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Probability function for discrete numerical variables → P(x): probability of number x
Σx∈AP(x): probability of the set A

Probability density function for continuous numerical variables → f(x): density of x
∫x∈A f(x)dx: probability of A

Probability 
distribution :
each event E is given 
a probability P(E)

Games of chance
Game where a 
randomizing device (dice, 
playing cards, roulette 
wheels, lottery, …) 
influences the outcome 

Each of the possible 
outcomes has a given 
probability of occurrence

Brief Notes on Probability and Inference
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Inferential Statistics and Probability Theory

(a) Sample data 
processing for 
obtaining informationInferential Statistics is 

based on  
(b) Probabilistic 

assumptions

Observed data are 
determinations of  
random variables X1 
,…,Xn characterized by 
unknown probability 
distributions (e.g. 
Binomial, Poisson, 
Normal, …)

Information provided by sample statistics leads to plausible (but 
uncertain) results, also computing the risk of making wrong 
decisions 

Parametric methods assume that distribution functions are known except for some unknown 
parameters 
Nonparametric methods are based on less stringent assumptions and give more importance 
on (a)

Brief Notes on Probability and Inference
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Probability Distributions

Continuous
Probability 

Distributions

Binomial

Poisson

Probability 
Distributions

Discrete
Probability 

Distributions

Normal
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Brief Notes on Probability and Inference

� A probability distribution for a discrete random
variable is a mutually exclusive listing of all possible
numerical outcomes for that variable and a probability of
occurrence associated with each outcome.

Number of Classes Taken Probability

2 0.2

3 0.4

4 0.24

5 0.16
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Experiment:  Toss 2 Coins.    Let  X = # heads.

T

T

Brief Notes on Probability and Inference

4 possible outcomes

T
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Probability Distribution

0      1      2         X     

X Value Probability 

0            1/4 = 0.25

1            2/4 = 0.50

2            1/4 = 0.25
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Brief Notes on Probability and Inference

� Expected Value (or mean) of a discrete
random variable (Weighted Average)

� Example: Toss 2 coins, 
X = # of heads, 

compute expected value of X:
E(X) = ((0)(0.25) + (1)(0.50) + (2)(0.25)) 

= 1.0

X          P(X)

0          0.25

1          0.50

2          0.25
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� Variance of a discrete random variable

� Standard Deviation of a discrete random variable

Brief Notes on Probability and Inference
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� Example: Toss 2 coins, X = # heads, 
compute standard deviation (recall E(X) = 1)

Brief Notes on Probability and Inference
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(continued)

Possible number of heads 
= 0, 1, or 2
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Brief Notes on Probability and Inference

� A continuous random variable is a variable that 
can assume any value on a continuum (can 
assume an uncountable number of values)
� thickness of an item
� time required to complete a task
� temperature of a solution
� height, in centimeters
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f(x): probability density function 
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Brief Notes on Probability and Inference

� ‘Bell Shaped ’
� Symmetrical
� Mean, Median and Mode

are Equal
Location is determined by the 
mean, μ

Spread is determined by the 
standard deviation, σ

The random variable has an 
infinite theoretical range: 
+ ∞ to  − ∞

Mean 
= Median 
= Mode

X

f(X)

μ

σ



Brief Notes on Probability and Inference
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� The formula for the normal probability density function is

Where e = the mathematical constant approximated by 2.71828
π = the mathematical constant approximated by 3.14159
μ = the population mean
σ = the population standard deviation
X = any value of the continuous variable
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Brief Notes on Probability and Inference

a b X

f(X) P a X b( )≤

Probability is measured by the area 
under the curve

≤

P a X b( )<<=
(Note that the 
probability of any 
individual value is zero)
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Brief Notes on Probability and Inference

� Not all continuous distributions are normal

� It is important to evaluate the plausibility of the 
assumption of normality.

� Normally distributed data should approximate the 
theoretical normal distribution:
� The normal distribution is bell shaped (symmetrical) 

where the mean is equal to the median.

� The empirical rule applies to the normal distribution.

� The interquartile range of a normal distribution is 1.33 
standard deviations.
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Brief Notes on Probability and Inference

Comparing data characteristics to theoretical 
properties

�Construct charts or graphs
� For small- or moderate-sized data sets, construct a boxplot to 

check for symmetry
� For large data sets, does the histogram or polygon appear bell-

shaped?

