribution, is a measure of correlation of the
fluctuation of two quantities and is defined as (31) the expected
value of the product of the deviations of x and y from their ex-
pected values (true or population means). The sample covariance
is given by

cov(x, y) = 1

n − 1

∑
(xi − x̄)(yi − ȳ). [5]

It is a simple algebraic exercise to prove (31, 32) that it sat-
isfies the so-called Schwartz inequality

cov(x, y) ≤ sx sy, [6]

which implies immediately that r ≤ 1.
The covariance is a measure of the correlation between x and

y. If two variables are related in a linear way, then the covariance
will be positive or negative depending on whether the relation-
ship has a positive or negative slope. If x and y are independent,
i.e., not correlated, the covariance is zero. However, the converse
is not necessarily true (33), for it is possible to construct exam-
ples of highly dependent random variables, often in a nonlinear
way, whose covariance (correlation) is zero. Although the co-
variance is often ignored in introductory textbooks, the variance
is the special case of the covariance of a random variable with

itself. The square root of the variance is called the standard devi-
ation (denoted by σ for the population and by s for the sample)
and is always positive. Covariance have to be taken into account
at least in cases where realistic uncertainty budgets have to be
calculated or traceability chains have to be built up (34). Stan-
dard addition method, for example, inevitably leads to correlated
data. Here, covariances must be taken into account (35, 36). The
determination of the boiling point of water from measurements
of its vapour pressure constitutes (37, 38) a dramatic example
of the need to consider the covariance.

COVARIANCE AND CORRELATION
The covariance is often not a useful descriptive measure of

association, because its value depends on the scales of measure-
ments for x and y, and then it must be standardized before it
can be used as a generally applicable measure of association.
By dividing the sample covariance by the product of the sample
standard deviation of x and y, sx and sy , respectively, we obtain
(31) the sample correlation coefficient rxy. A simpler formula
can be used: rxy is the covariance between two standardized
variables zx and zy , and is independent of the scales chosen

ry = cov(x, y)

sx sy
= 1

n − 1

∑ (
xi − x̄

sx

)(
yi − ȳ

sy

)

= 1

n − 1

∑
zx zy . [7]

Also we get

rxy =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2(yi − ȳ)2

= SXY√
SXXSYY

. [8]

The part above the line in this equation is a measure of the de-
gree to which x and y, vary together (using the deviations of
each from the mean). The part below the line is a measure of the
degree to which x and y varies separately. Eq. (8) describes rxy

as the centered and standardized sum of cross-product of two
variables and allows the direct computational formula for rxy,
which automatically furnishes the proper sign (Table 3). The as-
sumption (x1− x̄) (y1− ȳ) �= 0 eliminates vertical and horizontal
lines (Figure 3). Notice that rxy has the same value whether n or
n − 1 is chosen as the common divisor for cov(x, y), s2

x and s2
y .

TABLE 3
Signs of the differences with respect to the mean values on

quadrant location (49)

Quadrant xi − x̄ yi − ȳ (xi − x̄)(yi − ȳ)

I Upper right + + +
II Upper left − + −
III Lower left − − +
IV Lower right + − −

The denominator will always be positive (unless all of the x’s or all
the y’s are equal.
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FIG. 3. Some examples of linear independence, r = 0, and func-
tional dependence.

We shall call r without subscript in that follows. Although the
signs of the sample correlation and the sample covariance are
the same, r is ordinarily easier to interpret because its magnitude
is bounded. Thus the interpretation of correlation as a measure

FIG. 4. Linear independence and functional dependence: elipse
(�) (x − a)2 + (y − b)2 = k, and non linear relationships y = x2

(parabole) and y = √
x (fractionary power).

of relationships is usually more tractable than that of the covari-
ance, and different correlations are more easily (39) compared.

CORRELATION AND NONLINEAR ASSOCIATION
The quantities cov(x, y) and r do not, in general, convey all

there is to know about the association between two variables.
Nonlinear association can exist that are not revealed by this de-
scriptive statistics (40). Data may be highly correlated but have a
zero linear correlation coefficient, as it occurs (41) with the func-
tion y = x2 (Figure 4) for which r= 0. However, if we restrict x
values in Figure 4 to positive values, the correlation coefficient is
0.963. The correlation coefficient of (xi , yi ) points for y = √

x in
Figure 4 is 0.966 instead. Then, the correlation coefficient may
remain less than unity, although the relationship between x and
y is rigorously functional one. Plenty of physical laws, for ex-
ample, lead to quadratic relation (31) of the form y = a0 +a1x +
a2x2. It should be noted that r examines only possible linear rela-
tionships between sets of continuous, normally distributed data.
Other mathematical relationships (log, log/linear, exponential,
etc.) between data sets exist which require either the use of an-
other correlation testing method or that one or more of the data
sets be transformed (Table 2) so that they are of linear nature (42).

