Stefano Bonnini

Multivariate problems and matrix algebra

Multivariate problems

Multivariate statistical analysis deals with data containing observations on two or more characteristics (variables) each measured on a set of objects (statistical units)

Example 1: examination marks, about 5 courses (Mechanics, Vectors, Algebra, Analysis, Statistics), achieved by 88 students

Example 2: weights of cork deposites (centigrams) for 28 trees in the four directions (N, E, S, W)

Example 3: flower measurements (sepal length, sepal width, petal length, petal width) on 50 flowers belonging to a certein species of iris

Multivariate problems

Available information \rightarrow Dataset $\rightarrow n \times k$ matrix

Example: data matrix with 5 students where $X_{1}=$ age in years at entry to university, $X_{2}=$ marks out of 100 in an examination at the end of the first year and $X_{3}=$ sex.
units
1
2
3
4

5 $\quad \overbrace{1} \quad$| X_{1} | X_{2} | |
| :--- | :--- | :--- |
| 18.45 | 70 | 1 |
| 18.41 | 65 | 0 |
| 18.39 | 71 | 0 |
| 18.70 | 72 | 0 |
| 18.34 | 94 | 1 |

Multivariate problems

Some multivariate problems:

Example 1: study how the mark in the examination of «Statistics» (dependent variable) is affected by or can be predicted as function of the marks in other examinations or other variables such as age, sex, etc. (explanatory variables) \rightarrow regression problem

Example 2: study how to combine the information on the performance of the students on the 5 examinations to determine the global performance of each student with just one, or two or less than 5 values \rightarrow factor analysis, principal component analysis, composite indicator

Example 3: study how to group students with similar performances by considering the whole set of examinations \rightarrow cluster analysis

Multivariate problems

The general $n \times k$ matrix which represents a dataset with n statistical units and k variables can be written as follows:

Units
1
\ldots
n
n $\quad\left\{\begin{array}{ccccc}x_{11} & \ldots & x_{1 v} & \ldots & x_{1 k} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ x_{u 1} & \ldots & x_{u v} & \ldots & x_{u k} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ x_{n 1} & \ldots & x_{n v} & \ldots & x_{n k}\end{array}\right.$

This matrix can be denoted \mathbf{X} or $\left(x_{u v}\right)$

$$
\mathbf{x}_{u}=\left(\begin{array}{c}
x_{u 1} \\
\cdots \\
x_{u v} \\
\cdots \\
x_{u k}
\end{array}\right)
$$

$$
\mathbf{x}_{(v)}=\left(\begin{array}{c}
x_{1 v} \\
\cdots \\
x_{u v} \\
\cdots \\
x_{n v}
\end{array}\right)
$$

Matrix algebra

A $\mathrm{m} \times \mathrm{n}$ matrix A is a table with m rows and n columns:

$$
\mathbf{A}=\left(\begin{array}{llll}
3 & 8 & 3 & 5 \\
9 & 1 & 1 & 8 \\
4 & 6 & 4 & 2
\end{array}\right) \quad \longrightarrow a_{23}=1
$$

In this case the matrix has 3 rows and 4 columns. If $m=n$ then it is called square matrix

i denotes the row
j denotes the column

Matrix algebra

A matrix with dimension $1 \times n$ is called row vector:

$$
\underset{1 \times 5}{\mathbf{a}}=\left(\begin{array}{lllll}
6 & 3 & 1 & 7 & 2
\end{array}\right)
$$

A matrix with dimension $m \times 1$ is called column vector or simply vector:

$$
\underset{5 \times 1}{\mathbf{c}}=\left(\begin{array}{l}
6 \\
3 \\
1 \\
7 \\
2
\end{array}\right)
$$

A unit vector is a vector of ones:

$$
\underset{5 \times 1}{\mathbf{1}}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Matrix algebra

Given the matrices \boldsymbol{A} and \boldsymbol{B}, their sum is defined as $\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}$, where $c_{i j}=a_{i j}+b_{i j}$