�Compute descriptive summary measures
� Do the mean, median and mode have similar values?
� Is the interquartile range approximately 1.33 σ?
� Is the range approximately 6 σ?

(continued)
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Brief Notes on Probability and Inference

Comparing data characteristics to theoretical 
properties
� Observe the distribution of the data set

� Do approximately 2/3 of the observations lie within mean ±1 
standard deviation?

� Do approximately 80% of the observations lie within mean 
±1.28 standard deviations?

� Do approximately 95% of the observations lie within mean ±2 
standard deviations?

� Evaluate normal probability plot
� Is the normal probability plot approximately linear (i.e. a straight 

line) with positive slope?

(continued)
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Brief Notes on Probability and Inference
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(continued)

Plot is approximately 
a straight line except 
for a few outliers at 
the low end and the 
high end.
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TEST OF HYPOTHESIS 
A test of hypothesis is an inferential procedure based on sample 
data to test some assertions related to one or more populations

NULL HYPOTHESIS H 0
The null hypothesis usually corresponds to the status quo or the 
hypothesis of no effect, no difference, etc.

ALTERNATIVE HYPOTHESIS  H 1
The alternative hypothesis represents the assertion that needs 
to be proved by the empirical evidence through sample data.

Brief Notes on Probability and Inference
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Summary

• Brief notes on probability and inference
• Simple linear regression analysis
• Multiple linear regression analysis
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Simple Linear Regression Analysis

� A scatter plot can be used to show the 
relationship between two variables

� Correlation analysis is used to measure the 
strength of the association (linear relationship) 
between two variables
� Correlation is only concerned with strength of the 

relationship 

� No causal effect is implied with correlation
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� Regression analysis is used to:
� Predict the value of a dependent variable Y based on 

the value of at least one independent variable

� Explain the impact on the dependent variable of 
changes in independent (explanatory) variables 
X1,…,Xk

Dependent variable: the variable we wish to
predict or explain

Independent or explanatory variable(s): the 
variable(s) used to predict or explain the 
dependent variable

Simple Linear Regression Analysis
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� Relationship between  Y and X1,…,Xk is 
described by a linear function     

� Only one independent variable, X ⇒
Simple Linear Regression Model

� k≥2 independent variables, X1,…,Xk ⇒
Multiple Linear Regression Model

Simple Linear Regression Analysis
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ii10i εXββY ++=
Linear component

Population 
Y  intercept 

Population 
Slope
Coefficient 

Random 
Error 
term

Dependent 
Variable

Independent 
Variable

Random Error
component

Simple Linear Regression Analysis

Simple Linear Regression Model
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Random Error 
for this Xi value

Y

X

Observed Value 
of Y for Xi

Predicted Value 
of Y for Xi

ii10i εXββY ++=

Xi

Slope = β1

Intercept = β0

εi

Simple Linear Regression Analysis
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i10i XbbŶ +=

The simple linear regression equation provides an 
estimate of the population regression line

Estimate of 
the regression 
intercept

Estimate of the 
regression slope

Estimated  
(or predicted) 
Y value for 
observation i

Value of X for 
observation i

Simple Linear Regression Analysis
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b0 and  b1 are obtained by finding the values of  

that minimize the sum of the squared 

differences between Y and     :

2
i10i

2
ii ))Xb(b(Ymin)Ŷ(Ymin +−=− ∑∑

Ŷ

Simple Linear Regression Analysis
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• Suppose that we have n pairs of observations 
(x1, y1), (x2, y2), …, (xn, yn).

Deviations of the 
data from the 
estimated 
regression model.

Simple Linear Regression Analysis
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• The method of least squares is used to 
estimate the parameters, β0 and β1 by minimizing 
the sum of the squares of the vertical deviations.

Deviations of the 
data from the 
estimated 
regression model.