CORRELATION AND HETEROSCEDASTICITY
Minimal measurement error is assumed since low reliability

attenuates the correlation coefficient (43). The conventional test
of correlation coefficient is derived under the assumption that
x and y are independent. An implication of this assumption is
that the error term, when predicting y from x is homoscedas-
tic (44). Otherwise the correlation coefficient is a misleading
average of points of higher and lower correlation (43). Imper-
fect validity of one or both variables in the correlation degrades
the apparent relationship between them (45). If variance is trun-
cated or restricted in one or both variables due, for instance, to
poor sampling, this can also lead to attenuation of the correlation
coefficient. Heteroscedasticity plays a role when applying a con-
ventional method aimed at establishing whether two variables
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are dependent. This problem may be substantially corrected by
using the modified percentile bootstrap method. Readers inter-
ested in this issue can refer to reference (44).

CORRELATION AND OUTLIERS
Covariance and correlation coefficient can be very sensitive

to “wild” observations (“outliers”) and may indicate associa-
tion when, in fact, little exists. Suspect observations must be
accounted for by correcting obvious recording mistakes and by
taking actions consistent with the identified causes (40). Note
that over a few high or low points can have a large effect on
the value of r ; therefore it is useful to inspect a plot of the data
and be sure that the data covers the range in a fairly uniform
way. Depending upon where the outlier falls r may be increased
or decreased. In fact, one point, properly placed, can cause the
correlation coefficient to take on virtually any value between −1
and +1 (Figure 5A, B), so care must be taken when interpreting
the value of r (44). However, remove points of influence (lever-

FIG. 5. A simple aberrant point can alter r by a large amount.
The solid lines are least squares regression line. A: r = 0 without
the extreme value. B: r = 0.917 without the extreme value.

age, bias and outlying points) only if a reason can be found for
their aberrant behaviour. The smaller the sample size the greater
the effect of the outlier. Problems with outliers can be mini-
mized by making duplicate measurements, carefully inspecting
and plotting the data at the time it is collected and retesting
discrepant results while the specimen are still available (46).

As examples of strategies where we guard against both un-
usual x values and y values we get the Winsorized correlation
coefficient (44), which compensates for this by setting the tail
values equal to a certain percentile value. Then, the standard
correlation formula is applied. Spearman’s rho converts the ob-
servations to so-called ranks.

CORRELATION, STRATIFICATION AND INTERVAL
PROPERTY REQUERIMENT

Sometimes, the scatter diagrams do not reflect satisfactorily
the relationship between variables (47). In Figure 6A data
corresponding to random variables raw matter and its resistance
are compiled as such. The plot of points is a random cloud with
no visible pattern. In Figure 6B, data were classified according
to the place where the raw matter was acquired, identified with
different symbols. Then, when it is possible to stratify one of
the variables it is recommended to elaborate diagram such as,
by using different colours or symbols. It is possible even the
contrary phenomenon to occur: correlation may not be detected
(47) if data are stratified, but detected when we ignore it. When
experimental data are obtained in controlled production condi-
tions, they may not reflect the existence of relationship in spite
that theoretically a variable is influenced by the other (Figure 7).
Thus, correct interpretation of a correlation coefficient requires
the assumption that both variables, x and y, meet the interval
property requirement (44) of their respective measurement
systems.

r VALUES
The basis of the correlation coefficient concept can be seen

if two straight lines at right angles, and parallel to the axes,
are drawn to the point representing the mean values x and y, as
shown in Figure 8, where the dissolution speed of a streptomycin
powder (a rapid dissolution being appreciated by the patient) is
depicted versus the density of streptomycin solution previous to

FIG. 6. A: overall scatter diagram. B: scatter diagram with strat-
ified data.
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FIG. 7. A restricted range value may mask a linear relationship.

the dry step (48). If y is positively related to x , the majority of
the points will be located in the ++ upper right and − − lower
left quadrants, if they are negatively related, the points will lie
in the − + upper left and + − lower right quadrants, and if they
are unrelated, the points will uniformly located in all four areas.
When r = 0, the points scatter widely about the plot, the majority
falling roughly in the shape of a circle. As the linear relationship
increases, the circle becomes more and more elliptical in shape
until the limiting case is reached (r = 1 or r = − 1) and all the
points fall on a straight line.