Example:

$$
\mathbf{A}=\left(\begin{array}{cccc}
3 & 8 & 3 & 5 \\
9 & 1 & 1 & 8 \\
4 & 6 & 4 & 2
\end{array}\right), \mathbf{B}=\left(\begin{array}{cccc}
3 & 3 & 5 & 9 \\
9 & 1 & 4 & 3 \\
6 & 6 & 9 & 6
\end{array}\right) \Rightarrow \mathbf{A}+\mathbf{B}=\mathbf{C}=\left(\begin{array}{cccc}
6 & 11 & 8 & 14 \\
18 & 2 & 5 & 11 \\
10 & 12 & 13 & 8
\end{array}\right)
$$

Matrix algebra

The product of a $m \times n$ matrix \boldsymbol{A} and a scalar (single value) λ is called scalar multiplication and it consists in a matrix with the same dimension of \boldsymbol{A}, obtained by multiplying each element of \boldsymbol{A} by λ
$\boldsymbol{C}=\lambda \boldsymbol{A} \Leftrightarrow c_{i j}=\lambda a_{i j}$
Example:

$$
\begin{aligned}
& \lambda=2 \quad \mathbf{A}=\left(\begin{array}{llll}
3 & 8 & 3 & 5 \\
9 & 1 & 1 & 8 \\
4 & 6 & 4 & 2
\end{array}\right) \\
& 2 \mathbf{A}=\left(\begin{array}{cccc}
6 & 16 & 6 & 10 \\
18 & 2 & 2 & 16 \\
8 & 12 & 8 & 4
\end{array}\right)
\end{aligned}
$$

Matrix algebra

The inner product of two vectors \mathbf{a} and \mathbf{b} is possible if the vectors have the same number of elements and it is equal to $\boldsymbol{a}^{\prime} \boldsymbol{b}=\sum_{i} a_{i} b_{i}$

The product between two matrices A and B is possible if the number of columns of A is equal to the number of rows of B.

Given the $m \times n$ matrix A and the $n \times h$ matrix B, the product $C=A B$ is a $m \times h$ matrix. The element in row i and column j is equal to the inner product between row i of A and column j of B.

$$
\mathrm{C}=\mathrm{AB} \Leftrightarrow c_{i j}=\mathbf{a}_{i}^{\prime} \mathbf{b}_{(j)}
$$

Example:

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 2 \\
-1 & 0 \\
3 & 1
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right) \quad \square \mathbf{C}=\mathbf{A} \times \mathbf{B}=\left(\begin{array}{cc}
7 & 14 \\
-1 & -2 \\
6 & 12
\end{array}\right)
$$

Matrix algebra

... where the elements of \boldsymbol{C} are equal to:

$$
\mathbf{C}=\left(\begin{array}{cc}
c_{11}=1 \cdot 1+2 \cdot 3=7 & c_{12}=1 \cdot 2+2 \cdot 6=14 \\
c_{21}=-1 \cdot 1+0 \cdot 3=-1 & c_{22}=-1 \cdot 2+0 \cdot 6=-2 \\
c_{31}=3 \cdot 1+1 \cdot 3=6 & c_{32}=3 \cdot 2+1 \cdot 6=12
\end{array}\right)
$$

Matrix algebra

Note that:

$$
\underset{(m \times n)(n \times h)}{\mathbf{A} \cdot \mathbf{B}}=\underset{(m \times h)}{\mathbf{C}}
$$

Thus the product between a row vector and a column vector is a scalar; the product between a column vector and a row vector is a matrix:

$$
\underset{1 \times n}{\mathbf{a}} \cdot \underset{n \times 1}{\mathbf{b}}=\underset{1 \times 1}{c}
$$

$$
\underset{n \times 1 \times n}{\mathbf{b} \cdot \mathbf{a}}=\underset{n \times n}{\mathbf{C}}
$$

