Matrices and Linear Algebra

Quantitative methods for Economics and Business

University of Ferrara
Academic year 2017-2018

Matrices and Linear Algebra

(1) Basics
(2) Matrix operations
(3) Determinant of a matrix
4) Inverse matrix
(5) Eigenvalues of a matrix

Matrices and Linear Algebra

(1) Basics
(2) Matrix operations

3 Determinant of a matrix
4) Inverse matrix
(5) Eigenvalues of a matrix

Matrices and Linear Algebra

(1) Basics
(2) Matrix operations
(3) Determinant of a matrix
4) Inverse matrix
(5) Eigenvalues of a matrix

Matrices and Linear Algebra

(1) Basics
(2) Matrix operations
(3) Determinant of a matrix
4) Inverse matrix
(5) Eigenvalues of a matrix

Matrices and Linear Algebra

(1) Basics
(2) Matrix operations
(3) Determinant of a matrix
(4) Inverse matrix
(5) Eigenvalues of a matrix

Part I

Matrices and Linear Algebra

Definition

A matrix is an $m \times n$ array of $m \cdot n$ scalars from \mathbb{R}. The individual values in the matrix are called entries.

Examples:

$$
A=\left(\begin{array}{ccc}
2 & -1 & 3 \\
1 & 4 & -2
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

The size of the array is written as $m \times n$, where

$$
m \quad \text { is the number of rows }
$$

n is the number of columns
Notation:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

$a_{i j}:=$ the entry on the row i and on the column j

Specific cases

A matrix with dimension $1 \times n$ is called row vector:

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

A matrix with dimension $m \times 1$ is called column vector or simply vector:

$$
\mathbf{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)
$$

A unit vector is a vector of ones:

$$
\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)
$$

Special matrices

If $m=n$, the matrix is called square. In this case we have:

- A matrix A is said to be diagonal if

$$
a_{i j}=0 \quad \text { for } i \neq j
$$

- A diagonal matrix A may be denoted by $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ where

$$
a_{i i}=d_{i} \quad \text { and } \quad a_{i j}=0 \quad \text { for } i \neq j
$$

The diagonal matrix $\operatorname{diag}(1,1, \ldots, 1)$ is called the identity matrix and is usually denoted by

$$
I=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & & \\
\vdots & & \ddots & \\
0 & & & 1
\end{array}\right)
$$

The diagonal matrix $O=\operatorname{diag}(0, \ldots, 0)$ is called the zero matrix.

- A square matrix L is said to be lower triangular if

$$
l_{i j}=0 \quad \text { for } i<j
$$

that is

$$
L=\left(\begin{array}{cccc}
I_{11} & 0 & \ldots & 0 \\
I_{21} & I_{22} & & \\
\vdots & \vdots & \ddots & \\
I_{n 1} & I_{n 2} & \ldots & I_{n n}
\end{array}\right)
$$

- A square matrix U is said to be upper triangular if

$$
u_{i j}=0 \quad \text { for } i>j
$$

that is

$$
U=\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
0 & u_{22} & & u_{2 n} \\
& & \ddots & \vdots \\
& & & u_{n n}
\end{array}\right)
$$

Definition

Let A be an $m \times n$ matrix.
Define the transpose of A, denoted by A^{T}, to be the $n \times m$ matrix (i.e. n rows and m columns) with entries

$$
\left(A^{T}\right)_{i j}=a_{j i} .
$$

In other words:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \quad A^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right)
$$

Examples:

$$
\begin{array}{cc}
A=\left(\begin{array}{ccc}
2 & -1 & 3 \\
1 & 4 & -2
\end{array}\right) & A^{T}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 4 \\
3 & -2
\end{array}\right) \\
B=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) & B^{T}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right)
\end{array}
$$

We have that

$$
\left(A^{T}\right)^{T}=A
$$

A square matrix A (i.e. an $n \times n$ matrix) is called symmetric if

$$
a_{i j}=a_{j i}
$$

that is

$$
A^{T}=A
$$

Example: The matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & -4 \\
2 & -4 & 0
\end{array}\right)
$$

is symmetric.