What constitutes a satisfactory correlation coefficient is de-
pendent on the purpose of which is to be used, and on the nature
of raw data. Table 4 provides a rule-of-thumb scale for evalu-
ating the correlation coefficient. The greater n is, the lower the
acceptable correlation coefficient. Correlations even as high as
0.6 do not look that different from correlations of 0.1; i.e., they
do not mean much if the goal is to predict individual values of
one variable from the other (49). For a linear regression between
two physical properties involving five pairs of results, a corre-
lation coefficient in excess of 0.990 would be sought, but In the
quantitative structure-activity relationships (QSAR) of medici-
nal chemistry, coefficients of around 0.95 are often quoted (50).
In some procedures, for example cluster analysis, considerably
lower correlation coefficients can be considered important.

Atomic absorption spectrophotometry (AAS) and differential
pulse stripping voltammetry (DPSV) as independent methods

TABLE 4
Strength of correlation (46)

Size of r Interpretation

0.90 to 1.00 Very high correlation
0.70 to 1.89 High correlation
0.50 to 0.69 Moderate correlation
0.30 to 0.49 Low correlation
0.00 to 0.29 Little if any correlation

FIG. 8. Dissolution rate of a streptomycin power. A: scatter di-
agram. B: axis at x̄ and ȳ included. C: centered data.

were used in connection with an appropriate digestion or pre-
treatment procedure for the analysis of trace and ultratrace of
metals in environmental and biological matrices (51). Some of
the results obtained are summarized in Figure 9. The various
correlation diagrams depicted should give the reader an intuitive
feeling for the concept of correlation. Notice that the plots show
increasing scatter as the r value decreases toward 0.

From Eq. (8) we derive a simple computational formula,
namely

r = SXY√
SXXSYY

=
∑

xi yi −
∑

(xi yi )2

n√(∑
x2

i − (
∑

xi )2

n

)(∑
y2

i − (
∑

yi )2

n

) . [9]
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FIG. 9. Method comparison for the detection of trace levels of cadmium and lead in biological fluids (in ng/ml) by atomic
absorption spectrometry (AAS) and differential pulse stripping anodic voltammetry (DPSAV). NQCS: British National Quality
Control Scheme (51).
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One advantage of this equation over Eq. 8 is the fact that rounding
off is not necessary until the square root and the final division
are taken. However, the form of Eq. (9) is unstable. It has the
property that it suffers (52) from subtractive cancellation for data
set with small coefficient of variation. A method designed for
hand calculation with a few observations, each of which is small
in magnitude, is not appropriate for use (52–54) in a computer
program, which may handle a great many observations whose
magnitude may be large. In practical terms r is the ratio of
two very similar numbers. The numerators and denominators
in Eq. (9) must therefore be calculated using a large number of
significant figures, and the value of r should be rounded (often
to two, three or four decimal places) at the end of the calculation.
Eq. (9) then requires double precision or better. If this precaution
is not taken, r values > 1 can easily be obtained in error (55).
There is no point in quoting r to more than three or at most four
decimal places, unless one is absolutely sure that the algorithm
is not the limiting factor (56). Note that r according Eq. (9) is
invariant to any linear transformation of either variable, i.e., to
both shift of the intercept and change of scaling (57). However,
it is affected by rotation of coordinates.

In summary, the following factors (44) influence the value of
r : (i) the magnitude of the residuals; (ii) the slope of the line
around which points are clustered; (iii) outliers; (iv) curvature;
(v) a restriction range. So, if we are told r, and nothing else,
we cannot deduce much about the details of how x and y are
related. If the data do not have a normal distribution either or
both variables can be transformed, a non-parametric correlation
coefficient can be calculates. People perceives association not
as proportional to the correlation coefficient but as proportional
to 1 − √

1 − r2 (49).

COEFFICIENT OF MULTIPLE CORRELATION R,
CORRELATION COEFFICIENT r, AND COEFFICIENT OF
ALIENATION k

The correlation coefficient, r , is a standardized index for
which the value does not depend on the measurement scales
of the variables. Its values lies (58) in the range (−1, 1), and
its squared value describes (59) the proportional reduction in
variability of one variable when the other is held constant. It is
worth noting that since for any r2 other than 0 or 1, |r2| < r ; r
may give the impression of a closer relationship (60) between
x and y than does the corresponding r2. Therefore, although
the correlation coefficient is by itself an important measure of
relationship between the variables, it is R squared that permits
comparison of the strengths of relationships.