Matrix algebra

Examples:

$$
\underset{1 \times 2}{\mathbf{a}}=\left(\begin{array}{ll}
2 & 4
\end{array}\right) \quad \underset{2 \times 1}{\mathbf{b}}=\binom{5}{2} \quad \square \quad \mathbf{a} \times \mathbf{b}=2 \cdot 5+4 \cdot 2=18
$$

$$
\underset{2 \times 1}{\mathbf{b}}=\binom{5}{2} \underset{1 \times 2}{\mathbf{a}}=\left(\begin{array}{ll}
2 & 4
\end{array}\right) \quad \square \quad \mathbf{b} \times \mathbf{a}=\left(\begin{array}{cc}
10 & 20 \\
4 & 8
\end{array}\right)
$$

Matrix algebra

The transpose of the matrix $\boldsymbol{A}=\left(a_{i j}\right)$ is the matrix $\boldsymbol{A}^{\prime}=\left(a_{j i}\right)$ whose rows correspond to the columns of \boldsymbol{A} :

Example:

$$
\mathbf{A}=\left(\begin{array}{lll}
3 & 6 & 4 \\
2 & 8 & 9 \\
2 & 5 & 1
\end{array}\right) \quad \mathbf{A}^{\prime}=\left(\begin{array}{lll}
3 & 2 & 2 \\
6 & 8 & 5 \\
4 & 9 & 1
\end{array}\right)
$$

The square matrix $\boldsymbol{A}=\left(a_{i j}\right)$ is symmetric if $a_{i j}=a_{j i}$ or equivalently if $\boldsymbol{A}^{\prime}=\boldsymbol{A}$.
Example:

$$
A=\left(\begin{array}{lll}
3 & 6 & 4 \\
6 & 8 & 9 \\
4 & 9 & 1
\end{array}\right)
$$

Matrix algebra

A null matrix is a matrix with all elements equal to 0 .

$$
\mathbf{0}=\left(\begin{array}{cccc}
0 & 0 & . & 0 \\
0 & . & . & . \\
. & . & . & . \\
0 & 0 & . & 0
\end{array}\right)
$$

A diagonal matrix is a square matrix whose elements not in the main diagonal are all equal to 0 .

$$
\operatorname{diag}\left(a_{1}, \cdots, a_{n}\right)=\left(\begin{array}{cccc}
a_{1} & 0 & . & 0 \\
0 & a_{2} & \cdot & \cdot \\
\cdot & \cdot & . & \cdot \\
0 & 0 & . & a_{n}
\end{array}\right)
$$

Matrix algebra

The transpose satisfies the following properties:

1. $\left(A^{\prime}\right)^{\prime}=A$
2. $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
3. $(A B)^{\prime}=B^{\prime} A^{\prime}$

A diagonal matrix is a square matrix whose elements not in the main diagonal are all equal to 0 .

Matrix algebra

The trace of $\boldsymbol{A}=\left(a_{i j}\right)$ is the sum of the elements in the main diagonal of \boldsymbol{A} :

$$
\operatorname{tr}(\boldsymbol{A})=\Sigma_{i} a_{i j}
$$

Example:

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & 5 & 1 \\
7 & 5 & 8 \\
9 & 7 & 5
\end{array}\right) \quad \operatorname{cr}(\mathbf{A})=2+5+5=12
$$

Matrix algebra

The trace satisfies the following properties for
$\boldsymbol{A}(m \times m), \boldsymbol{B}(m \times m), \boldsymbol{C}(m \times n), \boldsymbol{D}(n \times m)$ and a scalar λ :

1. $\operatorname{tr}(\lambda)=\lambda$
2. $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{A}^{\prime}\right)$
3. $\operatorname{tr}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{tr}(\boldsymbol{A})+\operatorname{tr}(\boldsymbol{B})$
4. $\operatorname{tr}(C D)=\operatorname{tr}(D C)=\Sigma_{i, j} c_{i j} d_{j i}$
5. $\operatorname{tr}\left(\boldsymbol{C C}^{\prime}\right)=\operatorname{tr}\left(\boldsymbol{C}^{\prime} \boldsymbol{C}\right)=\Sigma_{i, j} c_{i j}{ }^{2}$

Matrix algebra

Given the 2×2 matrix $\quad \mathbf{A}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$