Equality, Addition, Scalar multiplication

Two matrices A and B are equal if and only if they have the same size and

$$
a_{i j}=b_{i j} \quad \text { for all } i, j .
$$

If A and B are matrices of the same size then the sum of A and B is defined by $C=A+B$, where

$$
c_{i j}=a_{i j}+b_{i j} \quad \text { for all } i, j .
$$

If A is any matrix and $\alpha \in \mathbb{R}$ then the scalar multiplication $B=\alpha A$ is defined by

$$
b_{i j}=\alpha a_{i j} \quad \text { for all } i, j
$$

Examples

$$
\begin{gathered}
\left(\begin{array}{cc}
2 & 1 \\
-3 & 4 \\
7 & 0
\end{array}\right)+\left(\begin{array}{cc}
6 & -1.5 \\
0 & 1 \\
1 & \pi
\end{array}\right)=\left(\begin{array}{cc}
8 & -0.5 \\
-3 & 5 \\
8 & \pi
\end{array}\right) \\
-3\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
-3 & -6 \\
-9 & -12
\end{array}\right)
\end{gathered}
$$

Matrix addition "inherits" many properties from \mathbb{R}.
Theorem: If A, B, C are $m \times n$ matrices and $\alpha, \beta \in \mathbb{R}$, then

- $A+B=B+A$ (commutivity)
- $A+(B+C)=(A+B)+C$ (associativity)
- $\alpha(A+B)=\alpha A+\alpha B$ (distributivity of a scalar)
- if $B=O$ (a matrix of all zeros) then $A+B=A+O=A$
- $(\alpha+\beta) A=\alpha A+\beta A$
- $\alpha(\beta A)=\alpha \beta A$
- $0 A=O$
- $\alpha O=O$
- $(A+B)^{T}=A^{T}+B^{T}$

Inner or scalar product

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ be two vectors.
The scalar or inner product of \mathbf{x} and \mathbf{y} is given by

$$
\langle\mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

It is a scalar (i.e. a number)!!!
Remark: Alternative notation for the scalar product is $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x} \cdot \mathbf{y}$. Scalar product is defined only for vectors of the same length!!!

Example: let $\mathbf{x}=(1,0,3,-1)$ and $\mathbf{y}=(0,2,-1,2)$. Then

$$
\langle\mathbf{x}, \mathbf{y}\rangle=1 \cdot 0+0 \cdot 2+3 \cdot(-1)+(-1) \cdot 2=-5
$$

Matrix product

Assume that A is $m \times n$ and B is $n \times p$. Denote by

$$
\mathbf{r}_{i}(A) \text { the } i-\text { th row of } A
$$

$\mathbf{c}_{j}(B)$ the j-th column of B
The product $D=A B$ is the $m \times p$ matrix defined by

$$
d_{i j}=\left\langle\mathbf{r}_{i}(A), \mathbf{c}_{j}(B)\right\rangle
$$

that means

$$
d_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}, \quad \text { for } 1 \leq i \leq m, 1 \leq j \leq p
$$

Remark: In order to perform matrix multiplication, we need that the number of columns of A is equal to the number of rows of B !

Example:

$$
A=\left(\begin{array}{lll}
1 & 0 & 1 \\
3 & 2 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & 1 \\
3 & 0 \\
-1 & 1
\end{array}\right)
$$

Set $C=A B$, then

$$
\begin{aligned}
& d_{11}=\left\langle\mathbf{r}_{1}(A), \mathbf{c}_{1}(B)\right\rangle=1 \cdot 2+0 \cdot 3+1 \cdot(-1)=1 \\
& d_{12}=\left\langle\mathbf{r}_{1}(A), \mathbf{c}_{2}(B)\right\rangle=1 \cdot 1+0 \cdot 0+1 \cdot 1=2 \\
& d_{21}=\left\langle\mathbf{r}_{2}(A), \mathbf{c}_{1}(B)\right\rangle=3 \cdot 2+2 \cdot 3+1 \cdot(-1)=11 \\
& d_{22}=\left\langle\mathbf{r}_{2}(A), \mathbf{c}_{2}(B)\right\rangle=3 \cdot 1+2 \cdot 0+1 \cdot 1=4
\end{aligned}
$$

We obtain

$$
D=A B=\left(\begin{array}{cc}
1 & 2 \\
11 & 4
\end{array}\right)
$$

Properties of matrix product

If $A B$ exists, does it happen that $B A$ exists and $A B=B A$?
The answer is usually no.