Simple Linear Regression Analysis
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Simple Linear Regression Analysis
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Simple Linear Regression Analysis
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Definition

32

Simple Linear Regression Analysis
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�

Simple Linear Regression Analysis
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� A real estate agent wishes to examine the 
relationship between the selling price of a home 
and its size (measured in square feet)

� A random sample of 10 houses is selected
� Dependent variable (Y) = house price in $1000s

� Independent variable (X) = square feet

Simple Linear Regression Analysis

Example:
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House Price in $1000s
(Y)

Square Feet 
(X)

245 1400

312 1600

279 1700

308 1875

199 1100

219 1550

405 2350

324 2450

319 1425

255 1700

Simple Linear Regression Analysis
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House price model:  Scatter Plot

Simple Linear Regression Analysis
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Simple Linear Regression Analysis

37

Y X
2

245 1400 -41.5 -315 1722.25 99225 13072.5

312 1600 25.5 -115 650.25 13225 -2932.5

279 1700 -7.5 -15 56.25 225 112.5

308 1875 21.5 160 462.25 25600 3440

199 1100 -87.5 -615 7656.25 378225 53812.5

219 1550 -67.5 -165 4556.25 27225 11137.5

405 2350 118.5 635 14042.25 403225 75247.5

324 2450 37.5 735 1406.25 540225 27562.5

319 1425 32.5 -290 1056.25 84100 -9425

255 1700 -31.5 -15 992.25 225 472.5

sum 2865 17150 0 0 32600.5 1571500 172500

mean 286.5 1715 3260.05 157150 17250
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Regression Statistics

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Standard Error 41.33032

Observations 10

ANOVA
df SS MS F Significance F

Regression 1 18934.9348 18934.9348 11.0848 0.01039

Residual 8 13665.5652 1708.1957

Total 9 32600.5000

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 98.24833 58.03348 1.69296 0.12892 -35.57720 232 .07386

Square Feet 0.10977 0.03297 3.32938 0.01039 0.03374 0.185 80

The regression equation is:

feet) (square 0.10977 98.24833 price house +=

Simple Linear Regression Analysis
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House price model:  Scatter Plot and Prediction Line

feet) (square 0.10977 98.24833 price house +=

Slope 
= 0.10977

Intercept 
= 98.248  

Simple Linear Regression Analysis
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317.85

0)0.1098(200  98.25

(sq.ft.) 0.1098 98.25 price house

=

+=

+=

Predict the price for a house 
with 2000 square feet:

The predicted price for a house with 2000 
square feet is 317.85($1,000s) = $317,850

Simple Linear Regression Analysis
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� Total variation is made up of two parts:

SSE       SSR       SST +=
Total Sum of 

Squares
Regression Sum 

of Squares
Error Sum of 

Squares

∑ −= 2
i )YY(SST ∑ −= 2

ii )ŶY(SSE∑ −= 2
i )YŶ(SSR

where:
= Mean value of the dependent variable

Yi = Observed value of the dependent variable

= Predicted value of Y for the given Xi valueiŶ

Y

Simple Linear Regression Analysis
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� The coefficient of determination is the portion 
of the total variation in the dependent variable 
that is explained by variation in the 
independent variable

� The coefficient of determination is also called 
r-squared and is denoted as r2

1r0 2 ≤≤note:

squares of sum 

 squares of  regression2

total

sum

SST

SSR
r ==

Simple Linear Regression Analysis
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Regression Statistics

Multiple R 0.76211

R Square 0.58082

Adjusted R Square 0.52842

Standard Error 41.33032

Observations 10

ANOVA
df SS MS F Significance F

Regression 1 18934.9348 18934.9348 11.0848 0.01039

Residual 8 13665.5652 1708.1957

Total 9 32600.5000

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 98.24833 58.03348 1.69296 0.12892 -35.57720 232 .07386

Square Feet 0.10977 0.03297 3.32938 0.01039 0.03374 0.185 80

58.08% of the variation in 
house prices is explained by 

variation in square feet

0.58082
32600.5000

18934.9348

SST

SSR
r 2 ===

Simple Linear Regression Analysis
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� Linearity
� The relationship between X and Y is linear

� Independence of Errors
� Error values are statistically independent

� Normality of Error
� Error values are normally distributed for any given 

value of X

� Equal Variance (also called homoscedasticity)
� The probability distribution of the errors has constant 

variance

Simple Linear Regression Analysis

Assumptions of the model:

44S. Bonnini - SMEB. Regression Analysis



� The residual for observation i, ei, is the difference 
between its observed and predicted value

� Check the assumptions of regression by examining the 
residuals
� Examine for linearity assumption

� Evaluate independence assumption 

� Evaluate normal distribution assumption 

� Examine for constant variance for all levels of X 
(homoscedasticity)  