The determinant of \boldsymbol{A} is

$$
\operatorname{det}(\mathbf{A})=|\mathbf{A}|=\left(\begin{array}{ll}
a_{11} & a_{12}^{\prime} \\
a_{21} & a_{22}
\end{array}\right)=a_{11} \cdot a_{22}-a_{21} \cdot a_{12}
$$

Matrix algebra

Given the $m \times m$ matrix

A

The determinant of \boldsymbol{A} is

$$
\operatorname{det}(\mathbf{A})=|\mathbf{A}|=\sum_{j=1}^{m} a_{i j} A_{i j}=\sum_{i=1}^{m} a_{i j} A_{i j} \quad \text { for any } i, j
$$

where the cofactor $A_{i j}$ is the product of $(-1)^{i+j}$ and the determinant of the matrix obtained after deleting th row and th column of \boldsymbol{A} (minor)

Case $m=3$:

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \Rightarrow \operatorname{det}(\mathbf{A})=|\mathbf{A}|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right)
\end{aligned}
$$

Matrix algebra

Computation of the determinant of a $3^{\text {rd }}$ order matrix (Sarrus rule):

$$
\begin{gathered}
\operatorname{det}(\mathbf{A})=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=\left(\begin{array}{l}
a_{1} \\
a_{21}
\end{array} a_{12}\right. \\
a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-\left(a_{31} a_{22} a_{13}+a_{32} a_{23} a_{11}+a_{33} a_{21} a_{12}\right)
\end{gathered}
$$

Matrix algebra

Example:

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{lll}
3 & 4 & 1 \\
4 & 6 & 2 \\
5 & 7 & 4
\end{array}\right) \\
\operatorname{det}(A)=3\left|\begin{array}{ll}
6 & 2 \\
7 & 4
\end{array}\right|-4\left|\begin{array}{ll}
4 & 2 \\
5 & 4
\end{array}\right|+1\left|\begin{array}{ll}
4 & 6 \\
5 & 7
\end{array}\right|=3(24-14)-4(16-10)+1(28-30)=4
\end{gathered}
$$

or alternatively:

$$
\begin{aligned}
\operatorname{det}(\mathbf{A})= & \left(\begin{array}{lllll}
3 & 4 & 1 & 3 & 4 \\
4 & 6 & 8 & 4 & 6 \\
5 & 2 & 2 & 7 & 2
\end{array}\right) \\
& =3 \cdot 6 \cdot 4+4 \cdot 2 \cdot 5+1 \cdot 4 \cdot 7-(5 \cdot 6 \cdot 1+7 \cdot 2 \cdot 3+4 \cdot 4 \cdot 4)= \\
& =140-136=4
\end{aligned}
$$

Matrix algebra

Properties of the determinant

1. If $\boldsymbol{A}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ then $\operatorname{det}(\boldsymbol{A})=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{n}=\Pi_{i} a_{i}$
2. $\operatorname{det}(\lambda \mathbf{A})=|\lambda \mathbf{A}|=\lambda^{n}|\boldsymbol{A}|$
3. $\operatorname{det}(\mathbf{A B})=|\boldsymbol{A B}|=|\boldsymbol{A}| \cdot|\boldsymbol{B}|$
4. If \boldsymbol{A} has two equal rows or two equal columns then $\operatorname{det}(\boldsymbol{A})=0$
5. If \boldsymbol{A} has a row of zeros or a column of zeros then $\operatorname{det}(\boldsymbol{A})=0$
6. If \boldsymbol{B} is the matrix obtained exchanging the position of two rows or two columns of \boldsymbol{A} then $\operatorname{det}(\boldsymbol{B})=-\operatorname{det}(\boldsymbol{A})$
7. $\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\boldsymbol{A}^{\prime}\right)$
8. If \boldsymbol{B} is the matrix obtained by summing to a row or a column of \boldsymbol{A} a linear combination of the other rows or columns of \boldsymbol{A} respectively then $\operatorname{det}(\boldsymbol{B})=\operatorname{det}(\boldsymbol{A})$
9. A square matrix \boldsymbol{A} is non-singular if $\operatorname{det}(\boldsymbol{A}) \neq 0$; otherwise \boldsymbol{A} is singular