The reasons for making a distinction (41, 5) between r and
R are that i) r is a measure of association between two random
variables, whereas R is a measure between a random variable y
and its prediction ŷ from a regression model; ii) R is always well
defined, regardless of whether the independent variable assumed
to be random or fixed. In contrast, calculating the correlation
between a random variable, y, and a fixed predictor variable x ,
that is, a variable that is not considered random, makes no sense.

Because r2 gives the proportion of variance that is common
between the two variables x and y, the uncommon or unique
variance is the remainder, and this is known as the coefficient
of nondetermination and is usually symbolized as k2 = 1 − r2.
Some statisticians refer to (61) the coefficient of alienation k,
which indicates the degree of lack of relationship.

POPULATION AND SAMPLE CORRELATION
COEFFICICIENT

The population analogue of r , i.e., the value of r if all subjects
could be measured, is typically labelled ρ. It can be shown that
the expected value and variance of r are defined approximately
by (62)

E(r ) = ρ

(
1 − 1 − ρ2

2n
+ · · ·

)
≈ ρ [10]

σ 2(r ) = (1 − ρ2)2

n

(
1 + 11ρ2

2n
+ · · ·

)
≈ (1 − ρ2)2

n
[11]

respectively, provided that n is not too small. The Pearson cor-
relation coefficient of linear correlation r has a complicated dis-
tribution involving special functions (59); with ρ �= 0 and n > 3
may be expressed in the form

p(r ) = 2n−3

π (n − 3)!
(1 − ρ2)

n−1
2 (1 − r2)

n−4
2

×
∞∑

i = 0

[



(
n + i − 1

2

)]2 (2ρr )i

i!
[12]

for −1 ≤ r ≤ 1, −1 ≤ ρ ≤ 1; = 0, elsewhere.
As ρ approaches +1 or −1, the sampling variance decreases,

so that when ρ is either at +1 or −1, all sample values equal the
parameter and the sample variance is zero. The shape becomes
increasingly normal with large values of n, and becomes in-
creasingly skewed with increasing |ρ|. The sample variance and
thus the significance test, depend upon the size of the population
correlation and the sample size. When ρ = 0, r is symmetrically
distributed about zero, and the mean of the sampling distribution
does equal the parameter. As ρ increases from zero (becomes
positive), the sampling distribution becomes negatively skewed.
As ρ becomes negative, the sampling distribution becomes pos-
itively skewed.

Table 5 gives the 5% significance values for varying numbers
of points. The significance of i.e., r = 0.9, is much greater when
the sample size is very large than when the sample size is very
small. For a small sample size, the alignment of the (xi , yi ) data
points along a straight line may be fortuitous. However, when
many data points lie along a straight line, the case becomes much
more convincing or significant. Care should be exercised when
using significance tables, since some tables are one-tails and
others are two-tailed (63). A one-tailed test should be used when
only a direct relationship or only an inverse relationship between
the x and y values is of importance, while a two-tailed test should
be used whenever both direct and inverse relationships between
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TABLE 5
Significance values of r

for varying number of (x, y) points

5% significance value for Pearson’s r

n Two tailed One tailed

3 0.997
4 0.950
5 0.878 0.805
6 0.811 0.729
7 0.754 0.669
8 0.707 0.621
9 0.666 0.582

10 0.632 0.549
11 0.602 0.521
12 0.576 0.497

the x and y values are equally important. Look up r in the table
(ignoring + or − sign). If our calculated r -value exceeds the
tabulated value at p = 0.05, then the correlation is significant.
The number of degrees of freedom is two less than the number
of points on the graph. The correlation coefficient r must lie in
the range 0 ≤ r ≤ 1, but in practice, because of random errors,
0 < r < 1.

CAUSE AND EFFECT INFERENCE FROM
THE CORRELATION COEFFICIENT?

If two random variables x and y are statistically independent,
their correlation coefficient is zero. However, the converse is not
true; i.e., if r = 0, this does not necessarily imply that x and y
are statistically independent (64). The correlation coefficient is
thus an estimate of association between the variables and is valid
only when the observations are randomly drawn. Many statistical
software packages include a program for such calculation and the
correlation coefficient r , is routinely printed out in connection
with other statistical parameters.

The correlation coefficient provides information about ran-
dom error, but r cannot be easily interpreted (65, 66) and there-
fore it is of no practical use in statistical analysis of comparison
data. Caution must be exercised in drawing inferences about
cause and effect (41) from correlation coefficients. The corre-
lation coefficient is often (67) misunderstood. A positive cor-
relation simply means that y is believed to increase when x
increases. However, it must not be considered necessarily to
indicate a causal relationship. There must be something that
causes both to change. One should be keenly aware of the com-
mon occurrence of spurious correlations due to indirect causes
or remote mechanisms (68).