- First $A B$ and $B A$ exist if and only if A is $m \times n$ and B is $n \times m$. Even if this is so, the sizes of $A B$ and $B A$ are different ($A B$ is $m \times m$ and $B A$ is $n \times n$) unless $m=n$. Example:

$$
A=(1,2) \quad B=\binom{-1}{1} \quad A B=(1) \quad B A=\left(\begin{array}{cc}
-1 & -2 \\
1 & 2
\end{array}\right)
$$

- However even if $\mathrm{m}=\mathrm{n}$ we may have $A B \neq B A$.

Example:

$$
\begin{aligned}
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) & B=\left(\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right) \\
A B=\left(\begin{array}{ll}
-1 & 3 \\
-3 & 7
\end{array}\right) & B A=\left(\begin{array}{ll}
2 & 2 \\
3 & 4
\end{array}\right)
\end{aligned}
$$

If $A B=O$, does it happen that $A=O$ or $B=O$?
The answer is usually no.
Example: Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

It happens that

$$
A B=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

but

$$
A \neq\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and

$$
B \neq\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Theorem (Matrix Multiplication Rules).

Assume A, B, and C are matrices for which all products below make sense. Then

- $A(B C)=(A B) C$ (associativity)
- $A(B+C)=A B+A C$ and $(A+B) C=A C+B C$
- $A I=A$ and $I A=A$
- $\alpha(A B)=(\alpha A) B$
- $A O=O$ and $O B=O$
- $(A B)^{T}=B^{T} A^{T}$

The simple case of 2×2 matrices

Consider a 2×2 matrix

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

The determinant of A is defined as

$$
\operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21}
$$

Example:

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}\right) \\
\operatorname{det}(A) & =1 \cdot 4-2 \cdot 3=-2
\end{aligned}
$$

The case of 3×3 matrices

Consider a 3×3 matrix

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

The determinant of A is defined as
$\operatorname{det}(A)=a_{11} \cdot(-1)^{1+1} \operatorname{det}\left(A_{11}\right)+a_{12} \cdot(-1)^{1+2} \operatorname{det}\left(A_{12}\right)+a_{13} \cdot(-1)^{1+3} \operatorname{det}\left(A_{13}\right)$
where

$$
A_{11}=\left(\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right) \quad A_{12}=\left(\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right) \quad A_{13}=\left(\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)
$$

Then

$$
\begin{gathered}
\operatorname{det}(A)=a_{11} \cdot \operatorname{det}\left(A_{11}\right)-a_{12} \cdot \operatorname{det}\left(A_{12}\right)+a_{13} \cdot \operatorname{det}\left(A_{13}\right) \\
=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right)
\end{gathered}
$$

The same rule may be carried out by selecting any row or column of A : for each row index $i(i=1,2,3)$, we have
$\operatorname{det}(A)=a_{i 1} \cdot(-1)^{i+1} \operatorname{det}\left(A_{i 1}\right)+a_{i 2} \cdot(-1)^{i+2} \operatorname{det}\left(A_{i 2}\right)+a_{i 3} \cdot(-1)^{i+3} \operatorname{det}\left(A_{i 3}\right)$
for each column index $j(j=1,2,3)$, we have $\operatorname{det}(A)=a_{1 j} \cdot(-1)^{1+j} \operatorname{det}\left(A_{1 j}\right)+a_{2 j} \cdot(-1)^{2+j} \operatorname{det}\left(A_{2 j}\right)+a_{3 j} \cdot(-1)^{3+j} \operatorname{det}\left(A_{3 j}\right)$
where $A_{i j}$ is the submatrix obtained from A after deleting the i-th row and the j-th column of A itself.

For instance, consider

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
3 & -1 & 4 \\
1 & -2 & 1
\end{array}\right)
$$

Then we have

$$
\operatorname{det}(A)=1 \cdot \operatorname{det}\left(\begin{array}{cc}
-1 & 4 \\
-2 & 1
\end{array}\right)-2 \cdot \operatorname{det}\left(\begin{array}{cc}
3 & 4 \\
1 & 1
\end{array}\right)+1 \cdot \operatorname{det}\left(\begin{array}{cc}
3 & -1 \\
1 & -2
\end{array}\right)
$$

It follows that

$$
\operatorname{det}(A)=(-1+8)-2(3-4)+(-6+1)=4
$$

Any row or column can be selected in order to evaluate the determinant: try to work on the third column and verify the result!