Matrix algebra

Example:

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ll}
2 & 3 \\
1 & 6
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ll}
2 & 5 \\
7 & 3
\end{array}\right) \\
& \operatorname{det}(\mathbf{A})=2 \cdot 6-3 \cdot 1=9 \quad \operatorname{det}(\mathbf{B})=2 \cdot 3-5 \cdot 7=-29 \\
& \operatorname{det}(\mathbf{A}) \cdot \operatorname{det}(\mathbf{B})=9 \cdot(-29)=-261 \\
& \mathbf{A B}=\left(\begin{array}{ll}
2 & 3 \\
1 & 6
\end{array}\right) \cdot\left(\begin{array}{ll}
2 & 5 \\
7 & 3
\end{array}\right)=\left(\begin{array}{ll}
2 \cdot 2+3 \cdot 7 & 2 \cdot 5+3 \cdot 3 \\
1 \cdot 2+6 \cdot 7 & 1 \cdot 5+6 \cdot 3
\end{array}\right)=\left(\begin{array}{ll}
25 & 19 \\
44 & 23
\end{array}\right) \\
& \operatorname{det}(\mathbf{A B})=25 \cdot 23-19 \cdot 44=-261
\end{aligned}
$$

Matrix algebra

The inverse of the square matrix \boldsymbol{A} is the unique matrix \boldsymbol{A}^{-1} satisfying:

The inverse $\boldsymbol{A}^{\boldsymbol{- 1}}$ exists if and only if \boldsymbol{A} is non singular, that is, if and only if $\operatorname{det}(\boldsymbol{A}) \neq 0$.

Matrix algebra

The identity matrix is a diagonal matrix where all the elements in the main diagonal are equal to 1 .

$$
\mathbf{I}=\left(\begin{array}{ccccc}
1 & 0 & . & 0 & 0 \\
0 & 1 & . & 0 & 0 \\
. & . & . & . & . \\
0 & 0 & . & 1 & 0 \\
0 & 0 & . & 0 & 1
\end{array}\right)
$$

Properties of \mathbf{I}
$\mathbf{A} \times \mathbf{I}=\mathbf{I} \times \mathbf{A}=\mathbf{A}$
$\mathbf{A} \times \mathbf{A}^{-1}=\mathbf{I}$
$\mathbf{A}^{-1} \times \mathbf{A}=\mathbf{I}$

Matrix algebra

Properties of the inverse:

1. $(\lambda A)^{-1}=\lambda^{-1} A^{-1}$
2. $(A B)^{-1}=B^{-1} A^{-1}$
3. The unique solution of $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$
4. $\boldsymbol{A}=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \Rightarrow \boldsymbol{A}^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right)$

Example 1:

$$
\begin{gathered}
\mathbf{A B}=\left(\begin{array}{ll}
2 & 3 \\
1 & 6
\end{array}\right) \cdot\left(\begin{array}{ll}
2 & 5 \\
7 & 3
\end{array}\right) \Rightarrow(\mathbf{A B})^{-1}=\left(\begin{array}{ll}
25 & 19 \\
44 & 23
\end{array}\right)^{-1}=\frac{1}{(-261)}\left(\begin{array}{cc}
23 & -19 \\
-44 & 25
\end{array}\right)=\left(\begin{array}{cc}
-0.088 & 0.073 \\
0.169 & -0.096
\end{array}\right) \\
\mathbf{B}^{-1} \mathbf{A}^{-1}=\left(\begin{array}{ll}
2 & 5 \\
7 & 3
\end{array}\right)^{-1} \cdot\left(\begin{array}{ll}
2 & 3 \\
1 & 6
\end{array}\right)^{-1} \Rightarrow\left(\begin{array}{cc}
-0.103 & 0.172 \\
0.241 & -0.069
\end{array}\right) \cdot\left(\begin{array}{cc}
0.667 & -0.333 \\
-0.111 & 0.222
\end{array}\right)=\left(\begin{array}{cc}
-0.088 & 0.073 \\
0.169 & -0.096
\end{array}\right)
\end{gathered}
$$