Perhaps, the best known example where overwhelmingly
strong evidence of statistical correlation was adduced is in
the classic studies of Fisher (69, 70) on the relationship be-
tween cigarette smoking and the incidence of lung cancer. The

incidence of lung cancer depends on many different factors; there
is no true relationship between the number of cigarettes smoked
and the date of incidence of the disease. Smoking is simply one
factor, an important one, which affects the chance of incidence.

In either case the determination of causation involves a scien-
tific study of the subject, possibly using additional experimental
data, statistics being merely one of the more powerful tools in ar-
riving at the right answer. Sociologists have developed a branch
of correlational analysis, called path analysis, precisely to de-
termine causation from correlation (49).

CRUDE TEST FOR LINEARITY?
The correlation coefficient, r , has often been used as a crude

test for linearity on the grounds (68) that a linear calibration
function nearly always gives a high correlation coefficient. How-
ever, the converse is not true: a correlation coefficient close to
unity does not necessarily indicate a linear calibration function.
Moreover, the numerical value of r cannot be interpreted in
terms of degree of deviation from linearity, and so, the exper-
imenter should be very careful when drawing conclusions on
the basis of these deceptively simple numbers (67, 72–73). In a
residual analysis, the difference for each data point between the
true y value as determined from the best fit are plotted for each
x value of the data points. A residual plot is the best indicator of
goodness of fit of experimental data (74) giving useful informa-
tion to validate the chosen regression model. The residual plot
can be used to check whether the underlying assumptions, like
normality of the residuals and homoscedasticity, are met as for
evaluating the goodness of fit of the regression model (75). Even
rather, poor calibration graphs, i.e., with significant y-direction
errors, will have r values close to 1 (or −1), values of |r | <
about 0.98 being unusual. Even worse, points that clearly lie on
a gentle curve can easily give high values of |r |.

Many analysts depend entirely (76) on the use of r2 (or r )
value between 0.999 and 1.000 as an acceptability criterion. This
is well known to be inadequate and many chemometrics experts
have expressed concern that publications are still accepted with
this minimum data. By itself, the correlation coefficient gives
only a relative idea of the linearity inherent in a particular data set
(53) and supplementary criteria are needed. Data sets in which
non-linear deviation is concentrated (77) in 1 or 2 areas of a graph
(e.g., at the upper and lower ends) and data sets that are subject
to slight but overall persistent curvature are prime examples of
this problem. Very large percentage errors at the lower end of
concentration range can coexist (76) with acceptable correlation
r2 and are grossly underestimated by confidence limits from an
analysis of the errors in slope and intercept.

Carbon dioxide is a material of interest as supercritical sol-
vent and has been used for, e.g., removing caffeine from cof-
fee. The data for its vapour pressure as a function of tempera-
ture are by no means linear (78, 79). We may expect, however,
ln P versus 1/T to be linear (Clausius–Clapeyron equation)
(Figure 10A). Similar results to those depicted in Figure 10A
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FIG. 10. Vapor pressure of carbon dioxide as a function of temperature according to the Clausius-Clapeyro equation (A) and a
more complicated model (B).

were obtained, however, when a weighting factor of wi = P2
i is

applied on the basis of the transformation being used (21). The
residual plot can be incorporated to the line resulting from the
least squares fit of the model to the data to show the extent of
the agreement between data and model. Results (Figure 10A)
led to a 0.999988 76 correlation coefficient for the fit (Excel
2002). This near perfect fit was in fact, a very bad one in terms
of the potential quality of the fit as indicated by the residual
pattern. The error is not in the data, but in the model. A more
general form of that equation is

ln P = A + B

T
+ C ln T + DT + ET 2. [13]

The results obtained in this case (multiple linear regression anal-
ysis) are greatly superior to the linear equation, the residuals
being randomly scattered (Figure 10B).

A Gamma-ray energy versus channel number calibration
(80) led to a 0.999999 correlation coefficient for the fit (given
by a computer program limited to six decimal digits). This
near perfect fit was in fact, a very bad one in terms of the
potential quality of the fit (residual pattern). Although r was
> 0.999 for a HPLC method for mannitol (internal standard)
based on the measure of the peak area ratio versus manni-
tol concentration for standards, the plot indicates (81) de-
viations from linearity at low and high concentrations. In
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consequence, analysts should avoid being misled by the cor-
relation coefficient.

Actually this quantity is intended as a measure of statistical
relationships and therefore it has little to do with functional rela-
tions such as calibration curves; it ought not to even appear (71).