The general case of $n \times n$ matrices

Consider a square $n \times n$ matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

The determinant of A is defined as
$\operatorname{det}(A)=a_{i 1} \cdot(-1)^{i+1} \operatorname{det}\left(A_{i 1}\right)+a_{i 2} \cdot(-1)^{i+2} \operatorname{det}\left(A_{i 2}\right)+\cdots+a_{i n} \cdot(-1)^{i+n} \operatorname{det}\left(A_{i n}\right)$
for each row index $i(i=1,2, \ldots, n)$, or equivalently as
$\operatorname{det}(A)=a_{1 j} \cdot(-1)^{1+j} \operatorname{det}\left(A_{1 j}\right)+a_{2 j} \cdot(-1)^{2+j} \operatorname{det}\left(A_{2 j}\right)+\cdots+a_{n j} \cdot(-1)^{n+j} \operatorname{det}\left(A_{n j}\right)$
for each column index $j(j=1,2, \ldots, n)$, where
$A_{i j}$ is the submatrix obtained from A after deleting the $i-$ th row and the j-th column of A itself.

Some properties of the determinant

Consider an $n \times n$ matrix A.

- If two rows of A are interchanged to obtain B, then

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

- If any row of A is multiplied by a scalar α, the resulting matrix B has determinant

$$
\operatorname{det}(B)=\alpha \operatorname{det}(A)
$$

- If any two rows of A are equal, then

$$
\operatorname{det}(A)=0
$$

- If A has two rows equal up to a multiplicative constant, then

$$
\operatorname{det}(A)=0
$$

- If B is obtained by summing to a row or a column of A a linear combination of the other rows or columns of A, respectively, then

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

- $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
- $\operatorname{det}(A B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$
- $\operatorname{det}(\alpha A)=\alpha^{n} \operatorname{det}(A)$
- If $A=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, then $\operatorname{det}(A)=d_{1} \cdot d_{2} \ldots d_{n}$. It follows that

$$
\operatorname{det}(I)=1 \cdot 1 \ldots 1=1
$$

Definition

Let A be an $n \times n$ square matrix.
A is invertible if there exists a matrix B that satisfies the following relationship

$$
A B=B A=I
$$

Under the assumption that B exists, it is unique!!! We denote B by

$$
A^{-1} \quad \text { inverse of } A .
$$

Then

$$
A A^{-1}=A^{-1} A=I
$$

It is possible to prove that:
A is invertible (i.e. A^{-1} exists) $\Leftrightarrow \operatorname{det}(A) \neq 0$
in that case, A is non singular.

Simple case: 2×2 matrices

Consider $n=2$ and

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

Assume that $\operatorname{det}(A) \neq 0$. Then A is invertible and

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right)
$$

Example:

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
2 & -1 \\
4 & 3
\end{array}\right) \quad \operatorname{det}(A)=10 \\
A^{-1} & =\frac{1}{10}\left(\begin{array}{cc}
3 & 1 \\
-4 & 2
\end{array}\right)=\left(\begin{array}{cc}
\frac{3}{10} & \frac{1}{10} \\
-\frac{2}{5} & \frac{1}{5}
\end{array}\right)
\end{aligned}
$$

Some properties of the inverse

Consider two $n \times n$ matrices A, B and a scalar $\alpha \in \mathbb{R}$.

- $(A B)^{-1}=B^{-1} A^{-1}$
- $(\alpha A)^{-1}=\alpha^{-1} A^{-1}$
- $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$ (why?)

An application: solution of linear systems

Data: $n \times n$ matrix $A, n \times 1$ column vector \mathbf{b}
Unknown:: $n \times 1$ column vector \mathbf{x}
Problem: Find \mathbf{x} such that

$$
A \mathbf{x}=\mathbf{b}
$$

that is equivalent to solve the following system of linear equations

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}\right.
$$

Assume that A is non-singular (i.e. $\operatorname{det}(A) \neq 0$), then the previous system has got a unique solution, which is obtained as

$$
A^{-1} A \mathbf{x}=A^{-1} \mathbf{b}
$$

thus

$$
\mathbf{x}=A^{-1} \mathbf{b}
$$

Example: The following system

$$
\left\{\begin{array}{l}
3 x_{1}+2 x_{2}=1 \\
4 x_{1}+3 x_{2}=-2
\end{array}\right.
$$

is equivalent to

$$
A \mathbf{x}=\mathbf{b}
$$

with

$$
A=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right) \quad \mathbf{b}=\binom{1}{-2}
$$