Matrix algebra

Example 2:

Let us consider the following system of equations

$$
\left\{\begin{array}{c}
2 x_{1}+3 x_{2}=13 \\
x_{1}+2 x_{2}=8
\end{array} \Rightarrow\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{13}{8} \Rightarrow \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\right.
$$

The solution is

$$
\begin{aligned}
\binom{x_{1}}{x_{2}} & =\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right)^{-1}\binom{13}{8}=\frac{1}{2 \cdot 2-3 \cdot 1}\left(\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right)\binom{13}{8}= \\
& =\binom{2 \cdot 13-3 \cdot 8}{-1 \cdot 13+2 \cdot 8}=\binom{26-24}{-13+16}=\binom{2}{3}
\end{aligned}
$$

Matrix algebra

A square matrix \boldsymbol{A} is orthogonal if $\boldsymbol{A A}^{\prime}=\boldsymbol{I}$
The following properties hold:

1. $A^{\prime}=A^{-1}$
2. $A^{\prime} A=I$
3. $|A|= \pm 1$
4. $\boldsymbol{a}_{i} \mathbf{a}_{j}=0, i \neq j ; \boldsymbol{a}_{i}^{\prime} \mathbf{a}_{i}=0, \forall i ; \boldsymbol{a}_{(i)}{ }^{\prime} \mathbf{a}_{(j)}=0, i \neq j ; \mathbf{a}_{(i)}{ }^{\prime} \mathbf{a}_{(i)}=0, \forall i$;

Example:

$$
\begin{aligned}
A & =\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \\
\boldsymbol{A}^{\prime} & =\left(\begin{array}{rrc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)=\boldsymbol{A}^{-\mathbf{1}} \text { because } \boldsymbol{A A ^ { \prime }}=\boldsymbol{I}
\end{aligned}
$$

Matrix algebra

Vectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{k}}$ are called linearly dependent if there exist numbers $\lambda_{1}, \ldots, \lambda_{k}$ not all zero such that $\lambda_{1} \boldsymbol{x}_{1}+\ldots+\lambda_{k} \boldsymbol{x}_{\mathrm{k}}=\mathbf{0}$.
Otherwise the k vectors are linearly independent.
Let \boldsymbol{W} be a subspace of \boldsymbol{R}^{n}. Then a basis of \boldsymbol{W} is a maximal linearly independent set of vectors.

Every basis of \boldsymbol{W} contains the same (finite) number of elements. This number is the dimension of W.

If $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{k}}$ is a basis for \boldsymbol{W} then every element \boldsymbol{x} in \boldsymbol{W} can be expressed as a linear combination of $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\mathrm{k}}$.

Example:
The dimension of $\mathbf{W}=\boldsymbol{R}^{3}$ is 3 . A basis for \boldsymbol{R}^{3} is $\boldsymbol{x}_{1}=(1,0,0)^{\prime}, \boldsymbol{x}_{2}=(0,1,0)$ and $\boldsymbol{x}_{3}=(0,0,1)^{\prime}$. As a matter of fact $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and \boldsymbol{x}_{3} are linearly independent and every vector $\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}\right)$ ' can be expressed as linear combination of $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and $\boldsymbol{x}_{3}: \boldsymbol{a}=a_{1} \boldsymbol{x}_{1}+a_{2} \boldsymbol{x}_{2}+a_{3} \boldsymbol{x}_{3}$

Matrix algebra

The rank of a $n \times k$ matrix \boldsymbol{A} is defined as the maximum number of linearly independent columns (rows) in \boldsymbol{A}.