CORRELATION COEFFICIENT AND SLOPE
Correlation is simply a scaled (by the ratio of the spread of

the xi divided by the spread of the yi ) version of the slope (82),
i.e., the slope estimate multiplied by a factor to keep r always
between −1 and +1

r = rxy = a1
sx

sy
= ryx = a′

1
sy

sx
[14]

(a′
1 is the slope of the regression line of x on y). The level of

significance of correlation given by the correlation coefficient
is the same (83) as the level of significance of the slope of the
regression line given by the t test of t = a1/sa1 . In consequence,
standard errors of the parameters are the first thing to look at
in a regression printout, in order to see if all parameters are
significant, and second at the residuals of the regression to see
if these are random. Only if one has more than one regression
on more than one model to the same data should they—third—
compare r -values, or better z-values, as shown in the following.
We can note that r is symmetrical with respect to x and y being
also given by a geometric mean (7)

r =
√

a1a′
1. [15]

THE FISCHER z-TRANSFORMATION FOR r
With a small-size sample and a relatively close correlation,

the distribution of the correlation coefficients substantially dif-
fers from normal. What we require (84) is a transformation
to a measurement scale that will give: (a) homogeneous vari-
ance; (b) at least approximate normality; (c) non-constrained
response values; with d) a simple form for the expected value
of the response variable; and (e) independence of the observed
response values. Still another alternative for the test of signifi-
cance when n is only moderately large ( >10) uses the Fisher’s z-
transformation to associate each measured r with a correspond-
ing z(3).

Let g represent ρ expressed in a transformed scale defined by

g = f (ρ). [16]

By applying the law of random error propagation (31) we get

σ 2
g =

(
∂ f (ρ)

∂ρ

)2

σ 2
ρ . [17]

As we wish to select the function f (ρ) in such a way that σ 2
g

be a constant C2, then from Eq. (16), the transformation of scale
to achieve homocedasticity is given (85) by the differential

d f (ρ) = Cdρ

sρ

= C
√

n

1 − ρ2
dρ, [18]

which upon integration led to

g = f (ρ) = C
√

n
∫ (

1

1 − ρ
− 1

1 + ρ

)
dρ

= C
√

n ln

(
1 + ρ

1 − ρ

)
+ K , [19]

where K is an arbitrary constant (usually for C = 1/
√

n and
K = 0). The function

E(z) = 1

2
ln

(
1 + ρ

1 − ρ

)
[20]

is known as Fischer z transformation for the correlation coeffi-
cient, which has a variance of

σ 2
z = 1

n − 3
. [21]

For sample values, z, s2
z and r , replaces E(z), σ 2

z , and ρ, respec-
tively, in Eqs. (20) and (21).

Relative to the correlation coefficient z has a simpler dis-
tribution; its variance is more nearly independent of the corre-
sponding population parameter; and it converges more quickly to
normality (86). The approximation would be helpful only when
µ = E (z) is large compared with σ . This does often happen in
problems of physical interest, i.e., in the context of calibration
and parameter estimation studies. The inclusion of further terms
of the expansion for the mean and variance of z (in Eqs. (10) and
(11)) increases the accuracy of the approximations considerably,
and the values using the second approximation for z are closer
to the exact values than any (87).

Table 6 gives a number of r values and the corresponding
z values. Note that if the correlation is negative, the z value
should be negative: tanh−1(r ) = − tanh−1(−r ). Fisher z values
are much practical, because basically, count the nines of r for
you. Besides, they tend to have a normal distribution and are
much easier to work with.

The computation of the correlation coefficient distribution
according to Eq. (12) can be easily carried out with a pocket
calculator (88). We have used the algorithm proposed in the
Gunther paper (88) to write a program in FORTRAN and the
corresponding results for ρ = 0.999 and n = 12 were collected
from r = ρ−1.96(1−ρ2)/

√
n to r = ρ+1.96(1−ρ2)/

√
n with

TABLE 6
Some selected r values and the corresponding z values

r z r z

0.300 0.310 0.999 3.800
0.500 0.549 0.9999 4.952
0.700 0.973 0.99999 6.103
0.900 1.472 0.999999 7.254
0.997 3.250 0.9999999 8.406
0.998 3.453 0.99999999 9.557
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a step suitable to obtain about 100,000 points. The obtained dis-
tribution is skewed (Figure 11A). By applying the Fisher trans-
formation

z = 1

2
ln

1 + r

1 − r
[22]

the distribution tends to a normal one with population mean
given by Eq. (20) and population standard deviation given by
Eq. (21). The skewness close to zero (0.00063) and the kurtosis
very near to three (2.9955) agree well with the normal distribu-
tion (62). This finding can be proved by Monte Carlo simulation
(100,000 trials) using Crystal Ball software (89). The corre-
sponding outputs are included in the Excel file (Figure 11A).