� Graphical Analysis of Residuals

� Can plot residuals vs. X

iii ŶYe −=

Simple Linear Regression Analysis
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Simple Linear Regression Analysis

Analysis of residuals
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Not Independent
Independent

X

Xre
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Simple Linear Regression Analysis



� Examine the Histogram of the Residuals

� Construct a Normal Probability Plot of the 
Residuals

Simple Linear Regression Analysis

Checking for normality:
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Non-constant variance � Constant variance

x x

Y

x x
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Simple Linear Regression Analysis

Checking for homoschedasticity
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House Price Model Residual Plot

-60

-40

-20

0

20

40

60

80

0 1000 2000 3000

Square Feet

R
es

id
ua

ls

RESIDUAL OUTPUT

Predicted 
House Price Residuals

1 251.92316 -6.923162

2 273.87671 38.12329

3 284.85348 -5.853484

4 304.06284 3.937162

5 218.99284 -19.99284

6 268.38832 -49.38832

7 356.20251 48.79749

8 367.17929 -43.17929

9 254.6674 64.33264

10 284.85348 -29.85348

Does not appear to violate 
any regression assumptions

Simple Linear Regression Analysis
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� The standard error of the regression slope 
coefficient (b1) is estimated by

∑ −
==

2
i

YXYX
b

)X(X

S

SSX

S
S

1

where:

= Estimate of the standard error of the slope

= Standard error of the estimate

1bS

2n
SSE

SYX −
=

Simple Linear Regression Analysis
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� t test for a population slope
� Is there a linear relationship between X and Y?

� Null and alternative hypotheses
� H0:  β1 = 0 (no linear relationship)
� H1:  β1 ≠ 0 (linear relationship does exist)

� Test statistic

1b

11
STAT S

βb
t

−
=

2nd.f. −=

where:

b1 = regression slope
coefficient

β1 = hypothesized slope

Sb1 = standard
error of the slope

Simple Linear Regression Analysis
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H0: β1 = 0
H1: β1 ≠ 0Software output: 

Coefficients Standard Error t Stat P-value

Intercept 98.24833 58.03348 1.69296 0.12892

Square Feet 0.10977 0.03297 3.32938 0.01039

1bSb1

329383
032970

0109770

S

βb
t

1
b

11
STAT

.
.

. =−=
−

=

Simple Linear Regression Analysis



Test Statistic:  tSTAT = 3.329

There is sufficient evidence 
that square footage affects 
house price

Decision:  Reject H0

Reject H0Reject H0

α/2=.025

-tα/2
Do not reject H0

0 tα/2

α/2=.025

-2.3060 2.3060 3.329

d.f. = 10- 2 = 8

H0: β1 = 0
H1: β1 ≠ 0

Simple Linear Regression Analysis
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Summary

• Brief notes on probability and inference
• Simple linear regression analysis
• Multiple linear regression analysis



Idea: Examine the linear relationship between 
1 dependent (Y) & 2 or more independent variables (Xi)

iikki22i110i εXβXβXββY ++⋅⋅⋅+++=

Multiple Regression Model with k Independent Variab les:

Y-intercept Population slopes Random Error

Multiple Linear Regression Analysis

56S. Bonnini - SMEB. Regression Analysis























+











































=





















n

2

1

k

2

1

0

nkn2n1

2k2221

1k1211

n

2

1

ε

ε

ε

β

β

β

β

XXX

XXX

XXX

1

1

1

Y

Y

Y

L
L

L

LLLL

L

L

LL

Multiple Linear Regression Analysis

Matrix representation:

εXβY +=

nx1 n×(k+1) (k+1)×1 nx1
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The coefficients of the multiple regression model are 
estimated using sample data

kik2i21i10i
XbXbXbbY +⋅⋅⋅+++=ˆ

Estimated 
(or predicted) 
value of Y

Estimated slope coefficients

Multiple regression equation with k independent var iables:

Estimated
intercept

Multiple Linear Regression Analysis
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• The least squares functionis given by

• The least squares estimatesmust satisfy

Multiple Linear Regression Analysis
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• The solution to the normal Equations are the least 
squares estimators of the regression coefficients.