The following properties hold for the rank of \boldsymbol{A}, denoted with $r(\boldsymbol{A})$:

1. $r(\boldsymbol{A})$ is the largest order of those (square) submatrices of \boldsymbol{A} with non null determinants.
2. $0 \leq r(\boldsymbol{A}) \leq \min (n, k)$
3. $r(\boldsymbol{A})=r\left(\boldsymbol{A}^{\prime}\right)$
4. $r\left(\boldsymbol{A}^{\prime} \boldsymbol{A}\right)=r\left(\boldsymbol{A}^{\prime}\right)=r(\boldsymbol{A})$
5. If $n=k$ then $r(\boldsymbol{A})=k$ if and only if A is non-singular

Example:
$\mathbf{A}=\left(\begin{array}{ccc}1 & -1 & 3 \\ -2 & 2 & 5 \\ 1 & -1 & 9\end{array}\right) \operatorname{det}(\mathbf{A})=0\left|\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right|=0 \quad\left|\begin{array}{cc}-1 & 3 \\ 2 & 5\end{array}\right|=-11 \neq 0$
Thus the $r(\boldsymbol{A})=2$

Matrix algebra

If \boldsymbol{A} is a square matrix of order n, in some problems we are interested in finding a vector x and a scalar λ which satisfy the following property:

A trivial solution is $\boldsymbol{x}=\mathbf{0}$, any $\lambda \in \boldsymbol{R}$

Matrix algebra

The n eigenvalues of $\boldsymbol{A} \lambda_{1}, \ldots, \lambda_{n}$ are the n solutions of the characteristic equation

$$
|\mathbf{A}-\lambda \mathbf{I}|=\mathbf{0}
$$

Properties of the eigenvalues of \boldsymbol{A} :

1. $|\boldsymbol{A}|=\Pi_{i} \lambda_{i}$
2. $\operatorname{tr}(\boldsymbol{A})=\Sigma_{i} \lambda_{i}$
3. $r(\boldsymbol{A})$ equals the number of non-zero eigenvalues
4. The set of all eigenvectors for an eigenvalue λ_{i} is called the eigenspace of \boldsymbol{A} for λ_{i}
5. Any symmetric $n \times n$ matrix \boldsymbol{A} can be written as $\boldsymbol{A}=\Gamma \Lambda \Gamma^{\prime}=\Sigma_{i} \lambda_{i} \gamma_{(i)} \gamma_{(i)}{ }^{\prime}$ where Λ is a diagonal matrix of eigenvalues of \boldsymbol{A} and Γ is an orthogonal matrix whose columns are eigenvectors with $\gamma_{(())} \gamma_{(i)}=1_{33}$

Matrix algebra

Example:
$\mathbf{A}=\left(\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right) \quad$ The characteristic equation is: $\left|\begin{array}{ccc}2-\lambda & -2 & 3 \\ 1 & 1-\lambda & 1 \\ 1 & 3 & -1-\lambda\end{array}\right|=0$

By computing the determinant we have:

$$
\begin{aligned}
(2-\lambda) \cdot\left|\begin{array}{cc}
1-\lambda & 1 \\
3 & -1-\lambda
\end{array}\right|-1 \cdot\left|\begin{array}{cc}
-2 & 3 \\
3 & -1-\lambda
\end{array}\right|+1 \cdot\left|\begin{array}{cc}
-2 & 3 \\
1-\lambda & 1
\end{array}\right|= \\
\quad=(2-\lambda)\left[-1+\lambda^{2}-3\right]-2-2 \lambda+9-2-3+3 \lambda=(\lambda+2)(\lambda-1)(3-\lambda)=0
\end{aligned}
$$

The solutions represent the 3 eigenvalues of \boldsymbol{A} :

$$
\lambda_{1}=1 \quad \lambda_{2}=-2 \quad \lambda_{3}=3
$$

Matrix algebra

The eigenvalue with maximum absolute value $\lambda_{3}=3$ is called dominant

There is an infinite number of eigenvectors \boldsymbol{x} which satisfy $(\boldsymbol{A}-3 \boldsymbol{I}) \mathbf{x}=\mathbf{0}$

$$
\left(\begin{array}{ccc}
-1 & -2 & 3 \\
1 & -2 & 1 \\
1 & 3 & -4
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

A possible solution is $\boldsymbol{x}=(1,1,1)^{\prime}$, thus a standardized eigenvector is $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^{\prime}$