The same r and z distributions were obtained for 365 samples
instead of 100,000 in order to represent the possible r values
obtained during 1 year from daily calibration. In this later case,
taking into account the lesser number of iterations, 365, Monte
Carlo simulation being carried out by Latin hypercube sampling.
Results are depicted in Figure 11B. The skewness in this latter
case is 0.05 and the kurtosis 3.13.

(A)

FIG. 11. (A) Simulation run of 100000 r ′s from a bivariate population having a theoretical correlation coefficient of 0.999 (n = 12)
together with their corresponding z distribution values. (B) Simulation run of 365 r ′s from a bivariate population having a theoretical
correlation coefficient of 0.999 (n = 12) together with their corresponding z distribution values. (Continued)

CONFIDENCE INTERVAL AND TESTS OF SIGNIFICANCE
FOR CORRELATION COEFFICIENT

The degree of uncertainty of the correlation coefficient can
be estimated (90, 91) if x and y have a joint bivariate normal dis-
tribution. Confidence intervals may be constructed in the usual
way by constructing a confidence interval in the transformed
scale and transforming then back into the original scale. We can
construct a 95% confidence interval for z as being from

z1 = z − 1.96/
√

n − 3 to z2 = z + 1.96/
√

n − 3. [23]

For the 90 % confidence interval, the standard error is multiplied
by 1.645 and for 99% by 2.576. We back transform the above
values to get a confidence interval for the population correlation
coefficient r as

e2z1 − 1

e2z1 + 1
to

e2z2 − 1

e2z2 + 1
. [24]

Example 1
The experimental and calculated values of ln(1/I C50) have

been determined (92) for a series of 42 1,2-diarylimidazole



54 A. G. ASUERO ET AL.

(B)

FIG. 11. (Continued)

derivatives with cyclooxygenase inhibitory activities in a QSAR
analysis. Molar concentration causing 50% inhibition of en-
zyme was expressed as I C50. For the data obtained, the cor-
relation coefficient was estimated as 0.896. Then, z = 1.4516,
z2=1.7655, z1=1.1377, and the 95% confidence interval for
the correlation coefficient is 0.813 to 0.943. Notice that
the confidence limits in the above example are not spaced
equally on each side of the observed value. That happens
with non-normally distributed statistics like the correlation
coefficient. Most other statistics are normally distributed, so
the observed value falls in the middle of the confidence
interval.

Often, it is necessary to determine whether one correlation
is significantly different from another (H0 : ρ1 = ρ2), the differ-
ence being computed between different-sized random samples.
To perform this test, convert the two correlations to z-scores (z1

and z2) and estimate the standard error of the difference between
the two correlations as

s =
√

1

n1 − 3
+ 1

n2 − 3
, [25]

where n1 and n2 are the sample sizes of the two independent
samples. Divide the difference between the two z-scores by the
standard error to yield a normal curve deviate (expected value
equal to 0 and variance equal to 1).

U (z) = z1 − z2√
1

n1−3 + 1
n2−3

. [26]

If the z value for the difference computed is 1.96 or higher,
the difference in the correlations is significant at the 0.05 level.

Example 2
The calibration curve in Figure 12A, shows fluorescence

readings of a series of standards (93). The calibration line with
r= 0.995 21, is noticeable curved. In order to check for sys-
tematic deviations between data and model, it is recommended
that a plot be made of the resulting residuals (ε) against the y
values as shown in Figure 12A). The pattern observed in the
residual plot shows the equation being fitted is inadequate and
should possibly contain higher order terms to accommodate the
curvature. One way to handle a curved calibration line is to fit
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FIG. 12. Fluorescence readings of a series of standards. A: y = a0 +a1x model. B: y = a0 +a1x +a2x2 model. Reduce residual =
ε/sy/x .

the line to a power series. A quadratic equation (Figure 12B) is
usually sufficient to fit: the scatter above and below the zero line
is about the same in this case.

Example 3
We wish to test if there is a significant difference between the

correlations, 0.769 and 0.711, corresponding to the resistance
versus raw matter stratification example of Figure 5A,B. Then,
z1 = 1.018, z2 = 0.889, and U (z) = 0.437, much smaller than
1.96, and thus not significant at the 0.05 level.