We have $\operatorname{det}(A)=1 \neq 0$, then A is invertible and

$$
A^{-1}=\left(\begin{array}{cc}
3 & -2 \\
-4 & 3
\end{array}\right)
$$

The solution of $A \mathbf{x}=\mathbf{b}$ is

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left(\begin{array}{cc}
3 & -2 \\
-4 & 3
\end{array}\right)\binom{1}{-2}=\binom{7}{-10}
$$

Definition

If a vector $\mathbf{v} \neq \mathbf{0}$ satisfies the equation

$$
A \mathbf{v}=\lambda \mathbf{v},
$$

for some scalar λ, then λ is said to be an eigenvalue of the matrix A, and \mathbf{v} is said to be an eigenvector of A corresponding to the eigenvalue λ. Example: If

$$
A=\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right)
$$

and

$$
\mathbf{v}=\binom{1}{1}
$$

then

$$
A \mathbf{v}=\binom{5}{5}=5\binom{1}{1}=5 \mathbf{v}
$$

So $\lambda=5$ is an eigenvalue of A and \mathbf{v} is an eigenvector corresponding to this eigenvalue.

The definition of eigenvector requires that $\mathbf{v} \neq \mathbf{0}$.
The reason for this is that if $\mathbf{v}=\mathbf{0}$ were allowed, then any number λ would be an eigenvalue since the statement $A \mathbf{0}=\lambda \mathbf{0}$ holds for any λ. On the other hand, we can have $\lambda=0$ and $\mathbf{v} \neq \mathbf{0}$.

Example: If

$$
A=\left(\begin{array}{ll}
1 & 1 \\
3 & 3
\end{array}\right)
$$

and

$$
\mathbf{v}=\binom{1}{-1}
$$

then

$$
A \mathbf{v}=\binom{0}{0}=0 \mathbf{v}
$$

So $\lambda=0$ is an eigenvalue of A and $\mathbf{v} \neq \mathbf{0}$ is an eigenvector corresponding to this eigenvalue.

How do we find the eigenvalues and eigenvectors of a matrix?

Suppose $\mathbf{v} \neq \mathbf{0}$ is an eigenvector of A. Then for some $\lambda \in \mathbb{R}$, we have $A \mathbf{v}=\lambda \mathbf{v}$. Then

$$
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0}
$$

or, equivalently,

$$
(A-\lambda I) \mathbf{v}=\mathbf{0}
$$

This happens when

$$
\operatorname{det}(A-\lambda I)=0
$$

Then:

$$
\lambda \text { is an eigenvalue of } A \Leftrightarrow \operatorname{det}(A-\lambda I)=0
$$

$p(\lambda)=\operatorname{det}(A-\lambda I)$ is a polynomial function of λ. $p(\lambda)=0$ is called the characteristic equation of the matrix A

An example

Consider

$$
A=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right)
$$

Then

$$
A-\lambda I=\left(\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right)
$$

and

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=(1-\lambda)^{2}-9=\lambda^{2}-2 \lambda-8=(\lambda-4)(\lambda+2)
$$

From $p(\lambda)=0$ we obtain that $\lambda_{1}=4$ and $\lambda_{2}=-2$ are the eigenvalues of A.

As an exercise, we want to find an eigenvector corresponding to λ_{1}. Thus we have to solve the linear system $(A-4 I) \mathbf{v}=\mathbf{0}$, i.e.

$$
\left(\begin{array}{cc}
1-4 & 3 \\
3 & 1-4
\end{array}\right) \mathbf{v}=\binom{0}{0}
$$

It is equivalent to

$$
\left(\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

This leads to the two equations $-3 v_{1}+3 v_{2}=0$ and $3 v_{1}-3 v_{2}=0$. Notice that the first equation is a multiple of the second one, so there is really only one equation to solve

$$
3 v_{1}-3 v_{2}=0
$$

The general solution to the homogeneous system is given by

$$
v_{1}=v_{2}=c
$$

therefore, all vectors \mathbf{v} such that

$$
\mathbf{v}=\binom{c}{c}=c\binom{1}{1} \quad(\text { where } c \neq 0 \text { is arbitrary })
$$

are eigenvectors of A corresponding to $\lambda_{1}=4$.

Conclusion:

In general, eigenvectors are not unique! If \mathbf{v} is an eigenvector for A corresponding to a given eigenvalue λ, then so is $\mathbf{c v}$, for any number $c \neq 0$.

As an exercise, find the eigenvectors of A corresponding to the other eigenvalue $\lambda_{2}=-2$ (in the previous example).