• The least squares normal Equations are

Multiple Linear Regression Analysis

60S. Bonnini - SMEB. Regression Analysis



Matrix Approach

We wish to find the vector of least squares 
estimators that minimizes:

The resulting least squares estimate is

Multiple Linear Regression Analysis
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Two variable model

Y

X1

X2

22110 XbXbbŶ ++=

(continued)

Multiple Linear Regression Analysis
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� A distributor of frozen dessert pies wants to 
evaluate factors thought to influence demand

� Dependent variable:       Pie sales (units per week)
� Independent variables:   Price (in $)

Advertising ($100’s)

� Data are collected for 15 weeks

Multiple Linear Regression Analysis
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Sales = b0 + b1 (Price) 
+ b2 (Advertising)

Week
Pie 

Sales
Price

($)
Advertising

($100s)

1 350 5.50 3.3

2 460 7.50 3.3

3 350 8.00 3.0

4 430 8.00 4.5

5 350 6.80 3.0

6 380 7.50 4.0

7 430 4.50 3.0

8 470 6.40 3.7

9 450 7.00 3.5

10 490 5.00 4.0

11 340 7.20 3.5

12 300 7.90 3.2

13 440 5.90 4.0

14 450 5.00 3.5

15 300 7.00 2.7

Multiple regression equation:

Multiple Linear Regression Analysis
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Regression Statistics

Multiple R 0.72213

R Square 0.52148

Adjusted R Square 0.44172

Standard Error 47.46341

Observations 15

ANOVA df SS MS F Significance F

Regression 2 29460.027 14730.013 6.53861 0.01201

Residual 12 27033.306 2252.776

Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 55 5.46404

Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37 392

Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 13 0.70888

ertising)74.131(Adv  ce)24.975(Pri - 306.526 Sales +=

Multiple Linear Regression Analysis

b1 = -24.975: sales will 
decrease, on average, by 
24.975 pies per week for each 
$1 increase in selling price, 
net of the effects of changes 
due to advertising

b2 = 74.131: sales will 
increase, on average, by 
74.131 pies per week for 
each $100 increase in 
advertising, net of the effects 
of changes due to price

65S. Bonnini - SMEB. Regression Analysis



Predict sales for a week in which the selling 
price is $5.50 and advertising is $350:

Predicted sales 
is 428.62 pies

428.62 

(3.5) 74.131  (5.50) 24.975 - 306.526 

ertising)74.131(Adv  ce)24.975(Pri - 306.526 Sales

=

+=

+=

Note that Advertising is 
in $100’s, so $350 
means that X2 = 3.5

Multiple Linear Regression Analysis
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� Reports the proportion of total variation in Y 
explained by all X variables taken together

squares of sum total
squares of sum regression

SST
SSR

r ==2

Multiple Linear Regression Analysis
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Regression Statistics

Multiple R 0.72213

R Square 0.52148

Adjusted R Square 0.44172

Standard Error 47.46341

Observations 15

ANOVA df SS MS F Significance F

Regression 2 29460.027 14730.013 6.53861 0.01201

Residual 12 27033.306 2252.776

Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 55 5.46404

Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37 392

Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 13 0.70888

.52148
56493.3
29460.0

SST
SSR

r2 ===

52.1% of the variation in pie sales 
is explained by the variation in 
price and advertising

Multiple Linear Regression Analysis
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� Shows the proportion of variation in Y explained
by all X variables adjusted for the number of X
variables used and sample size

(where n = sample size, k = number of independent variables)

� Penalize excessive use of unimportant independent 
variables

� Smaller than r2

� Useful in comparing among models

(continued)
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� F Test for Overall Significance of the Model

� Shows if there is a linear relationship between all 
of the  X  variables considered together and  Y

� Use F-test statistic

� Hypotheses:

H0: β1 = β2 = … = βk = 0  (no linear relationship)

H1: at least one  βi ≠ 0   (at least one independent
variable affects Y)

Multiple Linear Regression Analysis
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� Test statistic:

where FSTAT has numerator d.f. = k and
denominator d.f. = (n – k - 1)

1−−

==

kn

SSE
k

SSR

MSE

MSR
FSTAT
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Regression Statistics

Multiple R 0.72213

R Square 0.52148

Adjusted R Square 0.44172

Standard Error 47.46341

Observations 15

ANOVA df SS MS F Significance F

Regression 2 29460.027 14730.013 6.53861 0.01201

Residual 12 27033.306 2252.776

Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 55 5.46404

Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37 392

Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 13 0.70888

(continued)