CORRELATION IN MULTIVARIATE ANALYSIS
In multivariate experimentation (e.g., with two variables) it

is often desirable to choose one’s experiments (e.g., the concen-

tration of two reactants in a kinetic experiment) such as there is
no correlation in the design. This is the basic principle of exper-
imental design (94). All in all, when the experimenter plans his
experiments, he achieves desired results in a more economical
manner (95). A convenient way of summarizing a large number
of correlation coefficients is to put them in a single table, called
a correlation matrix. The correlation of any variable with itself is
necessarily 1. Thus the diagonals of the matrix are the unity. As
the correlation coefficient is non-directional, rk j = r jk . So, the
correlation matrix is symmetrical around the diagonal, and only
n2 −n−(n−1)/2 = n(n−1)/2 terms need to be computed (96).
The correlation matrix plays a central role in multivariate statis-
tics and is used when dealing with distances and display methods
(97). Correlations, especially in many variables, can become a
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very messy subject. For this reason, it is highly desirable where
possible to choose the variables in a multi-dimensional problem
in such a way that the errors are normal and uncorrelated.

CONCLUDING REMARKS
Two scatterplots with the same statistical information can

appear different because our ability to process and recognize
patterns depends on how the data are displayed (98, 99). Corre-
lation is usually applied to relationship of continuous variables,
and is best visualized as scatterplot or correlation diagram. The
correlation coefficient r has been interpreted in great many ways
(5). The meaning of this concept is not easy to grasp (100). Re-
gression and correlation are very closely related. In fact the t-test
of the null hypothesis of zero correlation is exactly equivalent to
that for the hypothesis of zero slope in regression analysis—the
two values are identical (80). We note, however, that a mea-
sure of statistical relationship, such as a correlation coefficient
should never be used to deduce a causal connection; our ideas
on causation must come from outside statistics. Statistical calcu-
lations that neglect correlations often result in incorrect results
and erroneous conclusions (41).

The correlation coefficient in its many forms has become the
workhorse of quantitative research and analysis (101). And well
it should be, for our empirical knowledge is fundamentally of co-
varying things. The interpretations of the r statistic, however, can
be completely meaningless if the joint distribution of the vari-
ables x and y is too different from a binormal distribution (102).
When the joint distribution of random variables is not normal
and the sample contains strong outliers, the normalized transfor-
mation is not valid and the correlation coefficient is not suitable
for expressing a stochastic association. We can then use various
robust estimates of correlation coefficients, which apply robust
estimates of parameters of location, spread and covariance (103).

Although correlation is a symmetric concept of two variables,
this is not the case for regression where we distinguish a response
from an explanatory variable. When two variables are function-
ally related (104, 105), it is meaningless to calculate a r . This
will often be apparent from a causal look at a graph of the data.
It is when the data scatters markedly and when the graph is hard
to draw that the r may begin to take importance. In fitting func-
tional models, values of r and R2 close to + 1 or −1 do provide
(105) an aura of respectability, but not much else. In addition,
although the correlation coefficient is conceptually simple and
attractive, and is frequently used as a measure of how well a
model fits a set of data, it is not, by itself, a good measure of the
factors as they appear in the model (11, 106), primarily because
it does not take into account (107–110) the degrees of freedom.

A high value of r is thus seen to be no guarantee at all that a
straight line rather than a curve, is appropriate for a given cal-
ibration plot. It is for this reason that the plot must always be
inspected visually. It is surprising, given these obvious inade-
quacies, that the r , had been used so frequently to assess the
linearity of calibration graphs and other plots. There are many
warnings in the literature (55, 111–113) on the dangers of doing

this. In short, the r value is in reality not a measure of model
adequacy (74) and then, r can, or has to be replaced by other
statistical tools such as rank correlation, regression analysis and
specific tests of linearity. Residual analysis on this respect is a
good way to decide if a linear fit was a good choice (10).

In summary, the r parameter is of limited value due to
that r values cannot be meaningfully compared if they are ob-
tained from curves based on different standards, curve shape
can change without necessarily affecting r , r values do not yield
quantitative comparison of data quality, even if the same stan-
dards are used and the r value does not indicate whether the
chosen mathematical model (e.g., a first-or second-order equa-
tion) adequately fits the data. In addition, a correlation coeffi-
cient does not give indication of the error associated (75) with
an individual measurement.

When r is tested to be not equal to zero the use of the Fisher
transformation produces a statistic that is distributed normally.
This transformation is referred to as Fisher’s z transformation;
that is, the z-statistic. Fisher z-values are much more practical
than r values because they tend to have a normal distribution
and are therefore much easier to work with. Apart from its nor-
malizing properties, the great practical advantage of the z trans-
formation is that it gives a variance which, to order (n − 3)−1 is
independent of r .
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