With 2 and 12 degrees 
of freedom

P-value for 
the F Test

6.5386
2252.8

14730.0

MSE

MSR
FSTAT ===
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Assumptions :
� Independence of errors

� Error values are statistically independent

� Normality of errors
� Error values are normally distributed for any given set of X 

values

� Equal Variance (also called Homoscedasticity)
� The probability distribution of the errors has constant variance

ei = (Yi – Yi)

<

Errors ( residuals ) from the regression model:

Multiple Linear Regression Analysis
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� These residual plots are used in multiple 
regression:

� Residuals vs. Yi

� Residuals vs. X1i

� Residuals vs. X2i

� Residuals vs. time (if time series data)

<
Use the residual plots to check for 
violations of regression assumptions

Multiple Linear Regression Analysis
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� Use t tests of individual variable slopes

� Shows if there is a linear relationship between 
the variable Xj and Y holding constant the effects 
of other X variables

� Hypotheses:

� H0: βj = 0 (no linear relationship)

� H1: βj ≠ 0  (linear relationship does exist
between Xj and Y)

Multiple Linear Regression Analysis
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H0: βj = 0 (no linear relationship)

H1: βj ≠ 0  (linear relationship does exist
between Xj and Y)

Test Statistic:

(df = n – k – 1)

jb

j
STAT S

b
t

0−
=

(continued)
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Regression Statistics

Multiple R 0.72213

R Square 0.52148

Adjusted R Square 0.44172

Standard Error 47.46341

Observations 15

ANOVA df SS MS F Significance F

Regression 2 29460.027 14730.013 6.53861 0.01201

Residual 12 27033.306 2252.776

Total 14 56493.333

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 55 5.46404

Price -24.97509 10.83213 -2.30565 0.03979 -48.57626 -1.37 392

Advertising 74.13096 25.96732 2.85478 0.01449 17.55303 13 0.70888

t Stat for Price is  t STAT = -2.306, with 
p-value .0398

t Stat for Advertising is t STAT = 2.855, 
with p-value .0145

(continued)
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Multicollinearity (also collinearity) occurs when two or 
more explanatory variables of the multiple regression 
model are highly correlated

In the presence of multicollinearity the coefficients 
estimates can change with high variability as a 
consequence of small changes in the data (low efficiency).  

Perfect multicollinearity ⇒ X matrix is singular and cannot 
be inverted ⇒ least square estimates cannot be computed 

Multiple Linear Regression Analysis
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One way to detect multicollinearity is by computing the variance 
inflaction factors

Rj
2: coefficient of determination of the regression of Xj on all the other 

explanatory variables

A VIF greater than or equal to 5 indicates a multicollinearity problem

In the presence of multicollinearity one or more explanatory variables 
should be removed by the model

Example: VIF(Price)=VIF(Advertising)= 1/(1-R1
2)= 1/(1-0.00092642) ≅ 1

Price and Advertising are almost uncorrelated ⇒ absence of collinearity

Multiple Linear Regression Analysis
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Regression analysis procedure
� Specification of the multiple regression model
� Test the significance of the multiple regression 

model
� Test the significance of the regression 

coefficents
� Discuss adjusted r2

� Use residual plots to check model assumptions 

Multiple Linear Regression Analysis
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Problem 1 - Passito

� Perform a multiple regression analysis for 
predicting LIKE_PAS as function of 
LIKE_AROMA, LIKE_SWEET, LIKE_ALCOHOL 
and LIKE_TASTE

� Predict the value of LIKE_PAS when
LIKE_AROMA=LIKE_ALCOHOL=5
LIKE_TASTE=LIKE_SWEET=6

R exercises
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Problem 2 - Hotel

� Perform a multiple regression analysis for 
predicting Price as function of Cleanliness and 
Courtesy

� Predict the value of Price when Cleanliness=80 
and Courtesy=40

R exercises
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Problem 3 - Mall

� Perform a multiple regression analysis for 
predicting Product_assortment as function of 
Temp_Level, Brightness, Salesman and 
Music_volume

� Predict the value of Product_assortment when 
Temp_Level=-50, Brightness=20, Salesman=30
and Music_volume=-70

R exercises
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Problem 4 - Students

� Perform a multiple regression analysis for 
predicting Econometrics as function of Statistics
and Mathematics

� Predict the value of Econometrics when 
Statistics=8 and Mathematics=7

R exercises
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